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Abstract 

This article is an investigation related to the complexation energies, binding 

abilities, frontier molecular orbital’s energy gaps and dipole moments on dimeric forms 

of 1-adamantanol, 1-adamantanemethylamine and 1-adamantanecarboxylic acid as the 

adamantane derivatives. All the optimizations, counterpoise corrections and 

complexation energy computations have been achieved by density functional theory with 

B3LYP and WB97XD functionals. In all counterpoise calculations have been used the 

empirical dispersion method with B3LYP and WB97XD for non-covalent interactions. 

The more favorable complexation energies have been obtained by B3LYP with the 

addition of dispersion correction. In addition, the images mapped with total density and 

electrostatic potential have been obtained in this study. 

Keywords: Adamantane derivatives, Complexation energy, Density functional 

theory 

Adamantan Türevlerinin Kompleksleşme Enerjileri ve Elektronik-Yapısal 

Özellikleri: Bir DFT Çalışması 

Öz 

Bu makale, adamantan türevleri olarak 1-adamantanol, 1-adamantanmetilamin ve 

1-adamantankarboksilik asit yapılarının dimerik formlarında kompleksleşme enerjileri, 

bağlanma yetenekleri, sınır moleküler orbital enerji boşlukları ve dipol momentleri ile 
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ilgilidir. Tüm optimizasyonlar, counterpoise düzeltmeleri ve kompleksleşme enerji 

hesaplamaları, B3LYP ve WB97XD ile yoğunluk fonksiyonel teorisi yardımıyla elde 

edilmiştir. Tüm counterpoise hesaplamalarında kovalent olmayan etkileşimler için 

B3LYP ve WB97XD ile ampirik dispersiyon metodu kullanılmıştır. B3LYP 

yaklaşımında dispersiyon düzeltmesinin eklenmesiyle daha uygun kompleksleşme 

enerjileri elde edilmiştir. Ek olarak, bu çalışmada toplam yoğunluk ve elektrostatik 

potansiyel ile haritalanan görüntüler elde edilmiştir. 

Anahtar Kelimeler: Adamantan türevleri, Kompleksleşme enerjisi, Yoğunluk 

fonksiyon teori 

1. Introduction 

Adamantane is a crystalline, colorless compound highly soluble in hydrocarbons 

and it has four cyclohexane rings. Adamantane derivatives are organic compounds that 

are effective in medical practice, extensively [1-3]. The first adamantane-derived drug is 

amantadine developed for the treatment of Parkinson’s and influenza diseases [4-8]. 

Other biological characteristics of adamantane-like compounds such as anticancer, 

antihypertensive, central nervous and antimicrobial activities are reported in literature [9-

13]. Also, the chemical and physical characteristics of adamantane derivatives such as 

low surface energy, thermal stabilities and oxidative stabilities have been the focus of 

several scientific studies [14, 15].  

Adamantane derivatives have been recently analyzed by computational approaches 

as potential hole transport materials for perovskite solar cells [16], porous materials for 

energy conversion, gas storage [17] and optical materials [18]. The crystal structure and 

data, electronic structure calculations, spectral analysis, molecular orbitals (MO) analysis, 

natural bond analysis (NBO), non-linear optical (NLO) properties, molecular docking 

studies and electrostatic potential analysis on the several adamantane derivatives have 

been the main topics of the previous studies [19−26]. 

Structural properties of Adamantane derivatives have been studied due to the use 

as technological materials in the industrial areas and the synthesis and spectroscopic 

analysis of very novel compounds in recent years. Hydrogen bond geometries between 

the hydroxyl, methylamine and carboxylic components have attracted our attention in 
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these dimers. The main objective is to examine the interactions that are caused by the 

effective hydrogen bonds in the selected dimer structures. In this research article; the 

dimeric forms of 1-adamantanol (AD1), 1-adamantanemethylamine (AD2) and 1-

adamantane carboxylic acid (AD3) as the adamantane derivatives are optimized by 

computational quantum chemistry methods. AD1 and AD2 compounds are also called as 

1-hydroxyadamantane and 1- (amino methyl) adamantane in literature, respectively. In 

addition, we aimed to obtain corrected complexation energies by using Grimme’s 

dispersion correction in B3LYP and compare without dispersion contribution. The 

corrected complexation energies, dipole moments and non-covalent interactions of the 

adamantane derivatives are evaluated in this study. 

2. Material and Method 

Geometry optimizations of the adamantane derivatives were provided by density 

functional theory (DFT) [27] with Becke’s three-parameter exchange function [28] along 

with Lee-Yang-Parr correlation exchange functional (LYP) [29] and wB97XD in 

combination with 6-31G (d, p) basis set. WB97XD is in the group of long range corrected 

functionals and includes empirical dispersion [30]. The description of atomic coordinates, 

initially, for all the geometry optimizations and molecular orbitals were formed by Gauss 

View software database [31]. All the optimizations, counterpoise (CP) corrections [32], 

basis set superposition error (BSSE) corrections and complexation energy computations 

were performed by using Gaussian 09W program package [33]. Monomer components 

(monomers A and B) as Gaussian fragments 1 and 2 were selected in Gauss View 

software. Corrected complexation energy is a value calculated by the CP approach. Raw 

(uncorrected) complexation energy does not contain CP correction. CP correction is a 

method for removing BSSE [34]. Gap between corrected and raw complexation energy 

is equal to BSSE energy. In all CP calculations empirical dispersion method, D2 version 

of Grimme’s dispersion correction [35], was applied with B3LYP and WB97XD by 

defining the values of the functional-specific global parameters for non-covalent 

interactions [36, 37]. 
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3. Results and Discussion 

The modeling images of the dimeric structures are given in Fig. 1. The energies of 

the monomeric and dimeric structures, complexation energies and hydrogen bond 

geometries (H···X' distances) for AD1, AD2 and AD3 are shown in Table 1. The stronger 

binding abilities between the monomer components with the hydrogen bond are 

computed as 1.86 (H3···O2'), 2.11 (H3···N2'), and 1.62 Å (H3···O4') by WB97XD 

methodology for AD1, AD2 and AD3, respectively. It is noteworthy that the binding 

abilities with O2-H3···O4' hydrogen bond geometry and corrected complexation energies 

results are more effective in AD3 dimer.  

 

Figure 1. Dimeric forms of the adamantane derivatives 

 

Corrected complexation energies are −4.26 (AD1), −2.60 (AD2) and −20.35 (AD3) 

kcal/mole without dispersion contribution in B3LYP. As shown in Table 1, corrected 
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complexation energies are computed as −8.61 (AD1), −6.04 (AD2) and −23.75 (AD3) 

kcal/mole by using Grimme’s dispersion correction in B3LYP. Adding dispersion 

correction in WB97XD approach did not affect the complexation energies in CP 

calculations (Table 1). This indicates that the WB97XD function already contains 

dispersion correction. There are strong intermolecular hydrogen bonds in dimers. Non-

covalent interactions (van der walls and steric interactions) are weak physical interactions 

and lower than hydrogen bonds. 

Table 1. Energies and hydrogen-bond geometry of the adamantane derivatives by B3LYP and WB97XD 
type calculations 

 Derivatives 

 AD1 AD2 AD3 

 B3LYP WB97XD B3LYP WB97XD B3LYP WB97XD 

Monomer (a.u.) -465.96654 -465.84689 -485.40854 -485.28688 -579.31875 -579.16709 

Dimer/CP corrected (a.u.) -932.04213 -931.70840 -970.94357 -970.58679 -1158.77246 -1158.36309 

Raw Complexation Energy (kcal.mole-1) -12.23 -12.41 -8.14 -8.52 -27.84 -25.93 

Corrected Complexation Energy (kcal.mole-1) -8.61 -8.75 -6.04 -6.43 -23.75 -22.52 

d(H···X')*   (Å) 1.93 1.86 2.19 2.11 1.63 1.62 

 

The relationship between the binding ability and interaction energy has been 

highlighted in earlier study [38]. The interaction energy was -19.815 kcal/mole as a lower 

level by the M06-2X of density functional than the B3LYP functional for a dimer linked 

with strong C-H…O interaction and N-H…O hydrogen bonds in this study [38]. In a similar 

study on the intermolecular interactions in aromatic amino acid residues, the binding 

energies have been computed at -5.8 and -6.6 kcal/mole by second-order Møller-Plesset 

perturbation (MP2) theory and the molecular mechanics modeling for para-cresol dimer, 

respectively [39]. 

Hydrogens interact symmetrically with atoms with higher electronegativity in AD3 

dimeric form. So, it has minimum complexation energy values and stronger binding 

abilities with H3···O4' hydrogen bond geometry. Along with that, C1-O2-H3, C1-N2-H3 

and C1-O2-H3 bond angles as (shown in Fig. 1) are respectively calculated by B3LYP as 

107.37°, 110.98° and 105.71° in AD1, AD2 and AD3 monomeric forms. These angles 

are respectively 108.85°, 109.39° and 110.44° in AD1, AD2 and AD3 dimers as a result 

of intermolecular interactions. The analysis of the interaction energy and the decrease in 
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bridging angles are reviewed in a previous study involving the interactions of polyaniline 

emeraldine salt with NH3, CO2, and CO [40]. 

Table 2 includes the energy gaps between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO) and dipole moments for 

the monomeric and dimeric forms by B3LYP approach. As shown in the table, the 

minimal dipole moment is resulted in AD3 dimeric forms. The charge distribution and 

geometry of a molecule determines the polarity of this molecule. Polar or apolar 

properties of a molecule relate to electronegativity and molecular geometry. The dipole 

moment near zero indicates that the bond moments are of equal magnitude and opposite 

direction in AD3 dimeric forms. 

Table 2. HOMO-LUMO energy gaps and dipole moments of the adamantane derivatives by RB3LYP /6-
31G(d, p) type calculations 

 

HOMO-LUMO gap 
-monomer- 

(eV) 

HOMO-LUMO gap 
-dimer- 

(eV) 

Dipole moment 
-monomer - 

(Debye) 

Dipole moment 
-dimer- 
(Debye) 

AD1 8.63 8.04 1.54 2.16 
AD2 8.11 7.71 1.46 2.91 
AD3 7.46 7.24 1.71 0.22 

 

HOMO-LUMO plots, molecular orbital energy levels for the AD1 dimeric form are 

displayed in Fig. 2. The frontier molecular orbital energy gaps (HOMO-LUMO gaps) of 

the AD1, AD2 and AD3 dimeric forms are calculated as 8.04, 7.71 and 7.27 eV, 

respectively (Table 2). The frontier molecular orbital energy gaps of the dimers are lower 

than those of monomers. The visuals mapped with electrostatic potential (ESP) onto AD1, 

AD2 and AD3 dimers are given in Fig. 3. Red, green, and blue tones represent negative, 

neutral and positive potential values, respectively. ESP is effectively observed onto dimer 

interaction regions. It is used to explore the electron richness or  poorness of the molecular 

regions and to discuss the suitability of the electrophilic and nucleophilic attack. That is, 

it presents the distribution of positive and negative potentials on the molecule. The 

negative ESP generally refers to the lone pair of an electronegative atom [41]. In 

monomers, the hydroxyl, methylamine and carboxylic regions act as electrophilic attack. 

The regions with the positive electrostatic potential tone act as a nucleophilic attack. The 

surface map values are approximately -0.017 (around the oxygen), -0.013 (around the 

nitrogen) and -0.012 (around the symmetric atom group) for AD1, AD2 and AD3 dimeric 

forms, respectively. 
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Figure 2. The frontier molecular orbitals and energy levels of 1-Adamantanol dimeric form 

 
Figure 3. The visuals mapped with ESP of the dimer and monomer structures 
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4. Conclusions 

In this study, the monomer and dimer optimizations of the adamantane derivatives 

have been performed via density functional theory. The binding abilities with the 

hydrogen bond geometries and complexation energies have been evaluated in dimer 

structures. Complexation energies and binding abilities with the hydrogen bond geometry 

are much more effective in AD3 dimer with atoms with higher electronegativity. D2 

version of Grimme’s dispersion correction has been tested with density functional theory 

for non-covalent interactions. In B3LYP the more favorable complexation energies have 

been obtained with dispersion correction. In all dimers the binding abilities computed by 

WB97XD functional are stronger for containing empirical dispersion. The energy gaps 

and dipole moment values for the monomeric and dimeric forms of the adamantane 

derivatives have been calculated. The relations of polarity and apolarity properties to 

electronegativity and molecular geometry have been commented. The surface map values 

have been calculated by ESP analysis observed onto dimer interaction regions and 

monomers. The hydroxyl, methylamine and carboxylic regions in dimers and monomers 

act as electrophilic attack. 
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