On Right (σ, τ)-Jordan Ideals and One Sided Generalized Derivations

Evrim GÜVEN
Kocaeli University, Faculty of Arts and Science, Department of Mathematics, Kocaeli, Türkiye, evrim@kocaeli.edu.tr
ORCID Address: https://orcid.org/0000-0001-5256-4447

Abstract

Let R be a prime ring with characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu, \gamma$ automorphisms of R . Let $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ be a nonzero left (resp. right)-generalized (α, β)derivation, $\mathrm{b} \in \mathrm{R}$ and U, V nonzero right (σ, τ)-Jordan ideals of R . In this article we have investigated the following situations:

(1) $\operatorname{bh}(\gamma(\mathrm{U}))=0$, (2) $h(\gamma(\mathrm{U})) \mathrm{b}=0$, (3) $\mathrm{h}(\gamma(\mathrm{U}))=0$, (4) $\mathrm{U} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{V})$, (5) $\mathrm{bh}(\mathrm{I}) \subset$

$$
\mathrm{C} \lambda, \mu(\mathrm{U}) \text { or } \mathrm{h}(\mathrm{I}) \mathrm{b} \subset \mathrm{C} \lambda, \mu(\mathrm{U}),(6) \mathrm{bV} \subset \mathrm{C} \lambda, \mu(\mathrm{U}) \text { or } \mathrm{Vb} \subset \mathrm{C} \lambda, \mu(\mathrm{U}) \text {. }
$$

Keywords: Prime Ring, Generalized Derivation, (σ, τ)-Jordan Ideal.

Sağ (σ, τ)-Jordan İdealler ve Tek Yanlı Genelleştirilmiş Türevler Üzerine

Özet

R , karakteristiği 2 den farklı bir asal halka ve $\sigma, \tau, \alpha, \beta, \lambda, \mu, \gamma$ dönüşümleri R üzerinde otomorfizmler olsunlar. $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ sıfırdan farklı bir sol (sağ)-genelleştirilmiş (α, β)-türev, $b \in \mathrm{R}$ ve U ile V, R halkasının sıfirdan farklı sağ (σ, τ)-Jordan idealleri olsunlar. Bu makalede, aşağıdaki durumları araştırdık:

$$
\text { (1) } \mathrm{bh}(\gamma(\mathrm{U}))=0,(2) \mathrm{h}(\gamma(\mathrm{U})) \mathrm{b}=0 \text {, (3) } \mathrm{h}(\gamma(\mathrm{U}))=0,(4) \mathrm{U} \subset \mathrm{C} \lambda, \mu(\mathrm{~V}),(5) \mathrm{bh}(\mathrm{I}) \subset
$$

$$
\mathrm{C}_{\lambda, \mu}(\mathrm{U}) \text { or } \mathrm{h}(\mathrm{I}) \mathrm{b} \subset \mathrm{C} \lambda, \mu(\mathrm{U}),(6) \mathrm{bV} \subset \mathrm{C} \lambda, \mu(\mathrm{U}) \text { or } \mathrm{Vb} \subset \mathrm{C} \lambda, \mu(\mathrm{U}) \text {. }
$$

Anahtar Kelimeler: Asal Halka, Genelleştirilmiş Türev, (σ, τ)-Jordan Ideal.

1. Introduction

Let R be a ring and σ, τ two mappings of R. For each $r, s \in R$ set $[r, s]_{\sigma, \tau}=r \sigma(s)-\tau(s) r$ and $(r, s)_{\sigma, \tau}=r \sigma(s)+\tau(s) r$. Let U be an additive subgroup of R. If $(U, R) \subset U$ then U is called a Jordan ideal of R . The definition of (σ, τ)-Jordan ideal of R is introduced in [7] as follows: (i) U is called a right (σ, τ)-Jordan ideal of R if $(U, R)_{\sigma, \tau} \subset U$, (ii) U is called a left (σ, τ)-Jordan ideal if $(R, U)_{\sigma, \tau} \subset U$. (iii) U is called a (σ, τ)-Jordan ideal if U is both right and left (σ, τ)-Jordan ideal of R. Every Jordan ideal of R is a (1,1)-Jordan ideal of R, where $1: R \rightarrow R$ is the identity map. The following example is given in [7]. Let Z be the set of integers. If $\mathrm{R}=\left\{\left.\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right) \right\rvert\, x, y \in \mathrm{Z}\right\}, \mathrm{U}=\left\{\left.\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right) \right\rvert\, x \in \mathrm{Z}\right\}, \sigma\left(\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)\right)=$ $\left(\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)\right)$ and $\tau\left(\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right)\right)=\left(\left(\begin{array}{cc}x & -y \\ 0 & 0\end{array}\right)\right)$, then U is (σ, τ)-right Jordan ideal but not a Jordan ideal of R.

A derivation d is an additive mapping on R which satisfies $\mathrm{d}(\mathrm{rs})=\mathrm{d}(\mathrm{r}) \mathrm{s}+\mathrm{rd}(\mathrm{s})$, $\forall \mathrm{r}$, $s \in R$. The notion of generalized derivation was introduced by Brešar [2] as follows. An additive mapping $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ will be called a generalized derivation if there exists a derivation d of R such that $h(x y)=h(x) y+x d(y)$, for all $x, y \in R$.

An additive mapping $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is said to be a (σ, τ)-derivation if $\mathrm{d}(\mathrm{rs})=\mathrm{d}(\mathrm{r}) \sigma(\mathrm{s})+\tau(\mathrm{r}) \mathrm{d}(\mathrm{s})$ for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}$. Every derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is a $(1,1)$-derivation. Chang [3] gave the following definition. Let R be a ring, σ and τ automorphisms of R and $d: R \rightarrow R$ a (σ, τ)-derivation. An additive mapping $h: R \rightarrow R$ is said to be a right generalized (σ, τ)-derivation of R associated with d if $h(x y)=h(x) \sigma(y)+\tau(x) d(y)$, for all $x, y \in R$ and h is said to be a left generalized (σ, τ)-derivation of R associated with d if $h(x y)=d(x) \sigma(y)+\tau(x) h(y)$, for all $x, y \in R$. h is said to be a generalized (σ, τ)-derivation of R associated with d if it is both a left and right generalized (σ, τ)-derivation of R associated with d .

According to Chang's definition, every (σ, τ)-derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is a generalized (σ, τ)-derivation associated with d and every derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is a generalized (1,1)derivation associated with d. A generalized (1,1)-derivation is simply called a generalized derivation. Every right generalized (1,1)-derivation is a right generalized derivation and every left generalized (1,1)-derivation is a left generalized derivation.

The definition of generalized derivation which is given in [2] is a right generalized derivation associated with derivation d according to Chang's definition.

The mapping $\mathrm{h}(\mathrm{r})=(\mathrm{a}, \mathrm{r})_{\sigma, \tau}$ for all $\mathrm{r} \in \mathrm{R}$ is a left-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $d_{1}(\mathrm{r})=[\mathrm{a}, \mathrm{r}]_{\sigma, \tau}$ for all $\mathrm{r} \in \mathrm{R}$ and right-generalized (σ, τ) derivation associated with (σ, τ)-derivation $\mathrm{d}(\mathrm{r})=-[\mathrm{a}, \mathrm{r}]_{\sigma, \tau}$ for all $\mathrm{r} \in \mathrm{R}$.

In this paper we generalized some results which are given in $[6,8,9,10]$.
Throughout the paper, R will be a prime ring with center Z , characteristic not 2 and $\sigma, \tau, \alpha, \beta, \lambda, \mu, \gamma$ automorphisms of R. We set $C_{\sigma, \tau}(\mathrm{R})=\{\mathrm{c} \in \mathrm{R} \mid \mathrm{c} \sigma(\mathrm{r})=\tau(\mathrm{r}) \mathrm{c}, \forall \mathrm{r} \in \mathrm{R}\}$ and shall use the following relations frequently.

$$
\begin{aligned}
& {[\mathrm{rs}, \mathrm{t}]_{\sigma, \tau}=\mathrm{r}[\mathrm{~s}, \mathrm{t}]_{\sigma, \tau}+[\mathrm{r}, \tau(\mathrm{t})] \mathrm{s}=\mathrm{r}[\mathrm{~s}, \sigma(\mathrm{t})]+[\mathrm{r}, \mathrm{t}]_{\sigma, \tau} \mathrm{s}} \\
& {[\mathrm{r}, \mathrm{st}]_{\sigma, \tau}=\tau(\mathrm{s})[\mathrm{r}, \mathrm{t}]_{\sigma, \tau}+[\mathrm{r}, \mathrm{~s}]_{\sigma, \tau} \sigma(\mathrm{t})} \\
& (\mathrm{rs}, \mathrm{t})_{\sigma, \tau}=\mathrm{r}(\mathrm{~s}, \mathrm{t})_{\sigma, \tau}-[\mathrm{r}, \tau(\mathrm{t})]_{\mathrm{s}=\mathrm{r}}[\mathrm{~s}, \sigma(\mathrm{t})]+\left(\mathrm{r}, \mathrm{t} \mathrm{t}_{\sigma, \tau} .\right. \\
& (\mathrm{r}, \mathrm{st})_{\sigma, \tau}=\tau(\mathrm{s})(\mathrm{r}, \mathrm{t})_{\sigma, \tau}+[\mathrm{r}, \mathrm{~s}]_{\sigma, \tau} \sigma(\mathrm{t})=-\tau(\mathrm{s})[\mathrm{r}, \mathrm{t}]_{\sigma, \tau}+(\mathrm{r}, \mathrm{~s})_{\sigma, \tau} \sigma(\mathrm{t})
\end{aligned}
$$

2. Results

We begin with the following known results, which will be used to prove our theorems.

Lemma 1 [5, Lemma 7] Let I be a nonzero ideal of R and $a, b \in R$. If $h: R \rightarrow R$ is a nonzero left-generalized (σ, τ)-derivation associated with (σ, τ)-derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ such that $[\mathrm{h}(\mathrm{I}) \mathrm{a}, \mathrm{b}]_{\lambda, \mu}=0$, then $\mathrm{a}[\mathrm{a}, \lambda(\mathrm{b})]=0$ or $\mathrm{d}\left(\tau^{-1}(\mu(\mathrm{~b}))\right)=0$.

Lemma 2 [4, Lemma 2.6] Let $\mathrm{h}: \mathrm{R} \rightarrow \mathrm{R}$ be a nonzero right-generalized (σ, τ)derivation associated with a nonzero (σ, τ)-derivation d and I be a nonzero ideal of R. If $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ such that $[\mathrm{ah}(\mathrm{I}), \mathrm{b}]_{\lambda, \mu}=0$, then $[\mathrm{a}, \mu(\mathrm{b})] \mathrm{a}=0$ or $\mathrm{d}\left(\sigma^{-1}(\lambda(\mathrm{~b}))\right)=0$.

Lemma 3 [7, Lemma 4] Let U be a nonzero (σ, τ)-right Jordan ideal of R and $a \in R$. (i) If $U \subset \mathrm{C}_{\sigma, \tau}(\mathrm{R})$ then R is commutative. (ii) If $\mathrm{U} \subset \mathrm{Z}$ then R is commutative. (iii) If $\mathrm{aU}=0$ or $U a=0$, then $\mathrm{a}=0$.

Lemma 4 [7, Lemma 5] Let U be a nonzero (σ, τ)-right Jordan ideal of R and a, $b \in R$. If $a U b=0$ then $a=0$ or $b=0$.

Lemma 5 [7, Lemma 2] If R is a ring and U a nonzero (σ, τ)-right Jordan ideal of R then $2 \tau([R, R]) U \subset U$ and $2 U \sigma([R, R]) \subset U$.

Lemma 6 [1, Lemma 1] Let R be a prime ring and $d: R \rightarrow R$ be a (σ, τ)-derivation. If U is a nonzero right ideal of R and $d(U)=0$ then $d=0$.

Lemma 7 Let $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ be a nonzero (α, β)-derivation. If $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ then R is commutative.

Proof. If $d(\gamma([R, R]))=0$ then we have, for all $r, s \in R$

$$
\begin{aligned}
& 0=\mathrm{d}(\gamma([\mathrm{r}, \mathrm{rs}]))=\mathrm{d}(\gamma(\mathrm{r}) \gamma([\mathrm{r}, \mathrm{~s}]))=\mathrm{d}(\gamma(\mathrm{r})) \alpha(\gamma([\mathrm{r}, \mathrm{~s}]))+\beta(\gamma(\mathrm{r})) \mathrm{d}(\gamma([\mathrm{r}, \mathrm{~s}])) \\
&=\mathrm{d}(\gamma(\mathrm{r})) \alpha(\gamma([\mathrm{r}, \mathrm{~s}]))
\end{aligned}
$$

and so for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}$

$$
\begin{equation*}
\mathrm{d}(\gamma(\mathrm{r})) \alpha(\gamma([\mathrm{r}, \mathrm{~s}]))=0 . \tag{2.1}
\end{equation*}
$$

Replacing s by $s t, t \in R$ in (2.1) for any $r \in R$, we get $d(\gamma(r))=0$ or $r \in Z$. Let $\mathrm{K}=\{\mathrm{r} \in \mathrm{R} \mid \mathrm{d}(\gamma(\mathrm{r}))=0\}$ and $\mathrm{L}=\{\mathrm{r} \in \mathrm{R} \mid \mathrm{r} \in \mathrm{Z}\}$. Then K and L are subgroups of R and $\mathrm{R}=\mathrm{K} \cup L$. Given the fact that a group can not be the union of two proper subgroups, Brauer's Trick, then we have $R=K$ or $R=L$. That is, $d(\gamma(R))=0$ or $R \subset Z$. Since $d \neq 0$ then $d(\gamma(R)) \neq 0$ by Lemma 6 . On the other hand, $R \subset Z$ means that R is commutative.

Remark 1 Let U be a nonzero right (σ, τ)-Jordan ideal of R. Lemma 5 gives that $2 \tau([\mathrm{R}, \mathrm{R}]) \mathrm{U} \subset \mathrm{U}$ and $2 \mathrm{U} \sigma([\mathrm{R}, \mathrm{R}]) \subset \mathrm{U}$. Since σ and τ are automorphisms of R then we will use the relations $2[R, R] U \subset U$ and $2 U[R, R] \subset U$.

Theorem 1 Let U be a nonzero right (σ, τ)-Jordan ideal of R and $b \in R$, let $h: R \rightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$.
(i) If $\mathrm{h}(\gamma(\mathrm{U}))=0$ then R is commutative.
(ii) If $\mathrm{h}(\gamma(\mathrm{U})) \mathrm{b}=0$ then $\mathrm{b}=0$ or R is commutative.

Proof. We can use that $2[\mathrm{r}, \mathrm{s}] \mathrm{v} \in \mathrm{U}$ for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}, \mathrm{v} \in \mathrm{U}$ by Remark 1 .
(i) If $h(\gamma(U))=0$ then we have, for all $r, s \in R, v \in U$

$$
\begin{aligned}
0=\mathrm{h}(\gamma(2[\mathrm{r}, \mathrm{~s}] \mathrm{v}))=\mathrm{h}(2 \gamma([\mathrm{r}, \mathrm{~s}]) \gamma(\mathrm{v})) & =2 \mathrm{~d}(\gamma([\mathrm{r}, \mathrm{~s}])) \alpha(\gamma(\mathrm{v}))+2 \beta(\gamma([\mathrm{r}, \mathrm{~s}])) \mathrm{h}(\gamma(\mathrm{v})) \\
& =2 \mathrm{~d}(\gamma([\mathrm{r}, \mathrm{~s}])) \alpha(\gamma(\mathrm{v})) .
\end{aligned}
$$

That is $\gamma^{-1}\left(\alpha^{-1}(\mathrm{~d}(\gamma([\mathrm{r}, \mathrm{s}])))\right) \mathrm{U}=0$, for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}$. This means that $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ by Lemma 3 (iii). Using Lemma 7, we obtain R is commutative.
(ii) If $h \gamma(U) b=0$, then we get, for all $r, s \in R, v \in U$

$$
0=\mathrm{h}(\gamma(2[\mathrm{r}, \mathrm{~s}] \mathrm{v})) \mathrm{b}=2 \mathrm{~d}(\gamma([\mathrm{r}, \mathrm{~s}])) \alpha(\gamma(\mathrm{v})) \mathrm{b}+2 \beta(\gamma([\mathrm{r}, \mathrm{~s}])) \mathrm{h}(\gamma(\mathrm{v})) \mathrm{b}=2 \mathrm{~d}(\gamma([\mathrm{r}, \mathrm{~s}])) \alpha(\gamma(\mathrm{v})) \mathrm{b}
$$

so $\gamma^{-1}\left(\alpha^{-1}(\mathrm{~d}(\gamma([\mathrm{R}, \mathrm{R}])))\right) \mathrm{U} \gamma^{-1}\left(\alpha^{-1}(\mathrm{~b})\right)=0$. This means that $\mathrm{b}=0$ or $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ by Lemma 4. If $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ then R is commutative by Lemma 7 .

Theorem 2 Let U be a nonzero right (σ, τ)-Jordan ideal of $R, b \in R$ and let $h: R \rightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with a nonzero (α, β) derivation d .
(i) If $\mathrm{h}(\gamma(\mathrm{U}))=0$, then R is commutative.
(ii) If $\operatorname{bh}(\gamma(\mathrm{U}))=0$, then $\mathrm{b}=0$ or R is commutative.

Proof. Remark1 gives that $2 \mathrm{v}[\mathrm{r}, \mathrm{s}] \in \mathrm{U}$, for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}, \mathrm{v} \in \mathrm{U}$.
(i) If $h(\gamma(U))=0$ then we have, for all $r, s \in R, v \in U$

$$
\begin{aligned}
0=\mathrm{h}(\gamma(2 \mathrm{v}[\mathrm{r}, \mathrm{~s}]))=\mathrm{h}(2 \gamma(\mathrm{v}) \gamma([\mathrm{r}, \mathrm{~s}])) & =2 \mathrm{~h}(\gamma(\mathrm{v})) \alpha(\gamma([\mathrm{r}, \mathrm{~s}]))+2 \beta(\gamma(\mathrm{v})) \mathrm{d}(\gamma([\mathrm{r}, \mathrm{~s}])) \\
& =2 \beta(\gamma(\mathrm{v})) \mathrm{d}(\gamma([\mathrm{r}, \mathrm{~s}])) .
\end{aligned}
$$

That is $U \gamma^{-1}\left(\beta^{-1}(d(\gamma([r, s])))\right)=0$, for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}$. This means that $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ by Lemma 3 (iii). Applying Lemma 7 to the last relation, we obtain that R is commutative.
(ii) If $\operatorname{bh}(\gamma(\mathrm{U}))=0$, then we get, for all $\mathrm{r}, \mathrm{s} \in \mathrm{R}, \mathrm{v} \in \mathrm{U}$

$$
0=\mathrm{bh}(2 \gamma(\mathrm{v}) \gamma([\mathrm{r}, \mathrm{~s}]))=2 \mathrm{bh}(\gamma(\mathrm{v})) \alpha(\gamma([\mathrm{r}, \mathrm{~s}]))+2 \mathrm{~b} \beta(\gamma(\mathrm{v})) \mathrm{d}(\gamma([\mathrm{r}, \mathrm{~s}]))=2 \mathrm{~b} \beta(\gamma(\mathrm{v})) \mathrm{d}(\gamma([\mathrm{r}, \mathrm{~s}])) .
$$

That is $\gamma^{-1}\left(\beta^{-1}(b)\right) U \gamma^{-1}\left(\beta^{-1}(d(\gamma([R, R])))\right)=0$ so $b=0$ or $d(\gamma([R, R]))=0$ by Lemma 4. If $\mathrm{d}(\gamma([\mathrm{R}, \mathrm{R}]))=0$ then we obtain R is commutative by Lemma 7.

Corollary 1 [6, Lemma 5] Let $d: R \rightarrow R$ be a nonzero derivation and $a \in R$. If $d(U) a=0$ or $\operatorname{ad}(U)=0$ then $a=0$ or R is commutative.

Proof. Since d is a derivation and so left (and right)-generalized derivation associated with d then using Theorem 1 (ii) and Theorem 2 (ii) we get the result.

Theorem 3 Let U be a nonzero right (σ, τ)-Jordan ideal of R and $\mathrm{a} \in \mathrm{R}$.
(i) If $[\mathrm{a}, \mathrm{U}] \lambda, \mu=0$ then $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu(\mathrm{R})$.
(ii) If $[\mathrm{U}, \mathrm{a}]_{\lambda, \mu}=0$ then $\mathrm{a} \in \mathrm{Z}$.
(iii) If $\mathrm{b}[\mathrm{a}, \mathrm{U}]_{\lambda, \mu}=0$ or $[\mathrm{a}, \mathrm{U}] \lambda, \mu \mathrm{b}=0$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu(\mathrm{R})$.
(iv) If $\mathrm{b}[\mathrm{U}, \mathrm{a}]_{\lambda, \mu}=0$ or $[\mathrm{U}, \mathrm{a}]_{\lambda, \mu} \mathrm{b}=0$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$.

Proof. Let us consider the mappings defined by $d(r)=[a, r]$, for all $r \in R$ and $g(r)=[r, a] \lambda, \mu$ for all $r \in R$. Then d is a (λ, μ)-derivation and so left (and right)-generalized (λ, μ)-derivation associated with d. If $d=0$ then $a \in C_{\lambda, \mu}(R)$. On the other hand, g is a left-
generalized derivation associated with derivation $d_{1}(r)=[r, \mu(a)]$, for all $r \in R$. If $g=0$ then we obtain $\mathrm{d}_{1}=0$ and so $\mathrm{a} \in \mathrm{Z}$. Let $\mathrm{g} \neq 0$.
(i) If $[a, U] \lambda, \mu=0$ then we have $d(U)=0$. This means that R is commutative by Theorem 1 (i). That is $a \in Z$. Consequently, we obtain $a \in Z$ or $a \in C_{\lambda, \mu}(R)$ for any case.
(ii) If $[U, a]_{\lambda, \mu}=0$ then $g(U)=0$. Since $g \neq 0$ then we have R is commutative by Theorem 1 (i) and so $a \in Z$.
(iii) If $b[a, U] \lambda, \mu=0$ then we have $b d(U)=0$. This means that $b=0$ or R is commutative by Theorem 2 (ii). That is $b=0$ or $a \in Z$. Finally, we obtain $b=0$ or $a \in Z$ or $a \in C \lambda, \mu(R)$. If $[a, U]_{\lambda, \mu} b=0$ then $d(U) b=0$ and so $b=0$ or R is commutative is obtained by Theorem 1 (ii). Again we obtain that $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu(\mathrm{R})$ for any case.
(iv) If $\mathrm{b}[\mathrm{U}, \mathrm{a}]_{\lambda, \mu}=0$ then $\mathrm{bg}(\mathrm{U})=0$. Using Theorem 2 (ii) we obtain $\mathrm{b}=0$ or R is commutative and so $b=0$ or $a \in Z$. Similarly if $[U, a] \lambda, \mu b=0$ then $g(U) b=0$. Hence, $b=0$ or R is commutative by Theorem 1 (ii). Considering as above, we have $b=0$ or $a \in Z$ for any case.

Corollary 2 [10, Lemma 2.7] Let R be a 2-torsion free prime ring and U be a nonzero Jordan ideal of R . If U is a commutative then $\mathrm{U} \subseteq Z$.

Proof. Every Jordan ideal is a right (1,1)-Jordan ideal of R, where $1: R \rightarrow R$ is an identity map. If U is commutative then we have $[\mathrm{U}, \mathrm{U}]_{1,1}=0$. Using Theorem 3 (ii), we obtain U®Z.

Corollary 3 Let U, V be nonzero right ($\sigma, \tau)$-Jordan ideals of R. If $\mathrm{U} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{V})$ then R is commutative.

Proof. If $\mathrm{Uc} \mathrm{C}_{\lambda, \mu}(\mathrm{V})$ then $[\mathrm{U}, \mathrm{V}]_{\lambda, \mu}=0$. Using Theorem 3 (ii), we obtain $\mathrm{V} \subset \mathrm{Z}$. Hence, R is commutative by Lemma 3 (ii).

Theorem 4 Let U be a nonzero right (σ, τ)-Jordan ideal of R and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$.
(i) If $(\mathrm{a}, \mathrm{U})_{\lambda, \mu}=0$ then $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu$.
(ii) If $(\mathrm{U}, \mathrm{a})_{\lambda, \mu}=0$ then $\mathrm{a} \in \mathrm{Z}$.
(iii) If $\mathrm{b}(\mathrm{a}, \mathrm{U})_{\lambda, \mu}=0$ or $(\mathrm{a}, \mathrm{U})_{\lambda, \mu} \mathrm{b}=0$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C}_{\lambda, \mu}$.
(iv) If $\mathrm{b}(\mathrm{U}, \mathrm{a})_{\lambda, \mu}=0$ or $(\mathrm{U}, \mathrm{a})_{\lambda, \mu} \mathrm{b}=0$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$.

Proof.Let us consider the mappings defined by $h(r)=(a, r) \lambda, \mu$ for all $r \in R$ and $g(r)=(r, a) \lambda, \mu$ for all $r \in R$. Then h is a left-generalized (λ, μ)-derivation associated with (λ, μ)-derivation $d_{1}(r)=[a, r] \quad \lambda, \mu$, for all $r \in R$ and right-generalized (λ, μ)-derivation associated with (λ, μ)-derivation $d(r)=-[a, r] \lambda, \mu$, for all $r \in R$. If $h=0$ then $d=0=d_{1}$ and so $\mathrm{a} \in \mathrm{C} \lambda, \mu$ is obtained. Let $\mathrm{h} \neq 0$. On the other hand g is a left-generalized derivation associated with derivation $d_{2}(r)=-[r, \mu(a)]$, for all $r \in R$ and right-generalized derivation associated with derivation $d_{3}(r)=[r, \lambda(a)]$, for all $r \in R$. If $g=0$, then $d_{2}=0=d_{3}$ and we obtain $\mathrm{a} \in \mathrm{Z}$.
(i) If $(a, U) \lambda_{\lambda, \mu}=0$ then we have $h(U)=0$. Using Theorem 1 (i) we get $a \in Z$. Finally, we obtain that $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu$.
(ii) If $(\mathrm{U}, \mathrm{a})_{\lambda, \mu}=0$ then $\mathrm{g}(\mathrm{U})=0$. Similarly Theorem 1 (i) gives that $\mathrm{a} \in Z$.
(iii) If $b(a, U) \lambda, \mu=0$ then we have $b h(U)=0$. Hence, $b=0$ or R is commutative by Theorem 2 (ii). That is $\mathrm{b}=0$ or $\mathrm{a} \in Z$. Finally, we obtain that $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C} \lambda, \mu$. If $(a, U) \lambda, \mu \mathrm{b}=0$ then we have $\mathrm{h}(\mathrm{U}) \mathrm{b}=0$. Using Theorem 1 (ii) we get $\mathrm{b}=0$ or R is commutative. Consequently, we have $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ or $\mathrm{a} \in \mathrm{C}_{\lambda, \mu}$ for any case.
(iv) If $\mathrm{b}(\mathrm{U}, \mathrm{a}){ }_{\lambda, \mu}=0$ then $\mathrm{bg}(\mathrm{U})=0$. Considering as in the proof of (iii) and using Theorem 2 (ii) we arrive $b=0$ or $a \in Z$. If $(U, a) \lambda, \mu b=0$ then $g(U) b=0$. Using Theorem 1 (ii), we get the same result.

Theorem 5 Let U be a nonzero right (σ, τ)-Jordan ideal of $R, b \in R$ and let $h: R \rightarrow R$ be a nonzero right-generalized (α, β)-derivation associated with a nonzero (α, β) derivation d and I nonzero ideal of R. If $b h(I) \subset C \lambda, \mu(U)$ then $b \in Z$.

Proof. Let $\operatorname{bh}(\mathrm{I}) \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$. This means that $[\mathrm{bh}(\mathrm{I}), \mathrm{v}] \lambda, \mu=0$, for all $\mathrm{v} \in \mathrm{U}$. Using Lemma 2 we obtain that, for any $v \in U$,

$$
[\mathrm{b}, \mu(\mathrm{v})] \mathrm{b}=0 \text { or } \mathrm{d} \alpha^{-1} \lambda(\mathrm{v})=0 .
$$

Let $\mathrm{K}=\{\mathrm{v} \in \mathrm{U} \mid[\mathrm{b}, \mu(\mathrm{v})] \mathrm{b}=0\}$ and $\mathrm{L}=\left\{\mathrm{v} \in \mathrm{U} \mid \mathrm{d}\left(\alpha^{-1}(\lambda(\mathrm{v}))\right)=0\right\}$. Using Brauer's Trick, we get $[b, \mu(U)] b=0$ or $d\left(\alpha^{-1}(\lambda(U))\right)=0$. The mapping $d_{1}(r)=[b, r]$, for all $r \in R$ is a derivation and so left (and right)-generalized derivation associated with derivation d_{1}. If $d_{1}=0$ then $b \in Z$ is obtained. Let $d_{1} \neq 0$. If $[b, \mu(U)] b=0$ then we can write $d_{1}(\mu(U)) b=0$. Since d_{1} is a left-generalized derivation, then we have $\mathrm{b}=0$ or R is commutative by Theorem 1 (ii). Finally, we obtain $b \in Z$ for any case. If $d\left(\alpha^{-1}(\lambda(U))\right)=0$ then we have R is commutative by Theorem 1 (i) and so $b \in Z$.

Theorem 6 Let U be a nonzero right (σ, τ)-Jordan ideal of $R, h: R \rightarrow R$ be a nonzero left-generalized (α, β)-derivation associated with a nonzero (α, β)-derivation $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ and I be a nonzero ideal of R. If $b \in R$ such that $h(I) b \subset C_{\lambda, \mu}(U)$ then $b \in Z$.

Proof. If $h(I) b \subset C_{\lambda, \mu}(U)$ then we have $\left.[h(I) b, v]\right]_{\lambda, \mu}=0$, for all $v \in U$. This means that for any $\mathrm{v} \in \mathrm{U} \mathrm{d}\left(\beta^{-1}(\mu(\mathrm{v}))=0\right.$ or $\mathrm{b}[\mathrm{b}, \lambda(\mathrm{v})]=0$ by Lemma 1. Let $\mathrm{K}=\left\{\mathrm{v} \in \mathrm{U} \mid \mathrm{d}\left(\beta^{-1}(\mu(\mathrm{v}))\right)=0\right\}$ and $\mathrm{L}=\{\mathrm{v} \in \mathrm{U} \mid \mathrm{b}[\mathrm{b}, \lambda(\mathrm{v})]=0\}$. According to Brauer's Trick, we get $\mathrm{d}\left(\beta^{-1}(\mu(\mathrm{U}))\right)=0$ or $b[b, \lambda(U)]=0$. Since d is an (α, β)-derivation then d is a right (and left)-generalized (α, β) derivation associated with d . If $\mathrm{d}\left(\beta^{-1}(\mu(\mathrm{U}))\right)=0$ then we have R is commutative by Theorem 1 (i). That is $b \in Z$. On the other hand, the mapping defined by $d_{1}(r)=[b, r]$, for all $r \in R$ is a derivation and so right (and left)-generalized derivation associated with derivation d_{1}. If $d_{1}=0$ then $b \in Z$ is obtained. If $d_{1} \neq 0$ then $b[b, \lambda(U)]=0$ gives that $b=0$ or R is commutative by Theorem 2 (ii). Finally, we obtain that $b \in Z$ for any case.

Corollary 4 Let U be nonzero right (σ, τ)-Jordan ideal of R and I be a nonzero ideal of R. If $b(a, I)_{\alpha, \beta} \subset C_{\lambda, \mu}(U)$ or $(a, I)_{\alpha, \beta} b \subset C \lambda_{\lambda, \mu}(U)$ then $b \in Z$ or $a \in C_{\alpha, \beta}(R)$ for all $a, b \in R$.

Proof. The mapping defined by $h(r)=(a, r)_{\alpha, \beta}$, for all $r \in R$ is a left-generalized (α, β)-derivation associated with (α, β)-derivation $d_{1}(r)=[a, r]_{\alpha, \beta}$ for all $r \in R$ and rightgeneralized (α, β)-derivation associated with (α, β)-derivation $d(r)=-[a, r]_{\alpha, \beta}$, for all $r \in R$. If $\mathrm{h}=0$ then $\mathrm{d}=0=\mathrm{d}_{1}$ and so $\mathrm{a} \in \mathrm{C}_{\alpha, \beta}(\mathrm{R})$ is obtained. If $\mathrm{b}(\mathrm{a}, \mathrm{I})_{\alpha, \beta} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then we have
$\operatorname{bh}(\mathrm{I}) \subset \mathrm{C} \lambda, \mu(\mathrm{U})$. Since h is a right-generalized (α, β)-derivation, then we obtain $b \in Z$ by Theorem 5.

Similarly, if $(a, I)_{\alpha, \beta} b \subset C_{\lambda, \mu}(U)$ then $h(I) b \subset C_{\lambda, \mu}(U)$. Since h is a left-generalized (α, β)-derivation, then we have $b \in Z$ by Theorem 6. Finally, we obtain that $b \in Z$ or $\mathrm{a} \in \mathrm{C}_{\alpha, \beta}(\mathrm{R})$ for any case.

Corollary 5 Let U, V be nonzero right (σ, τ)-Jordan ideals of R and $\mathrm{b} \in \mathrm{R}$. If $\mathrm{bV} \subset \mathrm{C} \lambda, \mu(\mathrm{U})$ or $\mathrm{Vb} \subset \mathrm{C} \lambda, \mu(\mathrm{U})$ then $\mathrm{b} \in \mathrm{Z}$.

Proof. If $\mathrm{bV} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then we have $\mathrm{b}(\mathrm{V}, \mathrm{R})_{\sigma, \tau} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$. Hence

$$
\begin{equation*}
b \in Z \text { or } V \subset C_{\lambda, \mu}(R) \tag{2.2}
\end{equation*}
$$

by Corollary 4. If $\mathrm{V} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{R})$ in (2.2) then we can write $[\mathrm{V}, \mathrm{R}]_{\lambda, \mu}=0$. Using Theorem 3 (ii) we get $R \subset Z$, and so we obtain $b \in Z$. If $V b \subset C \lambda, \mu(U)$ then we have $(V, R)_{\sigma, \tau} \subset \subset C \lambda, \mu(U)$. Using Corollary 4 and considering as above we obtain that $b \in Z$. This completes the proof.

The following Lemma is a generalization of [8] and [9].

Lemma 8 Let U be nonzero right (σ, τ)-Jordan ideal of R and $a, b \in R$. If $b, b a \in C$ $\lambda, \mu(\mathrm{U})$ or $\mathrm{b}, \mathrm{ab} \in \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$.

Proof. If $\mathrm{b}, \mathrm{ba} \in \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then, for all $\mathrm{v} \in \mathrm{U}$ we get

$$
0=[\mathrm{ba}, \mathrm{v}]_{\lambda, \mu}=\mathrm{b}[\mathrm{a}, \lambda(\mathrm{v})]+[\mathrm{b}, \mathrm{v}] \lambda, \mu \mathrm{a}=\mathrm{b}[\mathrm{a}, \lambda(\mathrm{v})]
$$

so $\lambda^{-1}(b)\left[\lambda^{-1}(a), U\right]=0$. This means that $b=0$ or $a \in Z$ or $a \in C_{1,1}(R)$ by Theorem 3 (iii). That is $b=0$ or $a \in Z$. If $b, a b \in C_{\lambda, \mu}(U)$, then for all $v \in U$, the relation $0=[\mathrm{ab}, \mathrm{v}] \lambda, \mu=\mathrm{a}[\mathrm{b}, \mathrm{v}] \lambda, \mu^{+}+[\mathrm{a}, \mu(\mathrm{v})] \mathrm{b}=[\mathrm{a}, \mu(\mathrm{v})] \mathrm{b}$ gives that $\left[\mu^{-1}(\mathrm{a}), \mathrm{U}\right] \mu^{-1}(\mathrm{~b})=0$. Smilary using Theorem 3 (iii), we get $\mathrm{b}=0$ or $\mathrm{a} \in Z$.

Theorem 7 Let U be nonzero right (σ, τ)-Jordan ideal of R , let I be ideal of R and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. If $\mathrm{b} \gamma\left([\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ or $\gamma\left([\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then $\mathrm{b}=0$ or $\mathrm{a} \in Z$.

Proof. If $\mathrm{b} \gamma\left([\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \subset \mathrm{C} \lambda, \mu(\mathrm{U})$ then we get, for all $\mathrm{x} \in \mathrm{I}$

$$
\mathrm{b} \gamma\left([\mathrm{x} \alpha(\mathrm{a}), \mathrm{a}]_{\alpha, \beta}\right)=\mathrm{b} \gamma(\mathrm{x}) \gamma([\alpha(\mathrm{a}), \alpha(\mathrm{a})])+\mathrm{b} \gamma\left([\mathrm{x}, \mathrm{a}]_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a}))=\mathrm{b} \gamma\left([\mathrm{x}, \mathrm{a}]_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a})) \in \mathrm{C}_{\lambda, \mu}(\mathrm{U})
$$

and so

$$
\begin{equation*}
\mathrm{b} \gamma\left([\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a})) \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U}) . \tag{2.3}
\end{equation*}
$$

If we use hypothesis and Lemma 8 in (2.3), then we get $\gamma^{-1}(b)[I, a]_{\alpha, \beta}=0$ or $a \in Z$. If $\gamma^{-1}(\mathrm{~b})[\mathrm{I}, \mathrm{a}]_{\alpha, \beta}=0$ then we obtain that $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ by Theorem 3 (iv). If $\gamma\left([\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$, then we have for all $\mathrm{x} \in \mathrm{I}$

$$
\gamma\left([\beta(\mathrm{a}) \mathrm{x}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b}=\gamma(\beta(\mathrm{a})) \gamma\left([\mathrm{x}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b}+\gamma([\beta(\mathrm{a}), \beta(\mathrm{a})]) \gamma(\mathrm{x}) \mathrm{b}=\gamma(\beta(\mathrm{a})) \gamma\left([\mathrm{x}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b} \in \mathrm{C}_{\lambda, \mu}(\mathrm{U}) .
$$

That is

$$
\begin{equation*}
\gamma(\beta(\mathrm{a})) \gamma\left[(\mathrm{I}, \mathrm{a}]_{\alpha, \beta}\right) \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U}) . \tag{2.4}
\end{equation*}
$$

If we use Lemma 8 and hypothesis then (2.4) gives that $[\mathrm{I}, \mathrm{a}]_{\alpha, \beta \gamma} \gamma^{-1}(\mathrm{~b})=0$ or $\mathrm{a} \in \mathrm{Z}$. If $[I, a]_{\alpha, \beta} \gamma^{-1}(b)=0$ then we obtain that $b=0$ or $a \in Z$ by Theorem 3 (iv). This completes the proof.

Theorem 8 Let U be nonzero right (σ, τ)-Jordan ideal of R, I be an ideal of R and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. If $\mathrm{b} \gamma(\mathrm{I}, \mathrm{a})_{\alpha, \beta} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ or $\gamma(\mathrm{I}, \mathrm{a})_{\alpha, \beta} \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$.

Proof. If $\mathrm{b} \gamma(\mathrm{I}, \mathrm{a})_{\alpha, \beta} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then we get, for all $\mathrm{x} \in \mathrm{I}$

$$
\mathrm{b} \gamma\left((\mathrm{x} \alpha(\mathrm{a}), \mathrm{a})_{\alpha, \beta}\right)=\mathrm{b} \gamma(\mathrm{x}) \gamma([\alpha(\mathrm{a}), \alpha(\mathrm{a})])+\mathrm{b} \gamma\left((\mathrm{x}, \mathrm{a})_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a}))=\mathrm{b} \gamma\left((\mathrm{x}, \mathrm{a})_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a})) \in \mathrm{C}_{\lambda, \mu}(\mathrm{U})
$$

and so

$$
\begin{equation*}
\mathrm{b} \gamma\left((\mathrm{I}, \mathrm{a})_{\alpha, \beta}\right) \gamma(\alpha(\mathrm{a})) \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U}) . \tag{2.5}
\end{equation*}
$$

If we use hypothesis and Lemma 8 in above relation,then we get $\left.\gamma^{-1}(\mathrm{~b})(\mathrm{I}, \mathrm{a})_{\alpha, \beta}\right)=0$ or $\mathrm{a} \in \mathrm{Z}$. If $\gamma^{-1}(\mathrm{~b})(\mathrm{I}, \mathrm{a})_{\alpha, \beta}=0$ then we obtain that $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ by Theorem 4 (iv). If $\gamma\left((\mathrm{I}, \mathrm{a})_{\alpha, \beta}\right) \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U})$ then we have, for all $\mathrm{x} \in \mathrm{I}$

$$
\gamma\left((\beta(\mathrm{a}) \mathrm{x}, \mathrm{a})_{\alpha, \beta}\right) \mathrm{b}=\gamma(\beta(\mathrm{a})) \gamma\left((\mathrm{x}, \mathrm{a})_{\alpha, \beta}\right) \mathrm{b}-\gamma([\beta(\mathrm{a}), \beta(\mathrm{a})]) \gamma(\mathrm{x}) \mathrm{b}=\gamma(\beta(\mathrm{a})) \gamma\left((\mathrm{x}, \mathrm{a})_{\alpha, \beta}\right) \mathrm{b} \in \mathrm{C}_{\lambda, \mu}(\mathrm{U}) .
$$

That is

$$
\begin{equation*}
\gamma(\beta(\mathrm{a})) \gamma\left((\mathrm{I}, \mathrm{a})_{\alpha, \beta}\right) \mathrm{b} \subset \mathrm{C}_{\lambda, \mu}(\mathrm{U}) . \tag{2.6}
\end{equation*}
$$

If we use Lemma 8 and hypothesis, then (2.6) gives that $(\mathrm{I}, \mathrm{a})_{\alpha, \beta \gamma^{-1}(b)=0}$ or $\mathrm{a} \in \mathrm{Z}$. If $(\mathrm{I}, \mathrm{a})_{\alpha, \beta} \gamma^{-1}(\mathrm{~b})=0$ then we obtain that $\mathrm{b}=0$ or $\mathrm{a} \in \mathrm{Z}$ by Theorem 4 (iv).

References

[1] Aydın, N. and Kaya, K., Some Generalizations in Prime Rings with (σ, τ)Derivation, Tr. J. Math., 16(3), 169-176, 1992.
[2] Bresar, M., On the Distance of the Composition of Two Derivation to Generalized Derivations, Glasgow Math. J., 33, 89-93, 1991.
[3] Chang, J. C., On the Identity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math., 7(1), 103113, 2003.
[4] Güven, E., One Sided (σ, τ)-Lie Ideals and Generalized Derivations in Prime Rings, Palestine Journal of Mathematics, 7(2), 479-486, 2018.
[5] Güven, E., One Sided Generalized (σ, τ)-Derivations in Rings, Boletim Sociedade Paranaense de Matemática, 38(2), 41-50, 2020 (to appear).
[6] Kandamar, H. and Kaya, K., ($\sigma, \tau)$-Right Jordan Ideals, Cumhuriyet Üniversitesi Fen Bilimleri Dergisi, 1993.
[7] Kaya, K., Kandamar, H. and Aydın, N., Generalized Jordan Structure of Prime Rings, Tr. J. Math., 251-258, 1993.
[8] Kaya, K., On a ($\sigma, \tau)$-Derivations of Prime Rings, Doğa TU Mat. D. C., 12(2), 42-45, 1988.
[9] Mayne, J. H., Centralizing Mappings of Prime Rings, Canad. Math. Bull., 27, 122-126, 1984.
[10] Zaidi, S. M. A., Ashraf, M. and Ali, S., On Jordan Ideals and Left (θ, θ)Derivations, in Prime Rings, Int. J. Math. Math. Sci., 37, 1957-1964, 2004.

