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Abstract

The notion of semiderivations of a ring was introduced by J. Bergen in [5].
Considerable work has been done on commutativity of prime near-rings with
derivations in [2], [3] and [4]. In the present paper, it is shown that U is a nonzero
semigroup ideal of 3—prime near-ring N, d is a nonzero semiderivation associated
with an additive mapping g of N such that d(U) < Z, then N is commutative ring.
Also, we extend some well known results concerning semiderivations of prime rings for

a semigroup ideal of prime near-rings.
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Yaritiirevli Asal Yakin Halkalarin Yarigrup Idealleri Uzerine
Ozet

[5] te J. Bergen tarafindan bir halkanin yaritiirevi tanimlanmustir. [2], [3] ve [4] de
tirevli asal yakin halkalarin komiitatifligi ile ilgili baz1 sonuglar elde edilmistir. Bu
makalede, d g toplamsal dontisiimii ile belirlenmis sifirdan farkli bir yaritiirev olmak
tizere N 3-asal yakin halkasinin sifirdan farkli bir U yarigrup ideali icin eger

d(U)c Z ise bu durumda N nin degismeli bir halka oldugu gdosterilmistir. Ayrica
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yaritiirevli asal halkalarda bilinen bazi sonuglar asal yakin halkalarin yarigrup idealleri

i¢in ispatlanmistir.
Anahtar Kelimeler: Asal Yakin Halka, Tiirev, Yaritiirev.
1. Introduction

Throughout this paper, N will denote zero-symmetric left near-ring and Z its
multiplicative center. Recall that a near-ring N is said to be 3—prime if xNy = (0)
implies X=0 or y=0. Forany X,y e N, as usual [X,y]=xy — yx will denote the well-
known Lie product. A nonempty subset U of N will be called a semigroup right ideal
(resp. semigroup left ideal) if UN cU (resp. NU cU ) and if U is both a semigroup
right ideal and a semigroup left ideal, it will be called a semigroup ideal. As for

terminologies used here without mention, we refer to G. Pilz [11].

Over the last seventeen years, many authors have proved commutativity theorems
for prime or semiprime rings admitting derivations. In [5] J. Bergen has introduced the
notion of semiderivation of a ring R which extends the notion of derivation of a ring R
An additive mapping d:R — R is called a semiderivation if there exists a function
g:R—>R such that (i) d(xy)=xd(y)+d(Xx)g(y)=gx)d(y)+d(x)y and (ii)
d(g(x))=g(d(x)) hold for all x,yeR. In case ¢ is an identity map of R, then all
semiderivations associated with g are merely ordinary derivations. On the other hand,
if g is a homomorphism of R such that g #1, then d =g—1 is a semiderivation
which is not a derivation. In case R is prime and d # 0, it has been shown by Chang
[10] that g must necessarily be a ring endomorphism. Many authors studied
commutativity on prime rings with semiderivation (see [8], [9] and [1] for a partial

bibliography).

The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in
1987 [2]. Some recent results on rings deal with commutativity on prime and semiprime
rings admitting suitably-constrained derivations. Many authors have generalized the
following identities: (i) d(R) < Z, (ii)) d([x,y])=0, for all X,y € R where R is a ring
or a near ring. In [6], A Boua et. al. have generalized these theorems for a semigroup

ideal of 3 —prime near ring. We will extend these two results without considering g is
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as an auotomorphism. Also, we will prove some well known results for a semigroup
ideal of prime near ring admitting semiderivation. The generalization is not trivial as the

following example shows:

Example 1.1 Let S be a 2—torsion free left near ring and

0 x vy
N=<0 0 O0]||xy,zeS}
0 0 z
Define maps d,g:N — N by
0 x vy 0 vy
dlo 0 0}= 0 0],
0 0 z 0 z
0 x vy 0 x
go 0 0[=|0
0 0 z 0 0

It can be verified that N be a left near ring and d is a semiderivation with associated a
map g.

The material in this work is a part of first author’s Master’s Thesis which is
supervised by Prof. Dr. Oznur Gélbasi. Also, this work is supported by the Scientific
Research Project Fund of Cumhuriyet University under the project number F-462.

2. Results

Lemma 2.1 [4, Lemma 1.3] Let N be a 3—prime near ring, U be a nonzero
semigroup ideal of N and x e N.

1) If Ux=(0) or xU =(0), then x=0.
il) If [U, x] = (0), then xe Z.

Lemma 2.2 [4, Lemma 1.4] Let N be a 3—prime near ring, U be a nonzero
semigroup ideal of N and a,be N. If aUb =(0), then a=0 or b=0.

Lemma 2.3 [4, Lemma 1.5] Let N be a 3—prime near ring. If Z contains a
nonzero semigroup ideal of N, then N is commutative ring.
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Lemma 2.4 [6, Lemma 2.3] Let N be a near ring. If N has an additive mapping
d, then the following conditions are equivalent:

i) d isasemiderivation associated with an additive mapping g,

i) d(xy)=d(x)g(y)+xd(y)=d(x)y+g(x)d(y) and d(g(x))=g(d(x)) for
all x,y e N.

Lemma 2.5 [6, Lemma 2.4] Let N be a prime near ring, d be a semiderivation
associated with an additive mapping g of N. Then N satisfies the following partial

distrubitive law:
(xd(y)+d(x)9(y)9(z) = xd(y)9(2) +d(x)g(y)g(z), forallx,y,zeN.
The following Lemma is obtained from the above Lemma.

Lemma 2.6 Let N be a prime near ring, d be a semiderivation associated with
an automorphism g of N. Then N satisfies the following partial distrubitive law:

(xd(y)+d(x)g(y)z=xd(y)z+d(x)g(y)z, forallx,y,ze N.

Lemma 2.7 [7, Theorem 1] Let N be a 3—prime near ring, U be a nonzero
semigroup ideal of N, d be a semiderivation associated with an automorphism g of

N. Then the following conditions are equivalent:
) dU)cz,
ii) N is commutative ring.

Lemma 2.8 Let N be a 3—prime near ring, U be a nonzero semigroup ideal of
N and d be a semiderivation associated with an additive mapping g of N. If

dU)=(0), then d =0.
Proof. Using Lemma 2.4, for any ueU,x e N, we get
0=d(ux)=du)g(x)+ud(x),
and so
Ud(N) = (0).
By Lemma 2.1 (i), we have d =0.

Lemma 2.9 Let N be a 3—prime near ring, U be a nonzero semigroup ideal of
N, d be a nonzero semiderivation associated with an additive mapping g of N such

that d(U) < Z. Then g is an homomorphism of N, that is
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g(xy)=9(x)g(y), forallx,yeN.
Proof. By the definition of d, we have
d(u(xy)) = ud(xy)+d(u)g(xy) (1)
= uxd (y)+ud(x)g(y)+d(u)g(xy).

On the other hand, we get

d((ux)y) =uxd(y)+dux)g(y)
= uxd (y)+ (ud (x) +du)g(x))g(y).
Applying Lemma 2.5, we arrive at
d((ux)y) =uxd(y)+ud (x)g(y)+d(Wgx)g(y). 2
Comparing (1) and (2), we obtain that
d(u)g(xy)=du)g(x)g(y).,
and so

du)(g(xy)—g(x)g(y))=0, forallueU,x,yeN.

Since d(u) € Z, we find that
d(u)=0org(xy)—g(x)g(y)=0, forallueU,x,yeN.
If d(U)=(0), then d =0 by Lemma 2.8. So, we must have

g(xy)=9(x)g(y), forallx,yeN.

Lemma 2.10 Let N be 3—a prime near ring, U be a nonzero semigroup ideal of
N, d be a nonzero semiderivation associated with an additive mapping g of N such

that d(U) < Z. Then N satisfies the following partial distrubitive law:

(g(x)d(y)+d(x)y)z=g(x)d(y)z+d(x)yz, forallx,y,ze N.
Proof. Let X,y,z € N, then by the definition of d we get
d(x(y2)) = g(x)d(yz) +d(x)yz
=9(x)9(y)d(2)+g(x)d(y)z+d(x)yz.

On the other hand, we calculate d((xy)z) by using Lemma 2.9, we have
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d((xy)z) = g(xy)d(z)+d(xy)z
=9(x)9(y)d(z)+d(xy)z.
Comparing the last two equations, we arrive at
d(xy)z=g(x)d(y)z+d(x)yz,
and so
(9)d(y)+d(x)y)z=g(x)d(y)z+d(x)yz, forallx,y,zeN.

Lemma 2.11 Let N be a 3—prime near ring, d be a nonzero semiderivation
associated with an automorphism g of N. Then N satisfies the following partial

distrubitive law:
(g()d(y)+d(x)y)z = g(x)d(y)z +d(x)yz,forall x,y,z € N.

Proof. Using the same arguments as in the proof of Lemma 2.10 and g is an

automorphism of N, the partial distrubitive law follows.

The following theorem is generalization of [7, Theorem 1]. We prove this theorem
without requiring that g is an auotomorphism.

Theorem 2.1 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N, d be a nonzero semiderivation associated with an additive mapping g of N. If

d(U)c Z, then N is commutative ring.

Proof. Commuting d(uv) with g(v), we have

(ud(v)+d(u)g(v)gv) = g(v)(ud(v)+d(u)g(v)).
Using Lemma 2.5 and d(u) € Z, we get
ud(V)g(v)+du)g(v)g(v) = gud(v)+du)g(v)g(v),
and so
ud(v)g(v)=g(v)ud(v), forallu,veU.
By the hypothesis, we arrive at
d(V)[u,g(v)]=0.

Since d(v)eZ and N is prime, we have for each veU,

114



d(v) =0or[u,g(v)]=0.

If d(v)=0, then for any veU, d(uv)=ud(v)+d(u)g(v), and so d(u)g(v)eZ.

Commuting this term with y € N and using d(u) € Z, we obtain that
dwlg(v),y]=0, forallueU,yeN.

Again using d(u) e Z and the primeness of N, we have d(U)=(0) or g(v)eZ. If
dU)=(0), then by Lemma 2.8 we get d =0, a contradiction. If g(v)e Z, then we
have [u,g(v)]=0. Hence we arrive at [u,g(v)]=0 for both cases. That is

[U,g)]=(0).
By Lemma 2.1 (ii), we obtain that g(U) < Z, and so g(u)d(v) e Z.
Now, we commute d(uv) with y e N and using Lemma 2.10, we get
(dV)+duv)y = y(gud(v)+d(uv),
g(ud(v)y+d(uvy = yg(u)d(v)+ yd(uv.
Since g(u)d(v),d(u) e Z, we arrive at
dwlv,y]=0, forallu,veU,yeN,
and so
dU)=(0)or[U,N]=(0).

If d(U)=(0), then by Lemma 2.8, we have d =0, a contradiction. If [U,N]=(0), then

N < Z by Lemma 2.1 (ii), and so N is commutative ring by Lemma 2.3.

Lemma 2.12 Let N be a 3—prime near ring, U be a nonzero semigroup ideal of
N, d be a semiderivation associated with an additive mapping g of N and ae N. If

ad(U)=(0), then a=0 or d =0.
Proof. By the hypothesis and Lemma 2.4, forany ueU,x e N, we get
0=ad(ux)=ad(u)g(x)+aud(x).

Using the hypothesis, we have

aud(x)=(0), forallxe N.

By Lemma 2.2, we find that a=0 or d =0.
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Lemma 2.13 Let N be a 3—prime near ring, U be a nonzero semigroup ideal of
N, d be a semiderivation associated with an automorphism g of N and aeN. If

dU)a=(0), then a=0 or d =0.
Proof. For any ueU,xe N, we get
0=d(xu)a=(xd(u)+d(x)g(u)a.
Using Lemma 2.6 and the hypothesis, we have
0=xd(wa+d(x)g(wa,
and so
d(x)gU)a=(0).
We can write the last equation such as
d(x)la=(0),

where | =g(U). By Lemma 2.2, we find that a=0 or d=0 or | =gU)=(0). If
g(U)=(0), then U =(0), a contradiction. So, we must have a=0 or d =0.

Theorem 2.2 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N and d be a semiderivation associated with an additive mapping g of N. If

[d(u),v]e Z, forall u,veU, then N is commutative ring.
Proof. Replacing v by d(u)v in the hypothesis, we have
[d(u),d(u)v]e Z.
That is

d(u)[d(u),vle Z, forallu,veU.

Commuting this term with veU and using [d(u),v]e Z, we get [d(u),v]* =0. Again
using [d(u),v]e Z, we conclude that [d(u),v]=0, for all u,veU. Thus we get

d(U)c Z by Lemma 2.1 (ii), and so N is commutative ring from Theorem 2.1.

Theorem 2.3 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N and d be a semiderivation associated with an automorphism g of N . If d acts

as a homomorphism on U, then d =0.

Proof. Let d acts as a homomorphism on U . Then
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d(uv) = g(u)d(vV)+d(uyv =d(u)d(v), forallu,veU.
Replacing V by W in this equation, we get
g(wyd(vw) +d(u)vw = d(u)d(vw)
= d(wd(v)d(w)
=d(uv)d(w)
= (9(Wd(v)+duv)d(w).
Applying Lemma 2.11 in the right of the last equation, we have
g(wyd(vw) +d(u)vw = g(u)d(v)d(w) +d (u)vd (w)
= g(w)d(vw)+d(u)vd (w)
and so
d(U)U (w—d(w))=(0), forallu,weU.

By Lemma 2.2, we have either d(U)=(0) or w=d(w), for all weU. If dU) = (0),
then d =0 by Lemma 2.8.

Suppose d(w)=w, forall weU. Hence by Lemma 2.4, we get
uv=d(uv)=dUu)v+g(u)d(v)
=uv+g(u)wv
and so
gU)U =(0).

Applying Lemma 2.1 (i), we have g(U)=(0). Since g is an automorphism of N, we
find that U = (0), a contradiction. So we obtain that d = 0.

Theorem 2.4 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N and d be a semiderivation associated with an automorphism g of N . If d acts

as an anti-homomorphism on U, then d =0.

Proof. By the hypothesis, we get
d(uv)=ud(v)+d(u)g(v)=d(v)d(u), forallu,veU.

Replacing v by uv in the last equation, then
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ud(uv)+d(u)g(uv)=d(uv)d(u)
= (ud(v)+d(u)g(v)d(u).
Using Lemma 2.6 the right of the last equation, we have
ud (uv)+d(u)g(uv)=ud(v)d(u)+du)g(v)d(u).
Since d is as an anti-homomorphism on U, we get
ud (uv)+d(u)g(uv)=ud(uv)+d(u)g(v)d(u)
and so
duwgug(v)=d(u)g(v)d(u), forallu,veU.
Since g is an automorphism of N, this equation shows that
d(u)g(u)j=d(u)jd(u), forallueU,jel,

where | =g(U). It is clear that | is a semigroup ideal of N. Writing jx,xe N instead

of ] in the last equation and using this, we have
d(u)jld(u),x]=0, forallueU,jel,xeN.

By Lemma 2.2, this implies that d(u)=0 or [d(u),x]=0, and so d(U)c Z. Thus d

acts as a homomorphism on U, and so d =0 by Theorem 2.3.

Theorem 2.5 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N and d be a semiderivation associated with an automorphism g of N. If

d([u,v])=[d(u),v], for all u,veU, then N is commutative ring.
Proof. By the hypothesis, we have
d(uv—vu)=d(u)v-vd(u),
d(uv+guyd(v)—(vd(u)+d(v)g(u)) =d(uyv-vd(u),
g(wd(v)—d(v)g(u)—vd(u) =-vd(u)
and so
[g(u),d(v)]=0, forallu,veU. 3)

Since g is an automorphism of N, this equation shows that

[1,d(v)]=(0), forallveU,
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where | = g(U). It is clear that | is a semigroup ideal of N. Using Lemma 2.1 (ii), we
get 1=gU)=(0) or dU)c Z. If g(U)=(0), then U =(0), a contradiction. If
d(U)c Z, then N is commutative ring by Lemma 2.7.

Theorem 2.6 Let N be a 3—prime near ring, U be a nonzero semigroup ideal
of N and d be a semiderivation associated with an automorphism g of N . If

d([u,v])=[u,d(v)], for all u,veU, then N is commutative ring.
Proof. Expanding our hypothesis, we get
d(uv—vu)=ud(v)—dv)u,
ud(v) +d(u)g(v)—(d(V)u+g(v)d(u)) =ud(v)-d(v)u,
d(wgv)-gWdu)—d(vu=—-d(vu
and so
[d(u),g(v)]=0, forallu,veU.

Now applying the same arguments as used after equation (3) in the proof of Theorem
2.5, we get the required result.

Theorem 2.7 Let N be a 3—prime 2—torsion free near ring, U be a nonzero
semigroup ideal of N, d be a semiderivation associated with an automorphism g of

N. If d*(U)=(0), then d =0.
Proof. For arbitrary u,veU, we have
0=d?*(uv) =d(d(uv)) =d(ud(v)+du)g(v))
=ud*(V) +d(u)g(d(v) +d*(u)g*(v)+d(uyd(g(v)).
By the hypothesis,
d(u)g(d(v))+du)d(g(v))=0, forallu,velU.
Using dg = gd, we get
2d(u)g(d(v))=0, forallu,veU.
Since N isa 2—torsion free near ring, we have

d(u)g(d(v))=0, forallu,veU.
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By Lemma 2.13, we obtain that d(U)=(0) or g(dU))=(0), and so d(U)=(0).
Hence we get d =0 by Lemma 2.8.
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