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Abstract 

In this study we investigate the stability of solutions of difference equation 

1 3 4= 1n n nx x x    . Moreover, we study periodic and eventually periodic solutions of 

related difference equation. 

Keywords: Difference equations, periodicity, stability, eventually periodicity 

 

Lineer Olmayan Bir Fark Denkleminin Dinamikleri Üzerine 

Özet 

Bu çalışmada,   fark denkleminin çözümlerinin kararlılığını araştırıldı. Ayrıca, 

ilgili fark denkleminin periyodik ve eninde sonunda periyodik çözümlerini de çalışıldı. 

Anahtar Kelimeler: Fark denklemleri, periyodiklik, kararlılık, eninde sonunda 

periyodiklik 

 

1. Introduction 

Due to the fact that most mathematical models need discrete variables, difference 

equations have great interest in among fields of science. Because, all of difference equations 
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consist of these discrete variables. In additions to this, mathematical models apply to different 

fields in science such as physics, economy, engineering, etc. Many authors have studied the 

dynamical behaviors of some difference equations, for examples: 

In [16], Kent et al studied dynamics of solutions of difference equation 

 1 1= 1.n n nx x x    

Furthermore, in [29], Wang et al handled convergence of solutions of related difference 

equation. Moreover, in [19], Liu et al studied some properties of solutions of related difference 

equation. 

In [17], Kent et al investigated long-term behaviors of solutions of difference equation 

 
1 1 2= 1.n n nx x x     

In [18], Kent et al dealt with properties of solutions of difference equation 

 
1 2= 1.n n nx x x    

In [15], Kent et al researched nature of solutions difference equation 

 
1 3= 1.n n nx x x    

In [26], Tasdemir et al studied long-term behavior of solutions of the difference 

equation  

 1 1 3= 1.n n nx x x     

Moreover, in [27], the authors investigated convergence of negative equilibrium of related 

difference equation. 

In [28], Tasdemir et al handled dynamical analysis of difference equation 

 
1 2 3= 1.n n nx x x     

Furthermore, there are many books and papers related to difference equations see [1] - 

[29]. 

In this paper, we study the dynamics of solutions of the following difference equation  

 
1 3 4= 1, = 0,1, ,n n nx x x n     (1) 
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with real initial conditions 4 ,x  3 ,x  2 ,x  1,x  0x . Moreover, we deal with the periodic and 

eventually periodic solutions of related difference equation. 

Eq.(1) be a member of the class of equations of the form 

 
1 = 1, = 0,1, ,n n k n lx x x n     (2) 

with special choices of k  and l , where 0,k l . 

2. Periodic Solutions of Eq.(1) 

In this chapter, we investigate the periodic solutions of Eq.(1). 

 

Theorem 1 Eq.(1) has no two periodic solutions.  

 

 Proof. Let ,   be real numbers,    and for the sake of contradiction that 

there exist   and  , such that  

 , , , , , ,      

is a prime period two solution of Eq.(1). Thus, we have from Eq.(1) that 

 = 1,     (3) 

 = 1.     (4) 

From (3) and (4), we get 1= = x   or 
2= = x  . This contradicts    and the 

proof is complete.    

The next theorem shows that Eq.(1) has periodic solutions with prime period 

three. 

Theorem 2 There are three periodic solutions of Eq.(1).  

 

 Proof. Let , ,    be real numbers such that at least two are different from each 

other. Assume that  

 , , , , , , ,       

is a periodic solution of Eq.(1) with prime period three. Then we obtain from Eq.(1) that 

 = 1,     (5) 

 = 1,     (6) 

 = 1.     (7) 

From (5) - (7), we have five cases that 
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 = 0, = 1, = 1,     (8) 

 = 1, = 0, = 1,     (9) 

 = 1, = 1, = 0,     (10) 

 
1= = = ,x    (11) 

 
2= = = .x    (12) 

So, (8), (9) and (10) are periodic solutions of Eq.(1) with prime period three. But (11) 

and (12) are not three periodic solutions, because these are trivial solutions of Eq.(1). 

The proof is complete.    

Remark 3 Eq.(1) has three periodic cycle as  

 , 1, 1,0, 1, 1,0, .     

 Proof. Let the initial conditions 4 = 1,x   3 = 1,x   2 = 0,x  1 = 1x   and 

0 = 1x   as Theorem 2. Therefore, we get from Eq.(1),  

 
1 3 4= 1= ( 1) ( 1) 1= 0,x x x        

 
2 2 3= 1= 0 ( 1) 1= 1,x x x        

 
3 1 2= 1= ( 1) 0 1= 1,x x x        

 
4 0 1= 1= ( 1) ( 1) 1= 0.x x x       

The proof is complete as desired.    

Theorem 4 Eq.(1) has eventually periodic solutions with period three. They 

have three forms: 

Form 1: 
1 2 3 4( , , , , , , 1, 1,0, )N N N N Nx x x x x      , where 4N   , 

1 4= = 0N Nx x   and 2 3 = 1N Nx x  ; 

Form 2: 
1 2 3 4( , , , , , , 1,0, 1, )N N N N Nx x x x x      , where 4N   , 

3= = 0N Nx x  , 4 = 1Nx    and 1 2 = 1N Nx x  .  

 Proof. Form 1: Let = 4{ }n nx 

  be eventually three periodic solutions of Eq.(1). 

Thus, for 4N   , 
5 = 1Nx   , 6 = 1Nx   , 7 = 0Nx   and 

8 = 1Nx   . Therefore,  

 
5 1= 1= 1,N N Nx x x     

 
6 2 1= 1= 1,N N Nx x x      

 7 3 2= 1= 0,N N Nx x x     
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8 4 3= 1= 1,N N Nx x x      

hence,  

 
1 = 0,N Nx x

 (13) 

 
2 1 = 0,N Nx x 

 (14) 

 
3 2 =1,N Nx x 

 (15) 

 
4 3 = 0.N Nx x 

 (16) 

Thus we have from (13)-(16),  

 
1 4 2 3= = 0and =1.N N N Nx x x x   

 

Form 2: Let = 4{ }n nx 

  be eventually three periodic solutions of Eq.(1). Hence, for 

4N   , 
5 = 1Nx   , 6 = 0Nx  , 7 = 1Nx    and 

8 = 1Nx   . Thus,  

 
5 1= 1= 1,N N Nx x x     

 
6 2 1= 1= 0,N N Nx x x     

 
7 3 2= 1= 1,N N Nx x x      

 
8 4 3= 1= 1,N N Nx x x      

therefore,  

 
1 = 0,N Nx x

 (17) 

 
2 1 =1,N Nx x 

 (18) 

 
3 2 = 0,N Nx x 

 (19) 

 
4 3 = 0.N Nx x 

 (20) 

Thus we have from (17)-(20),  

 
3 4 1 2= = 0, = 1and =1.N N N N Nx x x x x     

So, the proof is complete as desired.    

 

3.  On The Stability of Eq.(1) 

 

Going throughout this chapter, we study the stability analysis of Eq.(1). 

Lemma 5 Eq.(1) has two equilibriums as a golden number and its conjugate:  
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1,2

1 5
= .

2
x


 (21) 

  

 

 Proof. Let =nx x  for all 4n   . Thus, we have from Eq.(1) 

 = 1x x x   (22) 

 2 1= 0.x x   (23) 

Therefore, from (23), 

 
1

1 5
= ,

2
x


 

 2

1 5
= .

2
x


 

Consequently, we get the two equilibrium points of Eq.(1) which are positive and 

negative respectively.    

Lemma 6 Let x  is a equilibrium point of Eq.(1). Then the linearized equation of 

Eq.(1) is  

 1 3 4 = 0.n n nz x z x z       (24) 

 Proof. Let I  be some interval of real numbers and let  

 5:f I I  

be a continuously differentiable function such that f  is defined by  

  1 2 3 4 3 4, , , , = 1.n n n n n n nf x x x x x x x        

Therefore we get, 

     0 = , , , , = 0 , , , , = 0,
n

f
q x x x x x x x x x x

x




 

 

     1

1

= , , , , = 0 , , , , = 0,
n

f
q x x x x x x x x x x

x 




 

 

     2

2

= , , , , = 0 , , , , = 0,
n

f
q x x x x x x x x x x

x 




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     3 4

3

= , , , , = , , , , = ,n

n

f
q x x x x x x x x x x x x

x







 

 

     4 3

4

= , , , , = , , , , = .n

n

f
q x x x x x x x x x x x x

x







 

Hence, the linearized equation associated with Eq.(1) about the equilibrium point x  is 

 
1 0 1 1 2 2 3 3 4 4= ,n n n n n nz q z q z q z q z q z              

then  

 1 3 4 = 0.n n nz x z x z       

The proof is complete as a result.    

Lemma 7 The characteristic equation of Eq.(1) about its equilibrium point x  is  

 5 = 0.x x     (25) 

 Proof. We have from linearized equation of Eq.(1) that  

 5 = 0.x x     

Hereby, we endeavor the stability of equilibrium points of Eq.(1) which are 

positive and negative respectively. 

Theorem 8 The positive equilibrium 1

1 5
=

2
x


 of Eq.(1) is unstable.  

 Proof. We consider (25) for 1

1 5
=

2
x


. Thus, we obtain five roots of (25): 

 1 1.3007,   

 2,3 0.18947 1.2090 ,i    

 4,5 0.8398 0.35418 .i     

Therefore,  

 1 1.3007 >1,   

 2,3 1.2238 >1,   

 4,5 0.91143 <1.   
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Hence, we have 

 1 2,3 4,5> >1 > .    

Consequently, the positive equilibrium 
1

1 5
=

2
x


 of Eq.(1) is unstable.    

 

Theorem 9 The negative equilibrium 
2

1 5
=

2
x


 of Eq.(1) is unstable.  

 

 Proof. We consider (25) for 
2

1 5
=

2
x


. Therefore, we get five roots of (25): 

 
1 0.70937,    

 2,3 0.79105 0.66559 ,i    

 4,5 0.43637 0.79042 .i     

Thus,  

 1 0.70937 <1,   

 2,3 0.90287 <1,   

 4,5 1.0338 >1.   

Hence, we have that 

 1 2,3 4,5< <1 < .    

After all, the negative equilibrium 2

1 5
=

2
x


 of Eq.(1) is unstable.    

 

4.  Numerical Examples 

 

In this chapter, we present some figures for Eq.(1) so as to confirm the above 

theoretical results. 

Example 10 If the initial conditions 
4 3 2 1= 1, = 1, = 0, = 1x x x x       and 

0 = 1x  , the Eq.(1) has periodic solutions with period three. Furthermore, periodic 

cycle of solutions of Eq.(1) is  
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 , 1, 1,0, 1, 1,0, .     

Figure 1 verify our theoretical results (see Theorem 2). 

 

Figure 1. Eq.(1) with the given initial conditions has three periodic solutions. 

Example 11 If the initial conditions 
4 3 2 1

65 9 20 81
= , = , = , =

9 5 27 10
x x x x   

 and 
0

2
=

9
x , 

then Eq.(1) has eventually periodic solutions with period three. Figure 2 verify our 

theoretical results (see Theorem 4). 

 

Figure 2. Eq.(1) with the given initial conditions has eventually three periodic solutions. 
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