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Abstract 

Objectives: The research aimed to develop a theoretical (QSAR) model for 

predicting the activity of 1,2,4-Triazole derivatives as anti-tubercular antagonist. 

Methods: Genetic function approximation (GFA) was employed on a dataset of 

1,2,4-Triazole derivatives to investigate their activities behavior on Mycobacterium 

tuberculosis. This approach led to selection of the optimum descriptors and to generate the 

correlation QSAR model that relate their activities values against Mycobacterium 

tuberculosis with the molecular structures of the inhibitors. 

Results: The built model was validated and was found to have squared correlation 

coefficient (R2) of 0.9134, adjusted squared correlation coefficient (Radj) of 0.8753 and 

Leave one out (LOO) cross validation coefficient (𝐐𝐜𝐯
𝟐 ) value of 0.8231. The external 

validation set used for confirming the predictive power of the model has R2pred of 0.7482. 

Conclusion: Reliability, stability and robustness of the model obtained by the 

validation test indicate that the model can be used to design and synthesis other 1,2,4-

Triazole derivatives with improved anti-tubercular activities. 
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Genetik Fonksiyon Tahmin Yaklaşımı Kullanılarak Mycobacterium tuberculosis’e 

Karşı Bazı Etkili İnhibitörlerin Aktivite Modellemelerinin Yapılması 

 Özet 

Amaç: Araştırma, anti-tüberküler antagonisti olarak 1,2,4-Triazol türevlerinin 

aktivitesini tahmin etmeye yönelik teorik (QSAR) bir model geliştirmeyi amaçlamıştır. 

Yöntem: Genetik fonksiyon yaklaşımı (GFA), 1,2,4-Triazol türevlerinin 

Mycobacterium tuberculosis üzerine etki tarzlarını araştırmak amacıyla kullanılmıştır. Bu 

yaklaşım, optimum tanımlayıcıların seçimine ve Mycobacterium tuberculosis üzerine etki 

değerlerini inhibitörlerin moleküler yapılarıyla ilişkilendiren korelasyon QSAR modelinin 

oluşturulmasına imkân vermiştir. 

Sonuç: Oluşturulan model doğrulanmış ve korelasyon katsayısının karesi (R2) 

0.9134, düzeltilmiş korelasyon katsayısının karesi (Radj) 0.8753 ve tek-çıkışlı (LOO) çapraz 

doğrulama katsayı (Qୡ୴
ଶ ) değeri 0.8231 olarak bulunmuştur. Modelin öngörücü gücünü 

doğrulamak için kullanılan harici doğrulama seti, 0.7482 R୮୰ୣୢ
ଶ  'ye sahiptir. 

Tartışma: Doğrulama testi ile elde edilen modelin güvenilirliği, kararlılığı ve 

sağlamlığı, modelin, gelişmiş anti-füberküler aktivitesine sahip diğer 1,2,4-Triazol 

türevlerini tasarlamak ve sentezlemek için kullanılabileceğini göstermektedir. 

Anahtar Kelimeler: Uygulanabilirlik etki alanı, Genetik fonksiyon yaklaşımı, 

QSAR, Tüberkülosis, Triazol. 

 

1. Introduction 

Tuberculosis (TB) is the leading infectious disease caused by specie of bacteria 

known as Mycobacterium tuberculosis. About 2.5 billion people were infected with 

tuberculosis worldwide and mortality of approximately 1.5 million people were reported 

annually [1-2]. In spite of the  first-line drugs; pyrazinamide (PZA), ethambutol (EMB), 
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streptomycin (STP) , rifampicin (RIF) and isoniazid (INH); the increase in the occurrence 

of both multidrug-resistant (MDR-TB) and extensively drug-resistant tuberculosis (XDR-

TB) are observed [3,4]. Moreover, treatment requiring the use of these drugs has been 

reported to cause serious side effects such as: neuropathy and hepatitis are caused by 

isoniazid [5], thrombocytopenia occurring as a result of rifampicin (RIF) [6]. In highlight of 

these effects, the synthesis of novel compounds with better anti-tubercular activity has been 

the target of many pharmacist and medicinal chemistry. 

A novel series of 1,2,4-Triazole derivatives have been recently reported and  

identified as potent inhibitors against of  M. tuberculosis [7]. Design of novel compounds 

were usually synthesized using a trial and error approach which is expensive and time 

consuming. Application of computational chemistry such as Quantitative structure activity 

relationship (QSAR) help in drug discovery to establish a relationship between various 

molecular properties of molecules and their observably known activities. The knowledge of 

(QSAR) technique provides solution to trial and error approach in synthesizing novel drugs 

and also minimizes effort and time required to discover new compounds or to improve 

current drugs in terms of their efficiency. The aim of this research was to develop a 

theoretical (QSAR) model for predicting the activity of 1,2,4-Triazole derivatives against 

tuberculosis. The aim of this research was to develop QSAR model using Genetic Function 

Algorithm (GFA) for variable selection of descriptors and  multiple linear regression 

(MLR)  method  for  predicting the  activity of 1,2,4-Triazole derivatives as potent anti-

Mycobacterium tuberculosis. 

 

2. Materials and Method 

2.1 Data Set 

The derivatives of 1,2,4-Triazole derivatives as potent anti-Mycobacterium 

tuberculosis that were used in this research were selected from the literature [7]. The 

chemical structures alongside with their biological activities of these compounds were 

presented Table 1. 
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Table 1. Molecular structure of 1, 2, 4-Triazole derivatives and their activities as potent anti-Mycobacterium tuberculosis 

S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

1a 

 
1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl) methyl)-1H-1,2,4-triazol-5-

yl) thio) methyl)-1H-1,2,3-triazole 

 

6.3456 

 

6.37977 

 

-0.03417 

 

0.186966 

2 

 
1-benzyl-4-(((1-((1-benzyl-1H-1,2,3-triazol-4-yl) methyl)-3-methyl-1H-1,2,4-

triazol-5-yl) thio) methyl)-1H-1,2,3-triazole 

 

7.4134 

 

7.49781 

 

-0.08441 

 

0.267393 
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S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

3 

 
5-(allylthio)-3-(tert-butyl)-1H-1,2,4-triazole 

 

6.4171 

 

6.410504 

 

0.006596 

 

0.832612 

4 

 
3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 

 

7.6397 

 

7.592776 

 

0.046924 

 

0.15548 

5 

 
3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 

 

8.0899 

 

8.37959 

 

-0.28969 

 

0.328411 

6 a 

 
1-allyl-3-(allylthio)-5-(4-methoxyphenyl)-1H-1,2,4-triazole 

 

7.366 

 

7.64835 

 

-0.28235 

 

0.085176 
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S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

7 

 
1-allyl-3-(allylthio)-5-(4-chlorophenyl)-1H-1,2,4-triazole 

 

7.0123 

 

7.01666 

 

-0.00436 

 

0.343511 

8 a 

 
1-allyl-5-(allylthio)-1H-1,2,4-triazole 

 

6.5267 

 

6.289043 

 

0.237657 

 

0.089973 

9 a 

 
1-allyl-5-(allylthio)-3-(4-methoxyphenyl)-1H-1,2,4-triazole 

 

7.3233 

 

7.60012 

 

-0.27682 

 

0.067538 

10 
 

5-methyl-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 

 

7.3279 

 

7.127765 

 

0.200135 

 

0.101346 
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S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

11 

 
5-(tert-butyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 

 

6.8568 

 

7.04696 

 

-0.19016 

 

0.218861 

12 

 
5-(4-methoxyphenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 

 

7.3079 

 

7.3622 

 

-0.0543 

 

0.079898 

13 

 
5-(4-chlorophenyl)-3-(prop-2-yn-1-ylsulfonyl)-1H-1,2,4-triazole 

 

7.314 

 

7.277527 

 

0.036473 

 

0.154686 

14 

 
1-allyl-3-(tert-butyl)-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

8.5854 

 

8.6647 

 

-0.0793 

 

0.357197 
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S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

15 

 
1-allyl-5-(tert-butyl)-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

8.0615 

 

7.569 

 

0.4925 

 

0.214607 

16 

 
5-(allylthio)-3-(tert-butyl)-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole 

 

 

8.0615 

 

7.79949 

 

0.26201 

 

0.263698 

17 

 
3-(allylthio)-5-(tert-butyl)-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole 

 

6.8494 

 

6.60166 

 

0.24774 

 

0.255295 

18 a 

 
1-allyl-3-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

7.9432 

 

7.906989 

 

0.036211 

 

0.409976 
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S/N Molecules 

Observed 

Activity 

(pBA) 

Calculated 

Activity 

(pBA) 

Residual Leverage 

19 

 
1-allyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

7.4535 

 

7.57474 

 

-0.12124 

 

0.25708 

20 

 
1-allyl-3-methyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

7.9759 

 

7.966669 

 

0.009231 

 

0.337231 

21 

 
1-allyl-3-methyl-5-(prop-2-yn-1-ylthio)-1H-1,2,4-triazole 

 

7.9759 

 

8.17805 

 

-0.20215 

 

0.249575 

22 a 

 
3,5-dibromo-1-(prop-2-yn-1-yl)-1H-1,2,4-triazole 

 

7.9294 

 

7.437563 

 

0.491837 

 

0.577201 

Where superscript a represent the test set
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2.2 Structure Optimization 

In order for the molecules to attain a stable conformer at a minimal energy, all the 

molecules were geometrically optimized with the aid of Spartan 14 V1.1.4 by employing 

Molecular Mechanics Force Field (MMFF) count to remove strain energy and later 

subjected to Density Functional Theory (DFT) by utilizing the (B3LYP) basic set [9]. 

  

2.3 Molecular Descriptor Calculation 

Descriptor is a mathematical logic that describes the properties of a molecule based 

on the correction between the structure of the compound and its biological activity. 

Descriptors calculation for all the inhibitory compounds was achieved using PaDEL-

Descriptor software V2.20. A total of 1876 molecular descriptors were Observed [10]. 

 

2.4 Normalization of Data and Pretreatment 

The values for the Observed descriptors’ were normalized using Equation  1 below  

so that  each variable will have the same prospect at the inception so as to sway the model 

[10]. 

 

Y = 
௒భ ି ௒೘೔೙

௒೘ೌೣ ି ௒೘೔೙
    (1) 

 

where Y1 is the descriptor value for each molecule, Ymin and Ymax are the minimum and 

maximum value for each descriptors column of Y. After successful normalization of the 

data, the data were further subjected to pretreatment using in order to remove noise and 

redundant data. 

 

2.5 Data Division into Training and Test Set 

The approach of Kennard and Stone was employed in this study to divide the data 

set into a training set and a test compounds in proportion of 70 to 30%. The training set was 

used to establish the QSAR model while the test was used to confirm the established model 

[11]. 
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2.6 Development of the Model 

Multi-linear regression approach (MLR) is a strategy used to develop the QSAR. 

MLR display a direct relationship between the dependent variable Y and independent 

variable X (descriptors). In MLR analysis, the mean of the dependent variable Y relies on 

X (Descriptors). MLR equation below is used to incorporate more than one independent 

variable (Descriptors) with a single response variable. 

 

Y = k1x1 ൅ k2x2 ൅ k3x3 ൅ C    (2) 

 

where Y represent the dependent variable, represent the independent variables, ‘k’s are 

regression coefficients for each ‘x’s and ‘C’ is a regression intercept. 

 

2.7 Generation of QSAR Model and Validation 

The combinations of the optimum descriptors for the training set were obtained 

from the descriptor pool using the Genetic Function Approximation technique. Their anti-

lung cancer activities were placed as the last column in their respective spread sheets in 

Microsoft Excel 2010 which were later imported into the Material Studio software version 

8.0 to generate the QSAR and to evaluate the internal validation parameters. 

 

2.8 Determination of Outlier and Influential Molecule (Applicability Domain) 

The applicability domain approach was employed to determination of outlier and 

influential molecule.  Any compound outside the applicability domain space of േ3 is said 

to be an outlier. To define and describe the applicability domain of the built QSAR models, 

the leverage hi approach was employed and defined as [12]. 

 

      hi = Xi ሺ𝑋்𝑋ሻିଵ 𝑋௜
்    (3) 

 

where Xi is training set matrix of i.  X is the nൈ k descriptor matrix of the training set 

compound and 𝑋் is the transpose of the training set (X). 𝑋௜
் is the transpose matrix Xi used 
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to build the mode. The warning leverage h* is the limit values to check for influential 

molecule. The warning leverage h* is defined as; 

 

h* = 3 
ሺ௝ ାଵሻ

௠
      (4) 

 

where j is the number of descriptors in the build model and m is the number of compounds 

that made up the training set [11]. 

 

2.9 Assessment of Y-Randomization 

The evaluation of Y-Randomization is to show that the developed QSAR model 

created is reliable, strong, robust and not gotten by chance. This test was performed on the 

training set data as described by [13]. Multi-linear regression (MLR) models were 

generated by randomly shuffling the dependent variable (activity data) while keeping the 

independent variables (descriptors) unaltered. It is expected that the developed QSAR 

model should  have significantly low R2 and Q2 values for numbers of trials in order to 

ascertain that the developed QSAR models is robust. Y-randomization Coefficient (c𝑅௣
ଶሻ is 

another important parameter which should be more than 0.5 for passing this test. 

 

c𝑅௣
ଶ ൌ 𝑅 ൈ  ሾ𝑅ଶ  െ  ሺ𝑅௥ሻଶሿଶ     (5) 

 

Where c𝑅௣
ଶ is Y-randomization Coefficient, R is correlation coefficient for 𝑌-

Randomization and Rr is average ‘R’ of random models. 

 

2.10 Quality Assurance of the Model 

The fitting ability, stability, reliability, predictive and robustness of the developed 

models were evaluated by internal and external validation parameters. The validation 

parameters were compared with the accepted threshold value for  any QSAR model [12]  

shown in Table 2. 
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3. Results and Discussion  

A theoretical model (QSAR) was developed and accomplished to examine the data 

set comprises ciprofloxacin derivatives as potential anti-lung cancer. The successful 

application of Multi Linear Regression (MLR) approach led to development of three QSAR 

models but Model 1 was selected as the best model due to the statistical significance. The 

observed and calculated activities for inhibitory compounds as well as the residual values 

were reported in Table 1. The low residual value between observed and calculated activities 

implies that the model has a very high extrapolative measure. 

 

Model 1 

pBA = -0.37456543543 (AATS5e) + 2.087643542 (minHCsatu) + 0.293436327 

(RDF90s) + 3.02312046 

 

Model 2 

pBA = -0.3285458991* (AATS7s) + 0.024550934 (TDB9e) - 0.117941052 

(RDF110i) - 9.645640119 

 

Model 3 

pBA = -0.335632223* (AATS7s) + 0.021034761 (TDB9e) - 0.129647108* 

(RDF30i) + 8.992978173 

    

Validation parameters for selected Model 1 reported in Table 2 passed the required 

threshold value which actually confirmed the robustness of the model. 

The names and symbols of each descriptors used in the QSAR model were all 

presented in Table 3. Combination of 2D and 3D descriptors reported in the model 

proposes that these types of descriptors are able to give an improved characterization of the 

anti-tubercular agents. 
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Statistics and Pearson’s correlation were performed for all the four descriptors in the 

QSAR Model 1 and the results were reported were reported in Table 4. The low correlation 

coefficients that exist between each pair of the descriptor in Model 1 signify that there is no 

intercorrelation between each descriptor. Calculated Variance Inflation Factor (VIF) 

reported for each descriptor was found to be less than four (4) and this is an assurance that 

the descriptors were statistical orthogonal and the model developed was statistically 

substantial. 

 

The Mean Effect (ME) values reported in Table 4 gives vital information on the 

effect of each descriptor and the degree of contribution in the developed model.  The 

magnitude and the signs of the mean effects values indicate their direction and individual 

strength of the descriptor on the activity of the inhibitory molecule. The estimated P-values 

for all the descriptors in the Model 1 at 95% level reported in Table 4 were less than 0.05. 

Therefore the null hypothesis that says there is no association between the descriptors and 

the activities of the molecules is rejected. Hence the alternative hypothesis that says there is 

a relationship between the descriptors used in generating the model and the activities of the 

compounds at p ൏ 0.05 is accepted. 

 

Y- Randomization test was also conducted and reported in Table 5. Coefficient for 

Y-randomization (c𝑅௣
ଶሻ value of 0.733262 greater than 0.5 supports the claim that the 

model generated is powerful and not inferred by chance. 
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Table 2. Validation parameters for each model using Multi-linear Regression (MLR) 

S/No Validation Parameters Formula Threshold Model 1 Model 2 Model 3 
 

Internal Validation 
 

1 Friedman LOF 𝑆𝐸𝐸

ቀ1 െ
𝐶 ൅ 𝑑 ൈ 𝑝

𝑀 ቁ
ଶ 

 0.03562 0.03653 0.03931 

2 R-squared 

1 െ ൦
∑ ቀ𝑌௘௫௣ ି ௒೛ೝ೐೏

ቁ
ଶ

∑ ቀ𝑌௘௫௣ ି ௒೟ೝೌ೔೙೔೙೒
ቁ

ଶ൪ 

Rଶ ൐ 0.6 0.9142 0.8832 0.8565 

3 Adjusted 
R-squared 

𝑅ଶ െ 𝑃 ሺ𝑛 െ 1ሻ
𝑛 െ 𝑝 ൅ 1

 
Rୟୢ୨

ଶ ൐ 0.6 0.8851 0.8488 0.8124 

4 Cross validated R-squared 
(𝑄௖௩

ଶ ሻ 1 െ ൦
∑ ቀ𝑌௣௥௘ௗ ି ௒೐ೣ೛

ቁ
ଶ

∑ ቀ𝑌௘௫௣ ି ௒೟ೝೌ೔೙೔೙೒
ቁ

ଶ൪ 

Qଶ ൐ 0.6 0.8324 0.8031 0.7820 

5 Significant Regression   Yes Yes Yes 

6 Critical SOR F-value (95%) ∑ ቀ𝑌௣௥௘ௗ ି ௒೐ೣ೛
ቁ

ଶ

p

∑ ቀ𝑌௣௥௘ௗ ି ௒೐ೣ೛
ቁ

ଶ

N െ p െ 1
൙  

Fሺ୲ୣୱ୲ሻ

൐ 2.09 
3.6832 3.6932 3.7233 

7 Replicate points   0 0 0 

8 Computed observed error   0 0 0 
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9 Min expt. error for non-
significant LOF (95%) 

  0.06432 0.05632 0.07632 

 
Model Randomization 

 
10 Average of the correlation 

coefficient for randomized data 
( 𝑹ഥ𝒓) 

 Rഥ ൏ 0.5 0.3719 0.3287 0.4321 

11 Average of determination 
coefficient for randomized data 

( 𝑹ഥ𝒓
𝟐ሻ 
 

 𝑅ത௥
ଶ ൏ 0.5 0.1645 0.1356 0.2353 

12 Average of  leave one out 
cross-validated determination 

coefficient for randomized data 
( 𝑸ഥ𝒓

𝟐 ) 

 𝑄ത௥
ଶ ൏ 0.5 -1.2524 -1.4321 -1.3734 

13 Coefficient for Y-
randomization (c𝑅௣

ଶሻ Rଶ ൈ ቆ1 െ ට|Rଶ െ Rഥ୰
ଶ| ቇ 

cR୮
ଶ ൐ 0.6 0.7332 0.6432 0.6284 

 
 

External Validation 
 

14 𝐑𝐭𝐞𝐬𝐭
𝟐  

1 െ
∑൫Yୣ୶୲ െ Y෡ୣ୶୲൯

ଶ

∑ሺYୣ୶୲ െ Yഥሻଶ  
R୮୰ୣୢ

ଶ ൐ 0.6 0.7494         0.7112 0.6532 
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Table 3. Descriptors used in the QSAR optimization model 

S/No Descriptors Symbols Name of Descriptor(s) Class 

1 

 

AATS5e Average Broto-Moreau autocorrelation - lag 5 / weighted by I-

state auto-correlation 

2D 

2 minHCsatu Minimum atom-type H E-State: H on C sp3 bonded to 

unsaturated C 

2D 

3 RDF90s Radial distribution function - 110 / weighted by relative I-state 3D 

 

Table 4. Pearson’s correlation and statistics for descriptor used in the QSAR model 

Inter-correlation                                                   Statistics 

AATS7s TDB9e RDF90i P-Value 

(Confidence 

Interval) 

VIF Mean Effect 

(ME) 

AATS7s 1  0.00014 2.4313 -0.4322 

TDB9e -0.18343 1 0.00073 2.2322 0.5356 

RDF90i 0.43432 -0.23298 0.00051 1.0132 0.2084 

 

Table 5. Y- Randomization Parameters test for Model 1 

Model R R^2 Q^2 

Original 0.85791 0.736009 0.361481 

Random 1 0.263469 0.069416 -0.42957 

Random 2 0.634931 0.403137 -3.21615 

Random 3 0.44027 0.193838 -1.71176 

Random 4 0.45403 0.206144 -0.7079 

Random 5 0.642442 0.412732 -4.71577 

Random 6 0.116309 0.013528 -0.3569 

Random 7 0.24943 0.062215 -0.2046 

Random 8 0.296007 0.08762 -0.42455 

Random 9 0.270977 0.073429 -0.37515 

Random 10 0.351074 0.123253 -0.38131 
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         Random Models Parameters 

Average r : 0.371894 

Average r^2 : 0.164531 

Average Q^2 : -1.25236 

cRp^2 : 0.733262 

 

 

 
Figure 1. Plot of calculated activity against observed activity of training set 
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Figure 2. Plot of calculated activity against observed activity of test set 

 

 

Figure 3. Plot of residual values versus observed activity 
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The graph of calculated activities plotted against observed activities of the training 

and test set are presented in Figure 2 and 3. The correlation coefficient (R2) value of 0.9436 

for the training set and (R2) value of 0.8364 for the test set recorded in this work was found 

to in line with accepted QSAR threshold values reported in Table 2. This affirms the 

stability, reliability and predictive power of the built model. The plot of residual activity 

against observed activities shown in Figure 4 designates that there exist no computational 

inaccuracy in the derived QSAR model as the range of residuals values fall within an 

accepted limit of േ2 on residual activity axis. 

The standardized residuals activities plotted against the leverage value known as 

The Williams plot is shown in Figure 5. The plotted graph clearly shows that all the 

compounds falls within limit boundary േ3 of standardized cross-validated residual. Hence, 

it can be infer that no outlier is observed in the data set. However, compound (number 3) is 

found to have a leverage value greater than the calculated warning leverage (h* = 0.80). 

Therefore the compound is an influential molecule. 

 

Figure 4. Plot of standardized residual activity versus leverage 
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4. Conclusion 

In this research, QSAR model was generated with descriptor (AATS5e, minHCsatu 

and RDF90s) which were highly correlated with biological activities of 1,2,4-Triazole 

derivatives. These descriptors produced a robust model to predict the anti-mycobacterium 

activities of these compounds. The validation test (internal and external validation test) 

conducted on the selected built QSAR model passed the threshold value for a generally 

acceptable QSAR model. The model generated provides a valuable approach for ligand 

based design in synthesis of more effective chemical compounds and also give important 

insights into structural variants leading to the development of novel tubercular inhibitors. 
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