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Abstract 

This article introduces proximal algebraic structures in descriptive proximity spaces. A 

descriptive proximity space is an extension of an Efremovič proximity space that contains 

non-abstract points describable with feature vectors. Various types of groupoids is such 

spaces are considered. A groupoid is a nonempty set equipped with a binary operation. A 

groupoid A  is descriptively near a groupoid B , provided there is at least one pair of points 

,a A b B   with matching descriptions. This leads to a consideration of mappings on 

groupoid A  into groupoid B  that are descriptive homomorphisms. 

Keywords: Proximity relation, descriptive proximity space, proximal groupoid, descriptive 

homomorphism. 

Proksimal Grupoid Homomorfizmalarının Tamlığı 

Özet 

Bu çalışmada tanımsal proksimiti uzayda proksimal cebirsel yapılar tanıtıldı. Tanımsal 

proksimiti uzay, özellik vektörleri ile nitelendirilebilen ve soyut olmayan noktaları içeren 

Efremovič proksimiti uzayının bir genelleştirilmişidir. Grupoidlerin farklı türleri böyle 

düşünülen uzaylardır. Grupoid, bir ikili işlem ile donatılmış boş olmayan bir kümedir. A  ve 

B  iki grupoid olmak üzere, eşleşen tanımlamalar ile en az bir ,a A b B   nokta çifti varsa 
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A  grupoidi B  grupoidine tanımsal yakındır. Bu kavram, A  grupoidinden B  grupoidine 

dönüşümleri ve özellikle tanımsal homomorfizmaları göz önünde bulundurmamıza yol açar. 

Anahtar Kelimeler: Proksimiti bağıntı, tanımsal proksimiti uzay, proksimal grupoid, tanımsal 

homomorfizma. 

Introduction 

 This article introduces exactness of homomorphisms on groupoids in proximity and 

descriptive proximity spaces. A descriptive proximity space [1, 2] is an extension of an 

Efremovi c


 proximity space [3]. This extension is made possible by the introduction of 

feature vectors that describe each point in a proximity space. Sets ,A B  in a proximity space 

X  are near, provided there is at least one pair of points ,a A b B   with matching 

descriptions. The focus is on descriptive groupoids (a groupoid is a set with binary operation “

”) that can be found in such spaces. Groupoids ( ), ( )A B   in a descriptive proximity space 

are near each other, provided the A  and B  are descriptively near. 

1. Preliminaries 

 Let X  be a nonempty set endowed with an Efremovič proximity relation [3]. ( )X  

denotes the collection of all subsets of X . In an ordinary metric closure space [4, §14A.1] X

, the closure of A X  (denoted by ( )cl A ) is defined by  

 ( ) = : ( , ) = 0cl A x X d x A , where 

 ( , ) = ( , ) :d x A inf d x a a A , 

i.e., ( )cl A  is the set of all points x  in X  that are close to A  ( ( , )d x A  is the Hausdorff 

distance [5, §22, p.128] between x  and the set A  where ( , ) =d x a x a  (standard distance)). 

Subsets , ( )A B X  are spatially near (denoted by A B ), provided the intersection of 

closure of A  and the closure of B  is nonempty, i.e., ( ) ( )cl A cl B   . That is, nonempty 

sets are spatially near, provided the sets have at least one point in common. 
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Figure 1. ( ) ( )cl A cl B    implies A  is close to B  

Example 1.1 (Spatially Near Sets) Let the set of points X  be represented by the weave cells 

in Fig. 1 and let the closures of sets , , ( )A B C X  be represented by ( ), ( ), ( )cl A cl B cl C  in 

Fig. 1. The boundary points for , ,A B C  are represented by dotted lines in Fig. 1. Since A  and 

B  have common boundary points, we have ( ) ( )cl A cl B   . Hence A B . 

A spatial nearness relation   (called a discrete proximity) is defined by  

  = ( , ) ( ) ( ) : ( ) ( ) .A B X X cl A cl B       

The following proximity space axioms are given by J. M. Smirnov [6] based on what V. 

Efremovič introduced during the first half of the 1930s [3]: 

EF.1  If the set A  is close to B , then B  is close to A . 

EF.2  A B  is close to C , if and only if, at least one of the sets A  or B  is close to C . 

EF.3  Two points are close, if and only if, they are the same point. 

EF.4  All sets are far from the empty set  . 

EF.5  For any two sets A  and B  which are far from each other, there exists C  and D , 

=C D X , such that A  is far from C  and B  is far from D  (Efremovič axiom). 

The pair ( , )X   is called an EF-proximity space. In a proximity space X , the closure 

of A  in X  coincides with the intersection of all closed sets that contain A . From Smirnov, 

( , ) = 0A B  indicates that A  is close to B . 

Theorem 1.1 [6] The closure of any set A  in the proximity space X  is the set of points 

x X  that are close to A . 

Descriptively near sets were introduced as a means of solving classification and 

pattern recognition problems arising from disjoint sets (i.e., sets with empty spatial 

intersections) that resemble each other. Descriptively near sets were introduced in 2007 [7, 8]. 

Recently, the connections between spatially near sets and descriptively near sets have been 

explored in [1, 2, 9]. 
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Let X  be a nonempty set of non-abstract points, x  a member of X ,  1= , , n    a 

set of probe functions that represent features of each x . Points as locations with features lead, 

for example, to a proximal view of sets of picture points in digital images [10]. A probe 

function : X    is real-valued and represents a feature of an object such as a sample point 

(pixel) in a picture. Let ( )x  denote a feature vector for the object x , i.e., a vector of feature 

values that describe x . A feature vector provides a description of a point x  in X . To obtain a 

descriptive proximity relation (denoted by  ), one first chooses a set of probe functions, 

which provides a basis for describing points in a set. Let , ( )A B X . Let ( ), ( )A B   

denote sets of descriptions of points in ,A B , respectively. That is, 

 ( ) = ( ) :A a a A  , 

 ( ) = ( ) :B b b B  . 

The expression A B  reads A  is descriptively near B . The relation   is called a 

descriptive proximity relation. Similarly, A B   denotes that A  is descriptively far (remote) 

from B . The descriptive proximity of A  and B  is defined by 

          ( ) ( )A B A B      . 

The descriptive intersection 

  of A  and B  is defined by 

 = : ( ) ( ) ( ) ( )A B x A B x A and x B


        . 

That is, x A B   is in A B

 , provided ( ) = ( ) = ( )x a b    for some ,a A b B  . 

Example 1.2 (Descriptive Intersection of Disjoint Sets) Choose   to be a set of probe 

functions representing weave cell greylevel intensities (from black to shades of grey to white) 

in Fig. 1. Let the set of cells X  in the sample weave strip be endowed with  . Sets 

, ( )A C X  are disjoint but descriptively close. Let 2 4,a A c C   be a pair of weave cells. 

Observe that 2( )a  in ( )A  is descriptively near 4( )c  in ( )C , since 2 4( ) = ( )a c  . 

Also observe that 2 1( ) = ( )a c  . Except for 2a , the cells in A  do not have descriptions that 

match the description of any cell C . Hence we have  2 1 4= , ,A C a c c

 . 
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The descriptive proximity relation   is defined by 

 = ( , ) ( ) ( ) : ( ) ( )A B X X cl A cl B


      . 

Whenever the sets A  and B  have no points with matching descriptions, the sets are 

descriptively far from each other (denoted by A B  ), where 

= ( ) ( ) \X X    . 

A binary relation   is a descriptive EF-proximity, provided the following axioms are 

satisfied for , , ( )A B C X : 

dEF.1  If the set A  is descriptively close to B , then B  is descriptively close to A . 

dEF.2  A B  is descriptively close to C , if and only if, at least one of the sets A  or B  is 

descriptively close to C . 

dEF.3  Two points ,x y X  are descriptively close, if and only if, the description of x  

matches the description of y . 

dEF.4  All nonempty sets are descriptively far from the empty set  . 

dEF.5  For any two sets A  and B  which are descriptively far from each other, there exists C  

and D , =C D X , such that A  is descriptively far from C  and B  is descriptively far from 

D  (descriptive Efremovič axiom). 

The pair ( , )X   is called a descriptive EF-proximity space. 

In a descriptive proximity space X , the descriptive closure of A  in X  contains all 

points in X  that are descriptively close to the closure of A . Let ( , ) = 0A B  indicate that A  

is descriptively close to B . The descriptive closure of a set A  (denoted by ( )cl A ) is 

defined by 

 ( ) = : ( ) ( ( ))cl A x X x cl A    . 

That is, x X  is in the descriptive closure of A , provided ( )x  (description of x ) matches 

( ) ( ( ))a cl A   for at least one ( )a cl A . 
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Example 1.3 (Descriptive Closure of a Set) Choose X  to be the set of weave cells shown in 

Fig. 1 and let   contain probe functions representing weave cell greyscale intensities. Since 

cells 1 4,c c  in ( )cl C  are descriptively near 2a  in ( )cl A , then  2( ) = ( )cl C a cl C  . Observe 

that each ( )c cl C  matches the description of itself, i.e., ( ) ( )c C  . Consequently, 

( ) ( )cl C cl C . This is true in general (see Lemma 1 in [2, §3]). 

Theorem 1.2 [11] The descriptive closure of any set A  in the descriptive proximity space X  

is the set of points x X  that are descriptively close to A . 

2. Descriptive Mappings and Homomorphisms 

 

Figure  2. ( )g a b  such that ( ) = ( )a b  . 

Let  ,X  ,  ,Y   be descriptive EF-proximity spaces and A X , B Y . A 

mapping :g A B  is defined by 

, ( ) ( )
( )

, ( ) ( )

b if a b for some b B
g a

y if a y for any y B

   
     

. 

The mapping g  is called a  -descriptive mapping. Hence we can observe that if there is a 

 -descriptive mapping of A  to B , then ( )A g A  or ( )A g A  . 

Example 2.1 ( -Descriptive Mapping Based on Gradient Orientation) Let ,X Y  in Fig. 2 

be endowed with a descriptive proximity relation   such that   contains a probe function 

that represents the gradient orientation of a point. The gradient orientation of a point x  on a 

curve in either X  or Y  is defined to be the angle of the tangent to the point. Let g  be a  -

descriptive mapping of X  into Y . Then ( ) =g a b  in Fig. 2, provided ( ) = ( )a b  , i.e., 

provided points a A  and b B  have the same gradient orientation. 
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Theorem 2.1 Let  ,X  ,  ,Y   be descriptive EF-proximity spaces with ,A A X  , 

B Y . If :g A B  is a  -descriptive mapping which is defined by ( ) =g a b  such that 

( ) = ( )a b   for each a A  and some b B , then ( ) ( )A A g A A   . 

Proof. We can always find some b B  such that ( ) =g a b  and ( ) = ( )a b  . Consequently, 

( ( )) ( )g A B   and we have A B


  . Therefore we get that ( )A g A . Let 

A A X   for ,A A X   and so ( ( )) ( )g A A B    since ( ( )) ( )g A B  . Hence we 

obtain that ( ) ( )A A g A A   . 

Corollary 2.1 Let  ,X  ,  ,Y   be descriptive EF-proximity spaces with ,A A X  , 

B Y . If :g A B  is a  -descriptive mapping which defined by ( ) =g a b  such that 

( ) = ( )a b   for each a A  and some b B , then ( )A g A A   or ( )A g A A  . 

Corollary 2.2 Let  ,X  ,  ,Y   be descriptive EF-proximity spaces with 1, , nA A X , 

B Y . If :g A B  is a  -descriptive mapping which defined by ( ) =g a b  such that 

( ) = ( )a b   for each a A  and some b B , then 
=1 =1

n n

i i
i i

A g A

 
 
 

  . 

A binary operation on a set S  is a mapping of S S  into S , where S S  is the set of 

all ordered pairs of elements of S . A groupoid is a system  S   consisting of a nonempty set 

S  together with a binary operation “” on S . A proximal groupoid is a groupoid in 

proximity space. 

Let  S   and  S    be groupoids. A mapping h  of S  into S   is called a  

homomorphism if      =h a b h a h b   for all ,a b S . A one-to-one homomorphism h  of 

S  onto S   is called an isomorphism of S  to S   [12, §1.3]. 

Consider groupoids  1( )A  ,  2( )B  , where A X , B Y . A mapping 

: ( ) ( )h B A    

is called a descriptive homomorphism, provided 

          1 2 2 1 1 2=B B B Bh b b h b h b         
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for all    1 2, ( )B Bb b B    [13]. 

Let  1A   and  2B   be groupoids, :h B A  be a homomorphism and 

: ( )A A A  ,  a a  be an object description. The object description A  of A  into 

( )A  is an object description homomorphism if      1 1 2 1 1 2=A A Aa a a a      for all 

1 2,a a A . 

Lemma 2.1 [13] =B Ah h    . 

3. Proximal Groupoids 

Let X  be a nonempty set endowed with an EF-proximity relation and ,A B X . Let 

us consider the groupoids    ,A B    (denoted by ,A B  ) such that ,A B  are subsets of 

EF-proximity space ( , )X  . ,A B   are called proximal groupoids. Notice that proximal 

groupoids A  and B  are near proximal groupoids, provided A  and B  have an element in 

common. Thus the intersection of A  and B  is not empty. Notice, for disjoint sets ,X Y  

with A X  and B Y , the proximal groupoids ,A B   are not near proximal groupoids, 

since X  and Y  have no elements in common. Proximal groupoids A  and B  are 

descriptively near proximal groupoids, provided ( )A  and ( )B  have an element in 

common, i.e., ( ) ( )A B     . 

 

Figure 3.    A B     
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Example 3.1 Let 4 4
2 2, :       be a semi-Euclidean metric and let 1M  and 2M  be 

differentiable manifolds endowed with descriptive proximity relation  , where   contain a 

probe function that represents the norms of vectors in 4
1 2=M   and 4

2 2=M  . Let  1pT M , 

 2qT M  be tangent spaces of 1M  and 2M , respectively (in Fig. 3). Assume that 

    = 1,0,0,0 , 0,1,0,0A Tp  

and 

    = 0,0,1,0 , 0,0,0,1B Tp . 

Let  A   and  B   be groupoids, where 

 : , ,' '' ' ''
p p p pA A A X X X X     

and 

 : , ,' '' ' ''
q q q qB B B Y Y Y Y    . 

We can find pX A  and qY B  such that norm of pX  matches the norm of qY , i.e., 

   =p qX Y  . Hence    A B    . 

A descriptive proximal groupoid (denoted by  ( )A   or shortly denoted by  A 

) is defined relative to a binary operation : ( ) ( ) ( )A A A      on a set of objects S  with 

descriptions, where A  is a subset of proximity space X  endowed with an EF-proximity 

relation. A descriptive proximal groupoid is obtained by considering a binary operation “  ” 

on  A  that maps each pair of descriptions of objects in ( ) ( )A A   to a description in 

( )A . 

Let ( )A  , ( )B   be a pair of descriptive proximal groupoids in X . For simplicity, 

we assume that each groupoid is defined in terms of the same binary operation. In general, 

this is not necessary. 

To obtain a pair of proximal semigroups, assume “” is associative and to obtain a 

pair of proximal monoids, assume ,A B   each has an identity element. To obtain a pair of 
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proximal groups, assume ,A B   each has an identity element and assume that each member 

of ,A B   has an inverse. Similarly, we can obtain descriptive proximal semigroups, 

descriptive proximal monoids and descriptive proximal groups. 

Example 3.2 From Example 3.1, if we consider the binary operations “
A ” and “

B ”, 

where 

              : , ,' '' ' ''
p p p pA A

A A A X X X X            

and 

              : , ,' '' ' ''
q q q qB B

B B B Y Y Y Y           , 

then  
A

A   and  
B

B   are descriptive proximal groups on descriptive proximity 

differentiable manifolds  1,M   and  2 ,M  , respectively. 

4. Exactness of Descriptive Homomorphisms 

Let      , ,A B C      be proximal monoids and :h B A  , :h C B    be 

homomorphisms. A pair of homomorphisms 

h h

C B A


     

is said to be exact at B  in case =Imh Kerh . In general, a sequence of homomorphisms 

     
1 1

1 1
... ...

h h h
n n n

n n n
A A A

 

   
     

is exact in case each sequential pair 1,n nh h   are exact at each  n
A  for n . 

 

Figure 4. 
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Lemma 4.1 Let :h B A   be a homomorphism, ,A B   be object descriptive 

homomorphisms and : ( ) ( )h B A    be a descriptive homomorphism represented in Fig. 

4. If h  is a monomorphism and A  is object descriptive monomorphism, then B  is object 

descriptive monomorphism. 

Theorem 4.1 Let  A  ,  B  ,  C   be proximal monoids, ( )A  , ( )B  , ( )C   be 

descriptive proximal monoids and 
h h

C B A


     be exact, as represented in Fig. 4. If 

,A B   are object descriptive monomorphisms, then ( ) ( ) ( )
h h

C B A
 

     is exact. 

Proof. Since ,A B   are object descriptive monomorphisms, 

         
       
    
  

= : = , ( )

= : = ,

= : = ,

= :

      

   

 

 

B B C C

B B B

B

B

Im h x x h c c C

x x h c c C

x x h c c C

x x Imh



 

and 

     
       
    
  

( )= : =

= : =

= : =

= : = .

  

  



 

B B A

B A A A

B A

B

Kerh x h x e

x h x e

x h x e

x x Kerh Imh



 

Consequently, =Imh Kerh  . Hence ( ) ( ) ( )
h h

C B A
 

     is exact. 

Theorem 4.2 In Fig. 4, let  A  ,  B  ,  C   be proximal monoids and ( )A  , ( )B  , 

( )C   be descriptive proximal monoids. Then 

(i) If ,A C   are object descriptive monomorphisms, h  is a descriptive 

monomorphism and 
h h

C B A


     is exact, then B  is an object descriptive 

monomorphism. 
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(ii) If B  is an object descriptive epimorphism, A  is an object descriptive 

monomorphism and h  is a descriptive monomorphism, then C  is an object descriptive 

epimorphism. 

Proof. (i) Let Bb Ker  . Since the diagrams commute by Lemma 2.1, 

        = =B A Ah b h b h b      

for all b B . Then          ( ) ( )= = = =B B B A A Ah b h b h e e e       . Hence 

    =A A Ah b e   and since A  is an object descriptive monomorphism,   = Ah b e . Thus 

=b Kerh Imh , so there exists c C  such that  =b h c . Since the diagrams commute, 

      =C Bh c h c     

for all c C . Then we obtain          ( ) ( )= = = =B B B B Ch c h c b e h e       . Hence 

    ( )=C Ch c h e     and since h  is a descriptive monomorphism, 

   ( )= =C C C Cc e e  . Thus, since C  is an object descriptive monomorphism, = Cc e . 

Consequently,    = = =C Bb h c h e e  . Hence  =B BKer e . 

(ii) Straightforward. 

Corollary 4.1 In Fig. 4, let  A  ,  B  ,  C   be proximal monoids and ( )A  , ( )B  , 

( )C   be descriptive proximal monoids. Then 

(i) If ,A C   are object descriptive monomorphisms, h  is a descriptive 

monomorphism and 
h h

C B A


     is exact, then ( ) ( ) ( )
h h

C B A
 

     is exact. 

(ii) If ,A C   are object descriptive monomorphisms and 
h h

e C B A e


       is 

short exact sequence, then ( ) ( ) ( )
h h

e C B A e
 

        is a short exact sequence. 
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