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Abstract

This article introduces proximal algebraic structures in descriptive proximity spaces. A
descriptive proximity space is an extension of an Efremovi¢ proximity space that contains
non-abstract points describable with feature vectors. Various types of groupoids is such
spaces are considered. A groupoid is a nonempty set equipped with a binary operation. A
groupoid A is descriptively near a groupoid B, provided there is at least one pair of points

a€ A,b e B with matching descriptions. This leads to a consideration of mappings on

groupoid A4 into groupoid B that are descriptive homomorphisms.

Keywords: Proximity relation, descriptive proximity space, proximal groupoid, descriptive

homomorphism.
Proksimal Grupoid Homomorfizmalarinin Tamhgi
Ozet

Bu ¢alismada tanimsal proksimiti uzayda proksimal cebirsel yapilar tanitildi. Tanimsal
proksimiti uzay, ozellik vektorleri ile nitelendirilebilen ve soyut olmayan noktalar1 igeren
Efremovi¢ proksimiti uzaymin bir genellestirilmisidir. Grupoidlerin farkli tiirleri boyle
diisiiniilen uzaylardir. Grupoid, bir ikili islem ile donatilmig bos olmayan bir kiimedir. 4 ve

B iki grupoid olmak {iizere, eslesen tanimlamalar ile en az bir a € 4,b € B nokta ¢ifti varsa



A grupoidi B grupoidine tanimsal yakindir. Bu kavram, A4 grupoidinden B grupoidine

doniisiimleri ve 6zellikle tanimsal homomorfizmalar1 g6z 6niinde bulundurmamaiza yol agar.

Anahtar Kelimeler: Proksimiti baginti, tanimsal proksimiti uzay, proksimal grupoid, tanimsal

homomorfizma.
Introduction

This article introduces exactness of homomorphisms on groupoids in proximity and
descriptive proximity spaces. A descriptive proximity space [1, 2] is an extension of an
Efremovic proximity space [3]. This extension is made possible by the introduction of

feature vectors that describe each point in a proximity space. Sets 4, B in a proximity space
X are near, provided there is at least one pair of points ae€ 4,be B with matching

descriptions. The focus is on descriptive groupoids (a groupoid is a set with binary operation “

*”’) that can be found in such spaces. Groupoids A(*), B(*) in a descriptive proximity space

are near each other, provided the 4 and B are descriptively near.
1. Preliminaries

Let X be a nonempty set endowed with an Efremovi¢ proximity relation [3]. P(X)

denotes the collection of all subsets of X . In an ordinary metric closure space [4, §14A.1] X

, the closure of 4 < X (denoted by cl(A)) is defined by
cl(4)={xe X :d(x,4)=0}, where

d(x,A)= inf{d(x,a) ‘ae A} ,

i.e., cl(A) is the set of all points x in X that are close to A (d(x,A) is the Hausdorff
distance [5, §22, p.128] between x and the set 4 where d(x,a) =|x—a| (standard distance)).

Subsets A4,B e P(X) are spatially near (denoted by 46 B), provided the intersection of
closure of 4 and the closure of B is nonempty, i.e., c/(4A)Ncl(B)= <. That is, nonempty

sets are spatially near, provided the sets have at least one point in common.




Figure 1. c/(A)ncl(B) # < implies A4 is close to B

Example 1.1 (Spatially Near Sets) Let the set of points X be represented by the weave cells
in Fig. 1 and let the closures of sets 4,B,C € P(X) be represented by c/(A),c/(B),c/(C) in

Fig. 1. The boundary points for 4, B,C are represented by dotted lines in Fig. 1. Since 4 and

B have common boundary points, we have c/(A)ncl(B)# < .Hence A0 B.
A spatial nearness relation 0 (called a discrete proximity) is defined by
5 ={(4,B) e P(X)xP(X):cl(4) N cl(B) = B}.

The following proximity space axioms are given by J. M. Smirnov [6] based on what V.

Efremovic introduced during the first half of the 1930s [3]:

EF.1 Ifthe set A is closeto B,then B iscloseto 4.

EF.2 AUB isclose to C, if and only if, at least one of the sets 4 or B iscloseto C.
EF.3 Two points are close, if and only if, they are the same point.

EF.4 All sets are far from the empty set .

EF.5 For any two sets 4 and B which are far from each other, there exists C and D,

CuD= X, suchthat 4 is far from C and B is far from D (Efremovic axiom).

The pair (X,0) is called an EF-proximity space. In a proximity space X , the closure

of 4 in X coincides with the intersection of all closed sets that contain 4. From Smirnov,

0(A4,B) =0 indicates that 4 is closeto B.

Theorem 1.1 [6] The closure of any set 4 in the proximity space X 1is the set of points

x € X that are close to 4.

Descriptively near sets were introduced as a means of solving classification and
pattern recognition problems arising from disjoint sets (i.e., sets with empty spatial
intersections) that resemble each other. Descriptively near sets were introduced in 2007 [7, 8].
Recently, the connections between spatially near sets and descriptively near sets have been

explored in [1, 2, 9].



Let X be a nonempty set of non-abstract points, x a member of X, ® = {¢1,...,¢n} a

set of probe functions that represent features of each x . Points as locations with features lead,
for example, to a proximal view of sets of picture points in digital images [10]. A probe

function ¢: X — R is real-valued and represents a feature of an object such as a sample point
(pixel) in a picture. Let ®(x) denote a feature vector for the object x, i.e., a vector of feature
values that describe x. A feature vector provides a description of a point x in X . To obtain a

descriptive proximity relation (denoted by o, ), one first chooses a set of probe functions,
which provides a basis for describing points in a set. Let 4,BeP(X). Let Q(4),Q(B)

denote sets of descriptions of points in 4, B, respectively. That is,

Q(A)={D(a):ae 4},

Q(B)={®(b):beB}.

The expression 4 6, B reads A4 is descriptively near B. The relation o, is called a

descriptive proximity relation. Similarly, 40, B denotes that A4 is descriptively far (remote)

from B . The descriptive proximity of 4 and B is defined by
AS, B Q(A)NAB)=D.

The descriptive intersection ~ of 4 and B is defined by
(0]

AnB={xe AUB:®(x) e Q(A) and ®(x) e Q(B)} .

[

Thatis, xe AUB isin 4 ~ B, provided ®(x) = ®(a)= ®(b) for some ac 4,be B.
[}

Example 1.2 (Descriptive Intersection of Disjoint Sets) Choose @ to be a set of probe
functions representing weave cell greylevel intensities (from black to shades of grey to white)

in Fig. 1. Let the set of cells X in the sample weave strip be endowed with &, . Sets
A4,C e P(X) are disjoint but descriptively close. Let a, € 4,¢, € C be a pair of weave cells.
Observe that ®(a,) in Q(A) is descriptively near ®(c,) in Q(C), since DP(a,)=D(c,).
Also observe that ®(a,) =d(c,). Except for a,, the cells in 4 do not have descriptions that

match the description of any cell C. Hence we have 4 ~ C ={a,,c,,c,}.
[}



The descriptive proximity relation o, is defined by
Oy =1(4,B) e P(X)xP(X):cl(A) n cl(B)=D; .
[

Whenever the sets 4 and B have no points with matching descriptions, the sets are
descriptively far from each other (denoted by 4 0, B), where

9y = P(X)xP(X)\0,.
A binary relation J, is a descriptive EF-proximity, provided the following axioms are

satisfied for 4,B,C € P(X):

dEF.1 Ifthe set A4 is descriptively close to B, then B is descriptively close to 4.

dEF.2 AU B is descriptively close to C, if and only if, at least one of the sets 4 or B is

descriptively close to C'.

dEF.3 Two points x,ye X are descriptively close, if and only if, the description of x

matches the description of y .

dEF.4 All nonempty sets are descriptively far from the empty set &.

dEF.5 For any two sets 4 and B which are descriptively far from each other, there exists C
and D, CuUD= X, such that 4 is descriptively far from C and B is descriptively far from

D (descriptive Efremovic axiom).
The pair (X, 0, ) is called a descriptive EF-proximity space.

In a descriptive proximity space X , the descriptive closure of 4 in X contains all

points in X that are descriptively close to the closure of 4. Let J,(4,B8) =0 indicate that 4
is descriptively close to B. The descriptive closure of a set 4 (denoted by c/,(A4)) is

defined by
cl o (A)= {x eX:D(x)e Q(cl(A))} )

That is, x € X is in the descriptive closure of A4, provided ®(x) (description of x) matches

®(a) e Q(cl(A)) for at least one a ecl(A).



Example 1.3 (Descriptive Closure of a Set) Choose X to be the set of weave cells shown in

Fig. 1 and let ®@ contain probe functions representing weave cell greyscale intensities. Since
cells ¢,,c, in cl(C) are descriptively near a, in c/(4), then c/ Q(C)Z{az}ud(C). Observe
that each ¢ ecl(C) matches the description of itself, i.e., ®(c)eQ(C). Consequently,

cl(C)ccl,(C). This is true in general (see Lemma 1 in [2, §3]).

Theorem 1.2 [11] The descriptive closure of any set A in the descriptive proximity space X

is the set of points x € X that are descriptively close to 4.

2. Descriptive Mappings and Homomorphisms

X Y,
g

/_"‘—\

B

g(a)

Figure 2. g(a)=>5b such that ®(a)=®(b).

Let (X ,5q>), (Y ,5q>) be descriptive EF-proximity spaces and Ac X, BcCY. A

mapping g: A — B is defined by

b, if ©(a)=D(b) for somebe B
gla)= , if ®(a)=D(y) foramyyeB

The mapping g is called a @ -descriptive mapping. Hence we can observe that if there is a

® -descriptive mapping of 4 to B, then Ad,g(A4) or AS,g(A).

Example 2.1 (® -Descriptive Mapping Based on Gradient Orientation) Let X,Y in Fig. 2
be endowed with a descriptive proximity relation o, such that @ contains a probe function

that represents the gradient orientation of a point. The gradient orientation of a point x on a
curve in either X or Y is defined to be the angle of the tangent to the point. Let g be a @ -
descriptive mapping of X into Y. Then g(a)=»5b in Fig. 2, provided ®(a)=>(b), i.e.,

provided points @ € A and b € B have the same gradient orientation.



Theorem 2.1 Let (X ,5(1)), (Y ,é}b) be descriptive EF-proximity spaces with 4,4'c X,
BcY.If g:4— B is a @ -descriptive mapping which is defined by g(a)=5 such that
®(a)=D(b) for each ae 4 and some b€ B, then (AU A") S, g(4ud).

Proof. We can always find some b € B such that g(a) =5 and ®(a) = D(b). Consequently,

Q(g(A)<cQ(B) and we have A~B#. Therefore we get that A5, g(A4). Let
[}

AU A c X for A,A'c X and so Q(g(4Au A4"))c Q(B) since Q(g(A4)) < Q(B). Hence we

obtain that (AU 4") o, g(4U A').

Corollary 2.1 Let (X,5,), (¥,8,) be descriptive EF-proximity spaces with 4,4'c X,
BcY. If g:A—> B is a ®-descriptive mapping which defined by g(a)=5 such that
®(a)=®(b) foreach ae 4 and some b€ B, then 46, g(AUA") or A' 6, g(ALA").

Corollary 2.2 Let (X5, ) , (¥,8,) be descriptive EF-proximity spaces with 4,,...,4, € X ,

BcY. If g:A— B is a ®-descriptive mapping which defined by g(a)=5 such that

®(a) = ®(b) for each ae A and some b € B, then U A6, g(UAi] .
i=1

i=1

A binary operation on a set S is a mapping of Sx.§ into S, where SxS§ is the set of

all ordered pairs of elements of S . A groupoid is a system § (*) consisting of a nonempty set

S together with a binary operation “*” on S. A proximal groupoid is a groupoid in

proximity space.

Let S (*) and S'(~) be groupoids. A mapping 4 of S into S’ is called a

homomorphism if h(a*b)=h(a)-h(b) for all a,beS. A one-to-one homomorphism A of

S onto S’ is called an isomorphism of S to S" [12, §1.3].
Consider groupoids Q(A4)(*,), Q(B)(*,), where 4 X, B< Y. A mapping
hy, : Q(B) > Q(4)
is called a descriptive homomorphism, provided

h(l) (q)B (bl)*Z cI)Ii' (bZ)) = h<I> (CDB (bl )) >X<l hCD (CDB (bZ ))
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forall ®,(b,),®,(b,)eQ(B) [13].

Let A(-l) and B(-z) be groupoids, #:B—>A be a homomorphism and
D,:4>9(A4), a> (I)(a) be an object description. The object description @, of A4 into
Q(A) is an object description homomorphism if @, (al “ az)ZCD y (al)*1 D, (az) for all

a,a,€A.
Lemma 2.1 [13] hyo®, =D, 0h.

3. Proximal Groupoids

Let X be a nonempty set endowed with an EF-proximity relation and 4,B < X . Let
us consider the groupoids A4, (*),Bq, (*) (denoted by A,,B, ) such that 4,B are subsets of
EF-proximity space (X,0). 4,,B, are called proximal groupoids. Notice that proximal
groupoids 4, and B, are near proximal groupoids, provided 4, and B, have an element in
common. Thus the intersection of 4, and B, is not empty. Notice, for disjoint sets X,Y
with Ac X and BcY, the proximal groupoids A,,B, are not near proximal groupoids,
since X and Y have no elements in common. Proximal groupoids 4, and B, are
descriptively near proximal groupoids, provided O(4,) and Q(B,) have an element in

common, i.e., Q(4,)NA(B,)#J.

Figure 3. 4, (+)5,B, (+)



Example 3.1 Let <,>:R}xR} >R be a semi-Euclidean metric and let M, and M, be

differentiable manifolds endowed with descriptive proximity relation o, , where @ contain a
probe function that represents the norms of vectors in M, =R} and M, =R;. Let T B (M 1) ,

T (M 2) be tangent spaces of M, and M, , respectively (in Fig. 3). Assume that

q
4=1Tp{(1,0,0,0),(0,1,0,0)}
and

B=1p{(0,0,1,0),(0,0,0,1)}.
Let 4, (+) and B, (+) be groupoids, where

+1AxA—>A,(X,. X))o X, + X,
and

+:B><B—>B,(Y’ Y")l—)Yq'+I/q".

q9°7q

We can find X, €A and Y €B such that norm of X, matches the norm of Y, 1e.,

®(X,)=d(Y,). Hence 4, (+) 5, By (+).

A descriptive proximal groupoid (denoted by Q(A)(*q)) or shortly denoted by A(*(D)
) is defined relative to a binary operation *; : Q(A)xQ(A) - Q(A) on a set of objects S with

descriptions, where A is a subset of proximity space X endowed with an EF-proximity

relation. A descriptive proximal groupoid is obtained by considering a binary operation “*, ”
on Q(A) that maps each pair of descriptions of objects in Q(A4)xQ(A4) to a description in

Q(4).

Let A(*,), B(*,) be a pair of descriptive proximal groupoids in X . For simplicity,

we assume that each groupoid is defined in terms of the same binary operation. In general,

this is not necessary.

To obtain a pair of proximal semigroups, assume “*” is associative and to obtain a

pair of proximal monoids, assume A,,B, each has an identity element. To obtain a pair of

9



proximal groups, assume A,,B, each has an identity element and assume that each member
of A,,B, has an inverse. Similarly, we can obtain descriptive proximal semigroups,

descriptive proximal monoids and descriptive proximal groups.

2

Example 3.2 From Example 3.1, if we consider the binary operations “+CDA ”and “ to,

where

and

+y, :Q(B)xQ(B) > Q(B),(®(Y,).@(Y; )= ®(¥,)+,, @(¥,),

B

then A(+®A ) and B(+¢B) are descriptive proximal groups on descriptive proximity
differentiable manifolds (M,,d,, ) and (M,,8,, ), respectively.
4. Exactness of Descriptive Homomorphisms

Let A, (*),B,(*),Cy(*) be proximal monoids and h:B, - 4,, h':C, — B, be

homomorphisms. A pair of homomorphisms

Co =By, — 4,
is said to be exact at B, in case Imh' = Kerh . In general, a sequence of homomorphisms

hnfl hn hn+1

e (), (), = (o), =

is exact in case each sequential pair A, h,,, are exact at each (4, )” for neN.

n+l

/]

(/Y(D h B o h A [§)

\ FS) bp \ D 4
Q(C) , Q(B) Q(A)
h-‘(I) h b
Figure 4.
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Lemma 4.1 Let h:B, > A, be a homomorphism, ®,,®, be object descriptive
homomorphisms and 4, : Q(B) - Q(A4) be a descriptive homomorphism represented in Fig.
4. If h is a monomorphism and ® , is object descriptive monomorphism, then @, is object

descriptive monomorphism.
Theorem 4.1 Let A@(*), B, (*), Cq,(*) be proximal monoids, A(*,), B(*,), C(*,) be
n h
descriptive proximal monoids and C, — B, > A4, be exact, as represented in Fig. 4. If
hiy he
® ,,®, are object descriptive monomorphisms, then Q(C)—>Q(B)—>Q(A4) is exact.

Proof. Since @ ,,®, are object descriptive monomorphisms,

and

he he
Consequently, Imhy, = Kerh,, . Hence Q(C)—Q(B)—>Q(4) is exact.

Theorem 4.2 In Fig. 4, let 4, (*) , By (*), Co (*) be proximal monoids and A(*,), B(*,),

C(*,) be descriptive proximal monoids. Then

(i) If ®,d. are object descriptive monomorphisms, /4, is a descriptive

n h
monomorphism and C,—>B,—>4, 1is exact, then ®, 1is an object descriptive

monomorphism.
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(@) If @, is an object descriptive epimorphism, ®, is an object descriptive
monomorphism and /4; is a descriptive monomorphism, then ®_. is an object descriptive

epimorphism.

Proof. (i) Let b € Ker® ,. Since the diagrams commute by Lemma 2.1,
(hy 0@ )(b) =(® 0 h)(b) =@, (h(D))

for all beB. Then (h,o®,)(b)=h,(P,())="hy(eon)=Coum =P, (e,). Hence
D, (h(b)) =®,(e,) and since @, is an object descriptive monomorphism, %(b)=e,. Thus

b e Kerh = Imh', so there exists ¢ € C such that b= h'(c) . Since the diagrams commute,
(7 0 ®c)(c) =(P, o h')(c)

for all ¢ceC. Then we obtain (@, h')(c)=®, (' (c))=D,(b)= ey =k (eQ(C)) . Hence
hy (D ()= h, (eQ(C)) and since h, is a descriptive = monomorphism,
D@ (c)=eqc, =D (e.). Thus, since d. is an object descriptive monomorphism, ¢ =e,.

Consequently, b=h'(c)=h'(e.)=e,. Hence Ker®, ={e,}.
(if) Straightforward.

Corollary 4.1 In Fig. 4, let 4, (*), B, (*), C, (*) be proximal monoids and A(*,), B(*,),
C(*,) be descriptive proximal monoids. Then

(i) If ®,D. are object descriptive monomorphisms, /4, is a descriptive

n h hi hg
monomorphism and C, — B, — 4,, is exact, then Q(C)—>Q(B)—>Q(4) is exact.

n h
(@) If ©,, D, are object descriptive monomorphisms and e > Cy, > B, >4, —> e is

hy hg
short exact sequence, then e, — Q(C)—>9(B)—>9(A4) — ¢, is a short exact sequence.
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