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Abstract 

In the present study we consider Euclidean curves with incompressible canonical 

vector fields. We investigate such curves in terms of their curvature functions. Recently, 

B.Y. Chen gave classification of plane curves with incompressible canonical vector 

fields. For higher dimensional case we gave a complete classification of Euclidean 

space curves with incompressible canonical vector fields. Further we obtain some 

results of the Euclidean curves with incompressible canonical vector fields in 4 -

dimensional Euclidean space 4.  

Keywords: Regular curve, Generalized helix, Salkowski curve, Canonical vector 

field. 

Sıkıştırılamayan Kanonik Vektör Alana Sahip Öklit Eğrileri 

Özet 

Bu çalışmada Öklit uzayında sıkıştırılamayan kanonik vektör alana sahip eğriler 

ele alınmıştır. Bu tür eğrilerin eğrilik fonksiyonları incelenmiştir. Son zamanlarda B.Y. 

Chen sıkıştırılamayan kanonik vektör alana sahip düzlemsel eğrilerin bir 

sınıflandırmasını vermiştir. Bu çalışmada yüksek boyutlu Öklit uzayında bu tür eğrilerin 
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bir sınıflandırması verilmiştir. Özellikle 4-boyutlu Öklit uzayında bazı sonuçlar elde 

edilmiştir. 

Anahtar Kelimeler: Regüler eğri, Genelleştirilmiş helis, Salkowski eğrisi, Kanonik 

vektör alanı. 

 

1. Introduction 

Let = ( ) : mt I      be a regular curve in m , ( i.e., ( ) 0).' t   Then   

is called a Frenet curve of  osculating order ,d  (2 )d m   if ( )( ), ( ),..., ( )' '' dt t t    are 

linearly independent and ( 1)( ), ( ),..., ( )' '' dt t t    linearly dependent for all t  in I  [10]. 

In this case, ( )Im   lies in a d  dimensional Euclidean subspace of m . To each Frenet 

curve of osculating order d  there can be associated orthonormal d  frame 
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 along ,  the Frenet d  frame, and 1d   functions 

1 2 1, ,..., d    : I  , the Frenet curvatures, such that 
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where, = ( )'v t  is the speed of the curve .  In fact, to obtain 1,..., dV V  it is sufficient 

to apply the Gram-Schmidt orthonormalization process to ( )( ), ( ),..., ( )' '' dt t t   . 

Moreover, the functions 1 2 1, ,..., d     are easily obtained by using the above Frenet 

equations. More precisely, 1,..., dV V  and 1 2 1, ,..., d     are determined by the following 

formulas: 
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where  1,2,3,..., 1d    (see, [4]) .  For the case =d n  the Frenet curve   is called a 

generic curve [3, 10].  A Frenet curve of rank d  for which 1 2 1, ,..., d     are constant is 

called (generalized) helix or W  curve [5]. Meanwhile, a Frenet curve of rank d  with 

constant curvature ratios 3 12 4

1 2 3 2

, , ,..., d

d

  
   





 is called a ccrcurve [6, 7]. 

A generic space curve with constant first curvature 1  and non-constant second 

curvature 2  is called a Salkowski curve [1, 9]. A generic curve in 4  is called a slope 

curve for which the curvatures 1   0 , 2  and 3  satisfy the relations  

 32

1 1

= , = ,
  

 
 (2) 

where   and   are non-zero real constants [5]. 

 

2. Euclidean Curves with Incompressible Canonical Vector Field 

 

Let = ( ) : ms I      be a regular curve in m  given with the arclength 

parameter s . For the Euclidean curve ( )s  there exists a natural decomposition of the 

position vector field   given by: 

 ( ) = ( ) ( ) ,s s s     (3) 

where ( )s   and ( )s   denote the tangential and the normal components of  , 

respectively. 

A vector field   on a Riemannian manifold ( , )M g  is called conservative if it is 

the gradient of some function, known as a scalar potential. Conservative vector fields 
appear naturally in mechanics: They are vector fields representing forces of physical 
systems in which energy is conserved [2]. 

For Euclidean curves we give the following definition. 
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Definition 2.1 Let = ( ) : ms I      be a unit speed, regular curve in .m  If 

the divergence of the the canonical vector field ( )s   of   vanishes identicall. That is; 

if  

 ( ( )) = 0,div s  

holds then the vector field ( )s   is called incompressible. 

Using a result of B.Y. Chen in [2] one can get the following adapted result. 

Theorem 2.2 Let = ( ) : ms I      be a unit speed, regular curve in m . 

Then the canonical vector field ( )s   of   is incompressible if and only if  

 ( ), ( ) = 1,s s   (4) 

holds, where 
2

2
=

d

ds
   is the Laplacian of  . 

Proof. The divergence of the canonical vector field ( )s   of   is given by 

 )(,)(
~

))(( )( sssdiv T
s

T      (5) 

where ~  is the covariant derivative in .m  For the scalar potential function 

 
1

= , ,
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f    

the gradient of f  becomes  
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 (6) 

which means that, the canonical vector field ( )s   is conservative. Hence, substituting 

(6) into (5) after some computation we get  
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Furthermore, using the equalities 
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into previous equation one can get  

1)(),(
~

))(( )(   sssdiv s
T    

If the canonical vector field ( )s   of   is incompressible then by definition 

( ( ) ) = 0div s   holds identically. So, we obtain 

 1)(),(
~

)(   sss   (7) 

which gives the proof of the theorem. 

 

2.1 Planar Curves 

Let 2= ( ) :t I      be a unit speed regular curve in 2.  Then one can get 

the following Frenet equations; 

 ( ) = ( ),' s T s  

 ( ) = ( ) = ( ),'' 's T s N s   

 ( ) = ( ),'N s T s  

where  ,T N  is the Frenet frame of   and > 0  is the curvature (function) of  . 

For the plane curves we have the following classification theorem of B.Y. Chen; 
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Theorem 2.3 [2] Let 2= ( ) :s I      be a unit speed, regular curve in 2 . 

Then the canonical vector field ( )s   of   is incompressible if and only if up to a rigid 

motion in 2  about the origin,   is an open portion of a curve of the following types; 

a) A circle centered at the origin, 

b) A curve defined by the parametrization 

         2

2
( ) = cos sin ,sin cos ,s c s c s c s c s c s c s

c
    

for some non-zero real number c . 

 

2.2 Space Curves 

Let = ( )s   be a regular space curve in 3  given with the arclength parameter 

.s  Then we have the following Frenet equations; 

 ( ) = ( ),' s T s  

 1( ) = ( ) = ( ),'' 's T s N s   (8) 

 1 2( ) = ( ) ( ),'N s T s B s    

 2( ) = ( ),'B s N s  

where ,T N  and B  are the Frenet frame fields of   and 1 > 0  and 2  are the 

curvature functions of  . 

From now on let us assume that   is a space curve whose canonical vector field 

( )s   is incompressible. Then it follows from (7) and (8) that  

 
1

1
( ), ( ) = .N s s


  (9) 

Differentiating (9) with respect to s  and using (8) we have 

 1
1 2 2

1

( ), ( ) ( ), ( ) = .
'

T s s B s s
   


   (10) 

Similarly, differentiating (10) with respect to s  and using the Frenet equations (8) we 
get 
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2

1 2
1 2 2

1 1

( ), ( ) ( ), ( ) = .
''

' 'T s s B s s
    
 
 

   
 

 (11) 

Consequently, the equations (10) and (11) have a common solution 

 
3
2

1

( ), ( ) = ,h T s s g



  (12) 

 2
2( ), ( ) = ,h B s s f    (13) 

where ,f g  and h  are smooth functions defined by 

 1
2

1

= ,
'


 

 1 1= ,' 'f      (14) 

 2 2= ,' 'g      

 1 2 2 1= ,' 'h      

 respectively. So, we have the following cases; 

Case (a): Suppose that If = 0h  holds. In this case (14) implies that the equality 

1 2 1 2 = 0' '     holds identically. Thus, the ratio 2

1

=
 


 is a real constant. So, the curve 

= ( )s   is a cylindrical helix. We have the following subcases; 

(a 1 ): If 1  and 2  are both constant curvatures, i.e.,   is a W  curve. In this 

case = 0f  and = 0g  holds identically. Thus, (12) and (13) gives 2 = 0.  Hence 

= ( )s   is an open portion of a circle centered at the origin. 

(a 2 ): If 1  and 2  are both non-constant curvatures. Then, differentiating the 

equations (12) and (13) with respect to s  and using (14) with 2 1=   we obtain the 

following differential equation 

  2 2 4
1 1 1 13 = 0,' ''       (15) 

where   is a non-zero constant function. A simple calculation gives that the differential 
equation (15) has a non-trivial solution 
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 1 2 2

1
= ,

2 2s as b





  
 (16) 

for some real numbers ,a b  and  . 

Summing up the equalities above we obtain the following result; 

Theorem 2.4 Let 3= ( ) :s I      be a unit speed, regular curve in 3  

given with incompressible canonical vector field ( ) .s   If   is a helical curve then   

is either an open portion of a circle centered at the origin or a cylindrical helix given 
with the Frenet curvatures 

1 2 12 2

1
= , = ,

2 2s as b
  




  
 

where ,a b  and   are real constants. 

Case :(b)  Suppose that 0h   holds.  In this case (12) and (13) gives 
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 (18) 

Differentiating both equations (17) and (18) with respect to s  and using the Frenet 
formulae (8) we obtain the following equations 
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 respectively. 

Summing up the equalities (17)-(20) we obtain the following result. 
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Theorem 2.5 Let 3= ( ) :s I      be a unit speed, non-helical curve in 3 . 

Then the canonical vector field ( )s   of   is incompressible if and only if the 

following two equalities hold; 
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1
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f
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where   

 1
2

1

= ,
'


 

 1 1= ,' 'f      

 2 2= ,' 'g      

 1 2 2 1= ,' 'h      

are real valued smooth functions with 0h  . 

As a consequence of Theorem 2.5 we obtain the following results; 

Corollary 2.6 Let 3= ( ) :s I      be a unit speed, non-helical curve in 
3 . If   is a Salkowski curve with the incompressible canonical vector field ( )s   

then 

 2

1
= ,

2 2cs d
 

 
 (21) 

holds identically. 

Proof. Let   be a Salkowski curve with the incompressible canonical vector field 

( )s  . Then using (14) we get 

 1 2= = 0, = ,'f g h    

where 1  is a real constant. Consequently, substituting these values into (19) and (20) 

we get the same differential equation  
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  2

2 2 23 = 0,' ''    (22) 

for the both equations (19) and (20) respectively. An easy calculation gives that the 
differential equation (22) has a non-trivial solution (21).  

 

2.3 Curves in Euclidean 4-space 4  

Let = ( )s   be a regular curve in 4  given with the arclength parameter .s  

Then we have the following Frenet equations; 

 ( ) = ( ),' s T s  

 1( ) = ( ) = ( ) ( ),'' 's T s s N s   

 1 2( ) = ( ) ( ) ( ) ( ),'N s s T s s B s    (23) 

 2 3( ) = ( ) ( ) ( ) ( ),'B s s N s s W s    

 3( ) = ( ) ( ),'W s s B s  

where ,T N , B  and W  are the Frenet frame fields of   and 1 > 0,  2  and 3  are the 

curvature functions. 

It is well-known that the regular parametric curve   in 4  has the position vector 
field of the form  

 0 1 2 3( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),s m s T s m s N s m s B s m s W s     (24) 

where ( ),0 3im s i   are differentiable functions and ,T N , B  and W  are the Frenet 

frame fields of .  Differentiating (24) with respect to arclength parameter s  and using 
the Frenet equations (23), we obtain 

 0 1 1( ) = ( ( ) ( ) ( )) ( )' 's m s s m s T s   

 1 1 0 2 2( ( ) ( ) ( ) ( ) ( )) ( )'m s s m s s m s N s     (25) 

 2 2 1 3 3( ( ) ( ) ( ) ( ) ( )) ( )'m s s m s s m s B s     

 3 3 2( ( ) ( ) ( )) ,'m s s m s W   

which follows 
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 0 1 1 = 1,'m m  

 1 1 0 2 2 = 0,'m m m    (26) 

 2 2 1 3 3 = 0,'m m m    

 3 3 2 = 0,'m m  

(see, [8]). 

From now on let us assume that   is a space curve whose canonical vector field 

( )s   is incompressible. Then it follows from (7) and (23) that  

 1
1

1
= ( ), ( ) = ,m N s s


  (27) 

holds. So, from the first equation of (26) we deduce that 

 0 = ( ), ( ) ,m T s s  (28) 

is a constant function. Further, the equations in (26) imply that  

 
3

1 1 0
2 2

1 2

= ,
' m

m
 
 


 

 2 2 1
3

3

= ,
'm m

m




 (29) 

 3 3 2= ,'m m  

holds identically. 

In [8] the first author and at all. gave the following definition; 

Definition 2.7 Let = ( )s   be a regular curve in 4  given with the arclength 

parameter .s  If the position vector x  lies in the hyperplane spanned by  , ,T N W  or 

equivalently the curvature function 2m  vanishes identically then   is called an 

osculating curve of first kind in 4 . 

We obtain the following result. 
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Theorem 2.8 Let 4= ( ) :s I      be a unit speed regular curve in 4  

given with incompressible canonical vector field ( ) .s   If   is an osculating curve of 

first kind then  

 1

1
= ,

2as c
 


 (30) 

 2

3

= ,
2

b

as c


 

  (31) 

holds, where 0 =m a , 3 =m b  and c  are real constants. 

Proof. Let   be a regular curve with the incompressible canonical vector field 

( )s  . If   is an osculating curve of first kind then by definition 2 = 0m . So using the 

first equation of (29) we get the differential equation 

             3
1 1 0 = 0,' m   

which has a solution (30). Similarly using the second and third equation of (29) we get  

 3 = 0,'m  

 2
3 1

3

= ,m
 


  

where 0 3= , =m a m b  are constant functions. So we obtain (30). 
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