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Abstract

The aim of this work is to obtain some monotonicity properties for the functions

involving the logarithms of the k-gamma function for k > 0.
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k-Gama Fonksiyonu Uzerine Bazi Monotonluk Ozellikleri
Ozet

Bu ¢aligmanin amaci, k > 0 olmak iizere k-gama fonksiyonunun logaritmasini

iceren bazi fonksiyonlarin monotonluk 6zelliklerini elde etmektir.
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1. Introduction and Preliminaries

The gamma function, which is one of the most important special functions and has

many applications in many areas such as physics, engineering etc., is defined by

(0]

I'(x) =J.tx_1e_tdt
0

for positive real values of x [1]. The psi or digamma function 1 is defined by logarithm

derivative of the gamma function as Y(x) = %ln ['(x) = % for x > 0. Its series

representation is given by

x—1

Yoo = _”+;(n+ D(x +n)

for x > 0 [8]. The asymptotic representations of the first and second derivative of the

function are given by

, 1 1 1 1
Y'(2) ~o ot st (z - oo, |argz| < m) (1)
and
' 1 1 1 1
lp (Z)N_Z_Z_Z_?’_Z_‘}_J_’ (Z—>OO,|aT’gZ|<7T) (2)
respectively [1].
In [11], author shows that for x — oo
1 1 1
lnF(x)=(x—z)lnx—x+zln(2n)+0(;), 3)
1 1
Yo =Inx ——+0(5). (4)

These functions are interested by many researchers. Many authors have established some
monotonicity results of the gamma function and obtained related inequalities such as in
[2-4,7,10] and references therein. For example, in [4], authors used the monotonicity

property of the function
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_1nF(x+ 1)
- xInx

fx)

, x>1

in order to establish the double-sided inequalities
xAVx=1 < P(yx) < x*71, x>1

where y denotes the Euler-Mascheroni constant and in [6], they proved that the function

f is concave on the interval [1, o).

Pochhammer symbol is widely used in combinatorics. Diaz and Pariguan in [5]

defined Pochhammer k-symbol and k-generalized gamma function as the following:

Definition 1.2 Let x € C, k € R, and n € Z*, the Pochhammer k-symbol is given
by

e =x(x +E)(x + 2k) ...(x + (n — k)

and k-analogue of gamma function is defined by

X
E ) - i nl k™ (nk)x™*
K =

for x € C \kZ™ and k > 0. Its integral representation is given by

[} k

t
T () =f t* e kdt
0

for x € C, Re(x) > 0.

They also proved Bohr-Moller theorem and Stirling formula for k-gamma function and

obtained several results that are generalizations of the classical gamma function:
Proposition 1.3 The k-gamma function I, (x) satisfies the following properties:
I (x + k) = x[ (%), (5)

L (k) =1, (6)
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I (x) is logarithmically convex for x € R, (7)

n—-oo

L o e TI® X ok — i e X
s = xk e Hn=1<(1+nk)e k>wherey—hm (14 +2-logn), (8)

L) = ki (3). )

This new generalization of the classical gamma function has attracted many researchers.
For example, Krasniqi in [9] used the equation (8) in order to obtain the following series

representations of k-digamma function and k-polygamma function respectively by

_Ink-y 1 o0 X
Y (x) = X X + Xn=1 nk(x+nk) (10)
and
lp(‘r')(x) — (_1)T+1r| ZOO ; (11)
k . n=0 (x+nk)7‘+1
forr = 1,2, ... where ¥, (x) = éln [ (x) = ll:kg;
k

2. Main Results
The objective of this paper is to develop some new monotonicity results involving
the logarithms of k-gamma function for some real values of x, which are generalizations

of inequalities in [4].
Lemma 2.1 The inequality

2k>1 1
ud " u? (u+k)?

holds true for k > 0 and u > 0.
Proof. Since u, k > 0, we have
2u? + 4uk + 2k? > 2u? + uk.

Then
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2(u+ k)? > Qu + ku.
Hence we get

S QQu+ k)k
ud " ut(u+k)?

and the result follows.
Theorem 2.2 For x > —k and k > 0, the function
f) = Wi (x + k) + xge (x + k (12)
IS positive.

Proof. By taking logarithms of the equation (9), we get

ml() = (£ = 1) ink + inr (%) (13)

and differentiating the equation (13) with respect to x leads us that

Yo = 25+ 2 9 (5), Y = S’ (£) and i () =y ().
Then from the equations (1) and (2), we have
il_)n.}o f(x)=0.

For positivity of the function f, we need to show that the function f is decreasing. So by

using the equation (11), we obtain

(0]

nk —x
f(x)=n=1m-
Then we get
= nk —x nk—x—k
f(")_f(“k)_m LG+ k)P L (x o+ k +nk)?
k — 2k
(x + k)3 (x +(n+ 1)k)3 (x + k)? + nZl (x + nk)¥
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Lemma 2.1 leads us that

1 o 2k
FOO = fx 410 = =Gt ). Gy

>0

1 = 1 1
>_(x+k)2+Z[(x+nk)2_(x+nk+k)2
n=

as desired.
Corollary 2.3 The function
gx) =x*P(x + k) —xyP(x + k) + InT}, (x + k) (14)
is a decreasing function on (—k, 0) and an increasing function on [0, o) for x > —k.

Proof. In order to obtain the result, we just need to show that the first derivative of

the function g is positive on (—k, 0) and negative on (0, ) respectively.
g' () = 2xpp (x + k) + 2y (x + k) — e G + k) — xtpj G + ) + i (x + k)
= x(x + k) + x2 (x + k) = xf (%)

where f(x) is defined as in theorem 2.2. Since f(x) > 0 for x > —k in Theorem 2.2, we

obtain desired results.
Theorem 2.4

@) Let h(x) =xyYr(x+k)—Inl(x+ k). Then, the function h(x)

increases for x > 0 and decreases for —k < x < 0. Also, we have

@) 1
e x k
(ii) Let h(x) =xyYr(x+k)—InTp(x+ k). Then, the function h(x)

increases for x > 0 and decreases for —k < x < 0. Also, we have

o h(x) 1
lim — = —.
X—00 X
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(iii) The function H(x) = Inx — ﬁln I (x + k) approximately increases for

-4k
x,k>0andxz%.

Proof. Differentiating the function h(x) with respect to x and using the equation

(11) lead us that

W (x) = Yr(x + k) + xpp (x + k) — p(x + k)

S
= Xl/);c(x+k) = XZm
n=1

Hence, we obtain monotonicity of the function h. By replacing % instead of x in the
equation (13), adding the term In x in both sides of the equation and using the equations
(3), (4) and (9), we get

Ink

InTe(x+k) = -2+ (2=2)Inx —Z+3m2z+0(3). (1)

By differentiating the equation (15), we obtain

1 x 1

Yo+ k) =1nx+(F-2)2-2+0(3). (16)

Tk K

Hence the limit follows from the equations (15) and (16). Now let us prove ii. By
differentiating the function H and using the Theorem 2.4 (i), we get
h'(x) Pr(x + k)

1
H (X) =;+h2—(x)lnf‘k(x+k)—W

= % - h%(x) [P (x + k) — h' (x) InT}, (x + k)]

= [RGO) (xr (x + k) = InTy (x + k) — xapy (x + k)
— xh'(x) In T}, (x)]

_ InG(x+k) , g InT(x + k)
= TR0 [xh'(x) — h(x)] = X2 (x)

where the function g(x) is defined as in Corollary 2.3.
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By using the equation (9), we get
InT, k) =—=Ink + InT 1
n k(x + ) E n + In (E + )

for x > 0 and k > 0. The points which make the right hand side of the above equation

positive are shown in the following Figure 1:

1.5
1.0 \
I |
X _
05
0.0 .
]
0 2 4 " = 10
k
Figure 1.
x = 0 is a solution of the last equation for all k > 0 and lower line segment is x = —k.

The tangent of the line [ which passes from the points (k, x) = (0,649, 1.5) and (k, x) =

(1.379,0.5) approximately equals to g. So, we calculate equation of the line with the
point (1,1), which is also on the line, we get x = 7'741{. The upper blue area of Figure 1
shows that for x > 0 and x > %, InT(x + k) > 0 and also the lower blue area of

Figure 1 shows that for x < 0, —k < x and x < %, InT(x + k) > 0. So the proof

follows.
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Now we can give the following:

4k

In Ty (x+k
InCeGth) i an increasing function for x = T

Corollary 2.5 The function F(x) = S

and k > 0. Furthermore lim F(x) = %
X—00
Proof. We have

(xInx)? F'(x) = xYp(x + k) —InT(x + k) Inx —InT(x + k)
= h(x)H(x)

where h and H are the functions in Theorem 2.4 (i) and (ii) respectively. Hence wet get

the monotonicity result for F(x).

By using the equation (15), we have

Ink 1 x 1
L Inx —-+5In2m
lim F(x) = lim 2 (k 2) k2

xX—00 X—00 xInx

x 1 lnk X 1
——5)Inx — —+5In2r 1
x—o  xlnx X—00 xInx

as desired.
Before we give other result we need following property.

Lemma 2.6 The inequality

2k< 1 1
ud 2w —-k)? 2(u+k)?

holds for u > k and k > 0.
Proof. Since k < u, we have
ut — 2u?k? + k* < ut.
Then we can write

2k 2uk Wtk —-(u—-k)? 1 1
SRt R? . 20—kt R’ 2—Kk2 2w+ k)2
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as desired.

Theorem 2.8 Let g(x) = x%y, (x + k) + x3y/ (x + k) for x > 0. Then
1
0<glx)< >

Proof. Since g(x) = x?f(x), where f(x) as in Theorem 2.2, the lower bound
follows by Theorem 2.2. For the upper bound, let us define the function G by

1
6() = 55— ()

for x > 0. Since the function G tends to zero as x — oo, we need to show that G(x) >

G(x + k). By Lemma 2.6, we get

Gx)—Gx+k)= 21

R ess Rl IORVICRID)

1 11 i 2k
C2x2 2(x+ k)2 (x + k)2 4 (x + nk)3
n=

[ee)

1 1 1 1
> 2x? +2(x+k)2 _Z [2(x+nk—k)2 _2(x+nk+k)2]
n

=1

_ 1 N 1 [1 4 1 ]_0
T 2x2  2(x+ k)2 [2x?2 T 2(x + k)2l T

and the proof is completed.
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