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Abstract

Objectives: The research aimed to develop a theoretical (QSAR) model for
predicting the activity of 1,2,4-Triazole derivatives as anti-tubercular antagonist.

Methods: Genetic function approximation (GFA) was employed on a dataset of
1,2,4-Triazole derivatives to investigate their activities behavior on Mycobacterium
tuberculosis. This approach led to selection of the optimum descriptors and to generate the
correlation QSAR model that relate their activities values against Mycobacterium
tuberculosis with the molecular structures of the inhibitors.

Results: The built model was validated and was found to have squared correlation
coefficient (R?) of 0.9134, adjusted squared correlation coefficient (Rag) of 0.8753 and
Leave one out (LOO) cross validation coefficient (Q%,) value of 0.8231. The external
validation set used for confirming the predictive power of the model has R?pred of 0.7482.

Conclusion: Reliability, stability and robustness of the model obtained by the
validation test indicate that the model can be used to design and synthesis other 1,2,4-

Triazole derivatives with improved anti-tubercular activities.
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Genetik Fonksiyon Tahmin Yaklasimi Kullamlarak Mycobacterium tuberculosis’e

Karsi Baz1 Etkili Inhibitorlerin Aktivite Modellemelerinin Yapilmasi

Ozet

Amag: Aragtirma, anti-tiiberkiiler antagonisti olarak 1,2,4-Triazol tiirevlerinin
aktivitesini tahmin etmeye yonelik teorik (QSAR) bir model gelistirmeyi amaglamistir.

Yontem: Genetik fonksiyon yaklasimi (GFA), 1,2,4-Triazol tiirevlerinin
Mycobacterium tuberculosis iizerine etki tarzlarini arastirmak amaciyla kullanilmistir. Bu
yaklasim, optimum tanimlayicilarin secimine ve Mycobacterium tuberculosis iizerine etki
degerlerini inhibitorlerin molekiiler yapilariyla iligkilendiren korelasyon QSAR modelinin
olusturulmasina imkan vermistir.

Sonug: Olusturulan model dogrulanmis ve korelasyon katsayisinm karesi (R?)
0.9134, diizeltilmis korelasyon katsayisinin karesi (Radj) 0.8753 ve tek-¢ikisli (LOO) capraz
dogrulama katsay1 (Q2,) degeri 0.8231 olarak bulunmustur. Modelin &ngériicii giiciinii
dogrulamak i¢in kullanilan harici dogrulama seti, 0.7482 R%red 'ye sahiptir.

Tartisma: Dogrulama testi ile elde edilen modelin giivenilirligi, kararliligi ve
saglamligi, modelin, gelismis anti-fiiberkiiler aktivitesine sahip diger 1,2,4-Triazol

tiirevlerini tasarlamak ve sentezlemek i¢in kullanilabilecegini gostermektedir.

Anahtar Kelimeler: Uygulanabilirlik etki alani, Genetik fonksiyon yaklagimi,
QSAR, Tiiberkiilosis, Triazol.

1. Introduction

Tuberculosis (TB) is the leading infectious disease caused by specie of bacteria
known as Mycobacterium tuberculosis. About 2.5 billion people were infected with
tuberculosis worldwide and mortality of approximately 1.5 million people were reported

annually [1-2]. In spite of the first-line drugs; pyrazinamide (PZA), ethambutol (EMB),
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streptomycin (STP) , rifampicin (RIF) and isoniazid (INH); the increase in the occurrence
of both multidrug-resistant (MDR-TB) and extensively drug-resistant tuberculosis (XDR-
TB) are observed [3,4]. Moreover, treatment requiring the use of these drugs has been
reported to cause serious side effects such as: neuropathy and hepatitis are caused by
isoniazid [5], thrombocytopenia occurring as a result of rifampicin (RIF) [6]. In highlight of
these effects, the synthesis of novel compounds with better anti-tubercular activity has been
the target of many pharmacist and medicinal chemistry.

A novel series of 1,2,4-Triazole derivatives have been recently reported and
identified as potent inhibitors against of M. tuberculosis [7]. Design of novel compounds
were usually synthesized using a trial and error approach which is expensive and time
consuming. Application of computational chemistry such as Quantitative structure activity
relationship (QSAR) help in drug discovery to establish a relationship between various
molecular properties of molecules and their observably known activities. The knowledge of
(QSAR) technique provides solution to trial and error approach in synthesizing novel drugs
and also minimizes effort and time required to discover new compounds or to improve
current drugs in terms of their efficiency. The aim of this research was to develop a
theoretical (QSAR) model for predicting the activity of 1,2,4-Triazole derivatives against
tuberculosis. The aim of this research was to develop QSAR model using Genetic Function
Algorithm (GFA) for variable selection of descriptors and multiple linear regression
(MLR) method for predicting the activity of 1,2,4-Triazole derivatives as potent anti-

Mycobacterium tuberculosis.

2. Materials and Method

2.1 Data Set

The derivatives of 1,2,4-Triazole derivatives as potent anti-Mycobacterium
tuberculosis that were used in this research were selected from the literature [7]. The
chemical structures alongside with their biological activities of these compounds were

presented Table 1.
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Table 1. Molecular structure of 1, 2, 4-Triazole derivatives and their activities as potent anti-Mycobacterium tuberculosis

Observed Calculated
S/N Molecules Activity Activity Residual Leverage
(pBA) (pBA)
NN
10 Q\ — 6.3456 6.37977 0.03417  0.186966
" Ty
LN)\/\<;¢
1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl) methyl)-1H-1,2,4-triazol-5-
yl) thio) methyl)-1H-1,2,3-triazole
Ny
2 Q\ \Zg 7.4134 7.49781 -0.08441 0.267393

1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl) methyl)-3-methyl-1H-1,2,4-
triazol-5-yl) thio) methyl)-1H-1,2,3-triazole
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Observed

Calculated
S/N Molecules Activity Activity Residual Leverage
(pBA) (pBA)
N——NH
3 7(4 )\S _~_F 6.4171 6.410504 0.006596  0.832612
N
5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole
HN N
A\
/\/
4 \N)\S = 7.6397 7.592776 0.046924 0.15548
(@)
H3C/
3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole
HN N\

5 \N)\S/\/ 8.0899 8.37959 -0.28969 0328411

(o]

3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole
\R
6* I TN ]
\N>\8/\/ 7.366 7.64835 0.28235 0.085176
Hac/o

1-allyl-3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole
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Observed Calculated

S/N Molecules Activity Activity Residual Leverage

(pBA) (pBA)

\R
7 AR 7.0123 7.01666 -0.00436 0.343511

1-allyl-3-(allylthio)-5-(4-chlorophenyl)-1H-1,2 4-triazole

/—/
83

7 N 6.5267 6.289043 0.237657 0.089973

1-allyl-5-(allylthio)-1H-1,2,4-triazole
/_/
/

A 7.3233 7.60012 -0.27682 0.067538
/ N)\s/\/
Hsc\o

1-allyl-5-(allylthio)-3-(4-methoxyphenyl)-1H-1,2 4-triazole

HN——N
\ /\//
10 /gh.)o\/s\o 7.3279 7.127765 0.200135 0.101346

5-methyl-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole

9‘cl
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Observed

Calculated
S/N Molecules Activity Activity Residual Leverage
(pBA) (pBA)
73 -
1 A )\s/\/ 6.8568 7.04696 019016 0.218861
N 7
o e}
5-(tert-butyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole
HN—
HsC \
12 \O/®/<\N és\/\% 7.3079 7.3622 -0.0543 0.079898
o
(@]
5-(4-methoxyphenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole
HN—
13 CI\Q/QNA\S/\/ 7.314 7.277527 0.036473 0.154686
&N\,
5-(4-chlorophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole
I N/\/
14 % 8.5854 8.6647 -0.0793 0.357197

e
7/4'\‘)\8/\%

1-allyl-3-(tert-butyl)-5-(prop-2-yn-1-ylthio)-1H-1,2 4-triazole
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Observed

Calculated
S/N Molecules Activity Activity Residual Leverage
(pBA) (pBA)
\H

15 2 N 8.0615 7.569 0.4925 0.214607

1-allyl-5-(tert-butyl)-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole

/\%
N—N
16 7/4 )\ 8.0615 7.79949 0.26201 0.263698
/ /\:—l////
N s

5-(allylthio)-3-(tert-butyl)-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole
17 RN‘” 6.8494 6.60166 024774  0.255295

3-(allylthio)-5-(tert-butyl)-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole
18* \_—\N_N 7.9432 7.906989 0.036211 0.409976

§N>\8/\%

1-allyl-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole
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Observed

Calculated
S/N Molecules Activity Activity Residual Leverage
(pBA) (pBA)
/
19 N/N/ 7.4535 7.57474 -0.12124 0.25708
& N )\S %
1-allyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole
/—/
20 7.9759 7.966669 0.009231 0.337231
1-allyl-3-methyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole
S
21 N 7.9759 8.17805 -0.20215 0.249575
/Q e T——
1-allyl-3-methyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole
/—//
22° 7 & 7.9294 7.437563 0.491837 0.577201

N2\Br

3,5-dibromo-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole

Where superscript a represent the test set
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2.2 Structure Optimization

In order for the molecules to attain a stable conformer at a minimal energy, all the
molecules were geometrically optimized with the aid of Spartan 14 V1.1.4 by employing
Molecular Mechanics Force Field (MMFF) count to remove strain energy and later

subjected to Density Functional Theory (DFT) by utilizing the (B3LYP) basic set [9].

2.3 Molecular Descriptor Calculation

Descriptor is a mathematical logic that describes the properties of a molecule based
on the correction between the structure of the compound and its biological activity.
Descriptors calculation for all the inhibitory compounds was achieved using PaDEL-

Descriptor software V2.20. A total of 1876 molecular descriptors were Observed [10].

2.4 Normalization of Data and Pretreatment
The values for the Observed descriptors’ were normalized using Equation 1 below
so that each variable will have the same prospect at the inception so as to sway the model

[10].

Y: Y1 = Ymin (1)

Ymax = Ymin

where Y1 is the descriptor value for each molecule, Ymin and Ymax are the minimum and
maximum value for each descriptors column of Y. After successful normalization of the
data, the data were further subjected to pretreatment using in order to remove noise and

redundant data.

2.5 Data Division into Training and Test Set
The approach of Kennard and Stone was employed in this study to divide the data
set into a training set and a test compounds in proportion of 70 to 30%. The training set was

used to establish the QSAR model while the test was used to confirm the established model
[11].
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2.6 Development of the Model

Multi-linear regression approach (MLR) is a strategy used to develop the QSAR.
MLR display a direct relationship between the dependent variable Y and independent
variable X (descriptors). In MLR analysis, the mean of the dependent variable Y relies on
X (Descriptors). MLR equation below is used to incorporate more than one independent

variable (Descriptors) with a single response variable.

Y =kixi + kaxo + kaxs + C (2)

where Y represent the dependent variable, represent the independent variables, ‘k’s are

regression coefficients for each ‘x’s and ‘C’ is a regression intercept.

2.7 Generation of QSAR Model and Validation

The combinations of the optimum descriptors for the training set were obtained
from the descriptor pool using the Genetic Function Approximation technique. Their anti-
lung cancer activities were placed as the last column in their respective spread sheets in
Microsoft Excel 2010 which were later imported into the Material Studio software version

8.0 to generate the QSAR and to evaluate the internal validation parameters.

2.8 Determination of Outlier and Influential Molecule (Applicability Domain)

The applicability domain approach was employed to determination of outlier and
influential molecule. Any compound outside the applicability domain space of £3 is said
to be an outlier. To define and describe the applicability domain of the built QSAR models,
the leverage Ai approach was employed and defined as [12].

hi=X; (XTX)"t xT 3)

where Xi is training set matrix of i. X is the nX k descriptor matrix of the training set

compound and X7 is the transpose of the training set (X). X/ is the transpose matrix X; used
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to build the mode. The warning leverage h” is the limit values to check for influential

molecule. The warning leverage h” is defined as;
* (J+1)
h =3 e 4)

where j is the number of descriptors in the build model and m is the number of compounds

that made up the training set [11].

2.9 Assessment of Y-Randomization

The evaluation of Y-Randomization is to show that the developed QSAR model
created is reliable, strong, robust and not gotten by chance. This test was performed on the
training set data as described by [13]. Multi-linear regression (MLR) models were
generated by randomly shuffling the dependent variable (activity data) while keeping the
independent variables (descriptors) unaltered. It is expected that the developed QSAR
model should have significantly low R*> and Q? values for numbers of trials in order to

ascertain that the developed QSAR models is robust. Y-randomization Coefficient (cRj) is

another important parameter which should be more than 0.5 for passing this test.
cRZ =R x [R? — (R,)*|? ()

Where CRI% is Y-randomization Coefficient, R is correlation coefficient for Y-

Randomization and Rr is average ‘R’ of random models.

2.10 Quality Assurance of the Model

The fitting ability, stability, reliability, predictive and robustness of the developed
models were evaluated by internal and external validation parameters. The validation
parameters were compared with the accepted threshold value for any QSAR model [12]

shown in Table 2.
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3. Results and Discussion

A theoretical model (QSAR) was developed and accomplished to examine the data
set comprises ciprofloxacin derivatives as potential anti-lung cancer. The successful
application of Multi Linear Regression (MLR) approach led to development of three QSAR
models but Model 1 was selected as the best model due to the statistical significance. The
observed and calculated activities for inhibitory compounds as well as the residual values
were reported in Table 1. The low residual value between observed and calculated activities

implies that the model has a very high extrapolative measure.

Model 1
pBA = -0.37456543543 (AATSS5e) + 2.087643542 (minHCsatu) + 0.293436327
(RDF90s) + 3.02312046

Model 2
pBA = -0.3285458991* (AATS7s) + 0.024550934 (TDBO9e¢) - 0.117941052
(RDF1101) - 9.645640119

Model 3
pBA = -0.335632223* (AATS7s) + 0.021034761 (TDB9¢) - 0.129647108*
(RDF30i) + 8.992978173

Validation parameters for selected Model 1 reported in Table 2 passed the required

threshold value which actually confirmed the robustness of the model.

The names and symbols of each descriptors used in the QSAR model were all
presented in Table 3. Combination of 2D and 3D descriptors reported in the model
proposes that these types of descriptors are able to give an improved characterization of the

anti-tubercular agents.
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Statistics and Pearson’s correlation were performed for all the four descriptors in the
QSAR Model 1 and the results were reported were reported in Table 4. The low correlation
coefficients that exist between each pair of the descriptor in Model 1 signify that there is no
intercorrelation between each descriptor. Calculated Variance Inflation Factor (VIF)
reported for each descriptor was found to be less than four (4) and this is an assurance that
the descriptors were statistical orthogonal and the model developed was statistically

substantial.

The Mean Effect (ME) values reported in Table 4 gives vital information on the
effect of each descriptor and the degree of contribution in the developed model. The
magnitude and the signs of the mean effects values indicate their direction and individual
strength of the descriptor on the activity of the inhibitory molecule. The estimated P-values
for all the descriptors in the Model 1 at 95% level reported in Table 4 were less than 0.05.
Therefore the null hypothesis that says there is no association between the descriptors and
the activities of the molecules is rejected. Hence the alternative hypothesis that says there is
a relationship between the descriptors used in generating the model and the activities of the

compounds at p < 0.05 is accepted.

Y- Randomization test was also conducted and reported in Table 5. Coefficient for
Y-randomization (cR%) value of 0.733262 greater than 0.5 supports the claim that the

model generated is powerful and not inferred by chance.
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Table 2. Validation parameters for each model using Multi-linear Regression (MLR)

S/No Validation Parameters Formula Threshold Model 1 Model2 Model 3

Internal Validation

1 Friedman LOF SEE 0.03562 0.03653 0.03931
(1 _C+d xpy

2 R-squared 2 R? > 0.6 0.9142 0.8832 0.8565
Z (Yexp - Ypred)
1 2
Z (Yexp _Vtraining)
3 Adjusted R? —P(n —1) Rﬁd]- > 0.6 0.8851 0.8488 0.8124
R-squared n—p+1
4 Cross validated R-squared 2 Q%> 0.6 0.8324 0.8031 0.7820
2 2 (Y red —Y, )
(Q2) L pred ~Yexp)
Z (YexP _?training)
5 Significant Regression Yes Yes Yes

6 Critical SOR F-value (95% 2 2 F 3.6832 3.6932 3.7233
ritica value (95%) 3 (Ypred B Yexp) /Z (Ypred ~ Yexp) >(t;(t))9

p N-p-1
7 Replicate points 0 0 0

8 Computed observed error 0 0 0
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10

11

12

13

14

Min expt. error for non-
significant LOF (95%)

Average of the correlation
coefficient for randomized data

(Ry)

Average of determination
coefficient for randomized data

(R

Average of leave one out
cross-validated determination
coefficient for randomized data
(%)

Coefficient for Y-
randomization (cRg)

Model Randomization

R< 0.5
R?< 0.5
Q% <05
— ‘R2 > 0.6
R2><<1— |R2—R%|> P
External Validation
7 )? RZ 4> 06
_ Z(Yext - Yext) pred '

1

Z(Yext — ?)2

0.06432

0.3719

0.1645

-1.2524

0.7332

0.7494

0.05632

0.3287

0.1356

-1.4321

0.6432

0.7112

0.07632

0.4321

0.2353

-1.3734

0.6284

0.6532
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Table 3. Descriptors used in the QSAR optimization model

S/No  Descriptors Symbols Name of Descriptor(s) Class
1 AATSS5e Average Broto-Moreau autocorrelation - lag 5 / weighted by I- 2D
state auto-correlation
2 minHCsatu Minimum atom-type H E-State: H on C sp3 bonded to 2D
unsaturated C
3 RDF90s Radial distribution function - 110 / weighted by relative I-state 3D

Table 4. Pearson’s correlation and statistics for descriptor used in the QSAR model

Inter-correlation Statistics
AATSTs TDB9e RDF901i P-Value VIF Mean Effect
(Confidence (ME)
Interval)

AATSTs 1 0.00014 24313 -0.4322
TDB9e -0.18343 1 0.00073 2.2322 0.5356
RDF90i 0.43432 -0.23298 0.00051 1.0132 0.2084

Table 5. Y- Randomization Parameters test for Model 1

Model R R”2 Q2

Original 0.85791 0.736009 0.361481
Random 1 0.263469 0.069416 -0.42957
Random 2 0.634931 0.403137 -3.21615
Random 3 0.44027 0.193838 -1.71176
Random 4 0.45403 0.206144 -0.7079
Random 5 0.642442 0.412732 -4.71577
Random 6 0.116309 0.013528 -0.3569
Random 7 0.24943 0.062215 -0.2046
Random 8 0.296007 0.08762 -0.42455
Random 9 0.270977 0.073429 -0.37515
Random 10 0.351074 0.123253 -0.38131
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Random Models Parameters

Averager : 0.371894
Average r"2 : 0.164531
Average Q"2 : -1.25236

cRp”2: 0.733262

Training set

R?=0.9142

w
1

I
1

Calculated Activity
N w

Observed Activity

Figure 1. Plot of calculated activity against observed activity of training set
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Residual

Test set

A TRAINING SET
B TEST SET

5 -
4,5 1 R?=0.7495
B 4
235 -
S
4 3 - |
§ 2,5 -
g 2- 2
=
=215 -
<
O 1 -
0,5 A
o T T T T T 1
0 1 2 3 4 5
Observed Acitivity
Figure 2. Plot of calculated activity against observed activity of test set
0,25
0,2 +
|
0,15 -~
01 - A A0
A A
0,05 - - A A A
> A = A
A
-0,05 - R
A
-0,1 - | A
-0,15 - A
-0,2 -
|
-0'25 T T T T T T 1
0 0,5 1 1,5 2 2,5 3 3,5
Observed Activity

Figure 3. Plot of residual values versus observed activity
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The graph of calculated activities plotted against observed activities of the training
and test set are presented in Figure 2 and 3. The correlation coefficient (R?) value of 0.9436
for the training set and (R?) value of 0.8364 for the test set recorded in this work was found
to in line with accepted QSAR threshold values reported in Table 2. This affirms the
stability, reliability and predictive power of the built model. The plot of residual activity
against observed activities shown in Figure 4 designates that there exist no computational
inaccuracy in the derived QSAR model as the range of residuals values fall within an

accepted limit of +2 on residual activity axis.

The standardized residuals activities plotted against the leverage value known as
The Williams plot is shown in Figure 5. The plotted graph clearly shows that all the
compounds falls within limit boundary +3 of standardized cross-validated residual. Hence,
it can be infer that no outlier is observed in the data set. However, compound (number 3) is
found to have a leverage value greater than the calculated warning leverage (h* = 0.80).

Therefore the compound is an influential molecule.

4 -
_ 3
g |
S 2
7]
o
141 A A
3 A A
S " A H3
SO am A A A TRAINING SET
= Dy Y W TEST SET
1 - A
s -1 A
Z
2 -
A
_3 T T T 1
0 0,2 0,4 0,6 0,8 1

Leverage

Figure 4. Plot of standardized residual activity versus leverage
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4. Conclusion

In this research, QSAR model was generated with descriptor (AATSS5e, minHCsatu
and RDF90s) which were highly correlated with biological activities of 1,2,4-Triazole
derivatives. These descriptors produced a robust model to predict the anti-mycobacterium
activities of these compounds. The validation test (internal and external validation test)
conducted on the selected built QSAR model passed the threshold value for a generally
acceptable QSAR model. The model generated provides a valuable approach for ligand
based design in synthesis of more effective chemical compounds and also give important

insights into structural variants leading to the development of novel tubercular inhibitors.
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