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Abstract

The object of the present paper is to study generalized Tanaka-Webster connection on a Kenmotsu
manifold. Some conditions for ¢-conformally flat, ¢-conharmonically flat, ¢-concircularly flat,
@-projectively flat, ¢- W, flat and ¢-pseudo projectively flat Kenmotsu manifolds with respect to

generalized Tanaka-Webster connection are obtained.

Keywords: Kenmotsu Manifold, Einstein Manifold, Curvature Tensor, Tanaka-Webster

Connection.
Genellestirilmis Tanaka-Webster Konneksiyonlu Kenmotsu Manifoldlar
Ozet

Bu ¢alismada bir Kenmotsu manifold {izerinde genellestirilmis Tanaka-Webster konneksiyonu
calisildi.  Genellestirilmis Tanaka-Webster konneksiyonuna sahip ¢ -conformally flat,
¢ -conharmonically flat, ¢ -concircularly flat, ¢ -projectively flat, ¢ -W, flat ve ¢ -pseudo

projectively flat Kenmotsu manifoldlar i¢in bazi sartlar elde edildi.

Anahtar Kelimeler: Kenmotsu Manifold, Einstein Manifold, Egrilik Tensorii, Tanaka-Webster

Konneksiyon.



1. Introduction

In [10], Tanno classified connected almost contact metric manifolds whose automorphism
groups possess the maximum dimension. For such manifolds, the sectional curvature of plane
sections containing ¢ is a constant ¢ and it was proved that they can be divided into three classes
[10]:

(i) Homogeneous normal contact Riemannian manifolds with ¢ > 0,
(ii) Global Riemannian products of a line or a circle with a Kaehler manifold of constant
holomorphic sectional curvature if ¢ = 0,

(iif) A warped product space R X¢ C if ¢ < 0.

It is known that the manifolds of class (i) are characterized by admitting a Sasakian structure.
The differential geometric properties of the manifolds of class (iii) investigated by Kenmotsu [5]
and the obtained structure is now known as Kenmotsu structure. In general, these structures are not
Sasakian [5]. Kenmotsu manifolds have been studied by many authors such as De and Pathak [2],
Jun, De and Pathak [4], Ozgiir and De [6], Yildiz and De [14], Yildiz, De and Acet [15] and many
others.

On the other hand, the Tanaka-Webster connection [9,12] is the canonical of fine connection
defined on a non-degenerate pseudo-Hermitian CR-manifold. Tanno [11] defined the generalized
Tanaka-Webster connection for contact metric manifolds by the canonical connection which

coincides with the Tanaka-Webster connection if the associated CR-structure is integrable.

In this paper, Kenmotsu manifolds with generalized Tanaka-Webster connection are studied.
Section 2 is devoted to some basic definitions. In section 3, we find the expression for curvature
tensor (resp. Ricci tensor) with respect to generalized Tanaka-Webster connection and investigate
relations between curvature tensor (resp. Ricci tensor) with respect to the generalized
Tanaka-Webster connection and curvature tensor (resp. Ricci tensor) with respect to Levi-Civita
connection. In section 4, conformal curvature tensor of generalized Tanaka-Webster connection is
studied. In section 5, it is proved that a ¢-conharmonically flat Kenmotsu manifold with respect to
the generalized Tanaka-Webster connection is an n-Einstein manifold. Section 6 and 7, contain
some results for ¢ -concircularly flat and ¢ -projectively flat Kenmotsu manifolds with
generalized Tanaka-Webster connection, respectively. In section 8, we study ¢- W, flat Kenmotsu

manifolds with respect to generalized Tanaka-Webster connection. In the last section, we show that
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@-pseudo projectively flat Kenmotsu manifolds with respect to generalized Tanaka-Webster is an
n-Einstein manifold.

2. Preliminaries

We recall some general definitions and basic formulas for late use.
Let (M?"*1 p,&,1n,9) be a (2n + 1)-dimensional almost contact Riemannian manifold, where
@ is a (1,1) —tensor field, ¢ is the structure vector field, n is a 1 —form and g is the

Riemannian metric. It is well known that the (¢, ¢, 7, g) structure satisfies the conditions [1]

¢S =0,n(pX) =0,n($) =1 oy
P?X = —X +n(X)§ )

9(X, &) =n(X) ®)

9(@X, oY) = g(X,Y) —n(X)n(Y), (4)

for any vector field X and Y on M . Moreover, if
(Vx@)Y = —g(X, 9Y)§ —n(Y)pX (®)
Vxé =X —n(X)¢, (6)

where V denotes Levi-Civita connection on M , then (M?"*1, ¢, ¢&,7,9) is called a Kenmotsu
manifold.

In this case, it is well known that [5]

R(X,Y)¢ =n(X)Y —n(¥)X ()
S(X,$) = —2nn(X), (8)
where S denotes the Ricci tensor. From (7), we can easily see that
R(X,$)Y = g(X,Y)§ —n(¥)X 9)
R(X,$)¢ = n(X)¢ — X. (10)

Since S(X,Y) = g(QX,Y), we have

S(@X, oY) = g(QpX, ¢Y),
where @ is the Ricci operator.
Using the properties (2) and (8), we get

S(pX, 9Y) = S(X,Y) + Zn)n(X)n(Y), (11)
by virtue of g(X, @Y) = —g(@X,Y) and Q¢ = Q. Also we have
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(VxmY = g(X,Y) —n(X)n(Y). (12)
A Kenmotsu manifold M is said to be n-Einstein if its Ricci tensor S is of the form
S(X,Y) = ag(X,Y) + bn(X)n(Y), (13)
for any vector fields X and Y, where a and b are functionson M.
The generalized Tanaka-Webster connection [11] V for a contact metric manifold M is defined
by
VY = VyY + (V)Y - & = n(Y)Vxé + n(X) oY, (14)
for all vector fields X and Y, where V is Levi-Civita connection on M.
By using (6), the generalized Tanaka-Webster connection V for a Kenmotsu manifold is given by
VY = Vx¥ + g(X,1)§ = (VX + n(X)gY, (15)

for all vector fields X and Y.
3. Curvature Tensor

Let M be a (2n + 1)-dimensional Kenmotsu manifold. The curvature tensor R of M with
respect to the generalized Tanaka-Webster connection V is defined by
R(X,Y)Z = VyVyZ — VyVyZ — Vixy|Z. (16)
Then, in a Kenmotsu manifold, we have
RX,Y)Z=RX,")Z+g(Y,2)X — g(X,2)Y, (17)
where R(X,Y)Z = VxVyZ — VyVxZ — Vxy Z is the curvature tensor of M with respect to

Levi-Civita connection V.

Theorem 3.1 In a Kenmotsu manifold, Riemannian curvature tensor with respect to the

generalized Tanaka-Webster connection ¥ has following properties

RX,Y)Z+R(Y,2)X +R(Z, X)Y =0 (18)
R(X,Y,Z,V)+R(Y,X,Z,V) =0 (19)
R(X,Y,Z,V) +R(X,Y,V,Z) =0 (20)
R(X,Y,Z,V)—R(Z,V,X,Y) =0, (21)

where R(X,Y,Z, V) = g(R(X,Y)Z, V).

The Ricci tensor S and the scalar curvature T of the manifold M with respect to the generalized

Tanaka-Webster connection V are defined by
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SX,Y) =Xk, 9R(e, X)Y,e) +X7; g(R(pe, X)Y, pe;)
+g(R(,X)Y,$) (22)
T=31,S(e,e) +XiS(pe,pe) +S(§,9), (23)
respectively, where {e;, pe;, &}, (i = 1,2,...,n), is an orthonormal ¢-basis of M.

Lemma 3.1 Let M be a (2n+ 1) -dimensional Kenmotsu manifold with the generalized
Tanaka-Webster connection 7. Then, we have

R(X,Y)§ =R(X)Y =R(§,X)E=0 (24)

Sx, &) =0, (25)

forall X,Y,Z € TM.

Moreover, on a (2n+1)-dimensional Kenmotsu manifolod M, we have

S(X,Y) =SX,Y) + 2ng(X,Y) (26)
T=1+4n% + 2n, (27)

where S and t denote the Ricci tensor and scalar curvature of Levi-Civita connection V,

respectively. From (26), it is obvious that S is symmetric.
4. ¢@-Conformally Flat Kenmotsu Manifold With Generalized Tanaka-Webster Connection

Let M be a (2n + 1)-dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The conformal curvature tensor [13] of M is defined by

CXL YW = R(X,Y)V — ;<§(Y, V)X = S(X, V)Y )

2n-1\+g(Y,V)QX — g(X,V)QY
2n(2?n—1) (Y, )X — g(X,V)Y). (¢8)
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By using (17), (26) and (27) in (28), we obtain

CX,Y)V=RX,Y)V+g¥,NX—-gX V)Y (29)

SY,MX +2ng(Y,V)X
1 [ =S, V)Y —2ng(X,V)Y
2n-1 +g(Y,V)QX + 2ng(Y, V)X
—-g(X,V)QY — 2ng(X,V)Y
T+4n?+2n
2n(2n-1)

(g(Y, V)X - g(X' V)Y)

Definition 4.1 A differentiable manifold M satisfying the condition
@*C(pX, pY)pU = 0, (30)
is called ¢-conformally flat.

It can be easily seen that ¢2C(@X, ¢Y)eU = 0 holds if and only if
g(C(pX, oY)pU,9V) =0, (31)
forany X,Y,U,V € TM.
In view of (28), ¢-conformally flatness means that
S(pY, U)g(@X, pV)
—=S(@X, @U)g(eY, V)

1
2n=1| +S(pX, V) g(@Y, pU)
—S(Y,pV)g(@X, pU)

7 (g(tpY,<pU)g(<pX,<pV) )
2n(zn-D\—g(@X, U)g(eY,oV)/)

g(R(@X, Y)pU, V) =

(32)

Using (17), (26) and (27), from (32) we have

JR(@X, pY)pU, V) + g(@Y,pU)g(@X, oV) — g(@X, U)g(¢Y, V)

S(@Y,pU)g(pX, V)
+2ng (@Y, pU)g(@X, pV)
—S(pX,pU)g(@Y, V)

1 | —2ng(@X, pU)g (@Y, V)
2n-1| +S(@X, V) g(@Y, pU)
+2ng (X, pV)g(@Y, 9U)
—S(oY, V) g(@X, pU)
—2ng (@Y, V) g(eX, pU)

_ THan’4an (g(wY. pU)g(pX, V) )
2n(zn-1) \—g(@X, pU)g(@Y,pV)/)
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Choosing {e;, pe;, £} as an orthonormal ¢-basis of M and contraction of (33) with respect to X

and ¥V we obtain

1 ((2n—2)S(eY,U) )
Stov.eU)+ 2ng (oY, 00) =55 (+(8n2 +1—2n)g(eY, pU)
T+4n%42n
~ o (@n =1y, 1)), (34)
for any vector fields Y and U on M. From equations (4) and (11), we get
2
SV = (52) (v, 0) = (525 n(n (W),

which implies that M is an n-Einstein manifold.

Therefore, we have the following.

Theorem 4.1 Let M be a (2n + 1)-dimensional ¢-conformally flat Kenmotsu manifold with

respect to the generalized Tanaka-Webster connection. Then M is an n-Einstein manifold.

5. ¢ -Conharmonically Flat Kenmotsu Manifold With Generalized Tanaka-Webster

Connection

Let M be a (2n + 1)-dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The conharmonic curvature tensor [3] of M is defined by

_ _ 1 (S(Y,MHX -SX, V)Y
KX, Y)V=RX,Y)V —— _ ] 35
) GV =5 <+g(Y, V)QX — g(X,V)QY (%)
By using (17), (26) and (27), we obtain from (35)
KX, Y)V =RX,Y)V + g(¥,VX — g(X,V)Y
SY,MX +2ng(Y,V)X
1 [ =S V)Y = 2ng(X, V)Y 36
2n-1\ +g(Y,V)QX + 2ng(Y,V)X | (36)
—-g(X,V)QY —2ng(X,V)Y
Definition 5.1 A differentiable manifold M satisfying the condition
9K (X, 9Y)pU = 0, 37)

is called ¢-conharmonically flat.
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It can be easily seen that 2K (¢X, Y)eU = 0 holds if and only if

g(K(@X,9Y)pU, V) =0, (38)
forany X,Y,U,V € TM.

If M isa (2n + 1)-dimensional ¢-conharmonically flat Kenmotsu manifold then we have

S(pY, pU)g(9X, V)
1| —S(eX.eU)g (oY, ¢V) (39)
-1\ +S(pX, pV)g(9Y, @U) )
\—5 (Y, V) g (X, pU)

gR(@X, pY)pU, V) =

in view of (35). By using (17), (26) and (27) in (39), we have
IR(@X, oY)U, 9V) + g(oY,pU)g(9X, oV) — g(@X, U)g (@Y, V)

S(@Y,pU)g(pX, V)
+2ng (@Y, U)g(@X, pV)
—S(pX,pU)g(@Y,9V)
__1 | —2ng(eX,oU)g(eY, V) (40)
2n-1| +S(@X, V) g(@Y, pU) |
+2ng (X, pV)g(@Y, 9U)
—S(oY, pV)g(@X, pU)
—2ng (@Y, V) g(eX, U)

Since {e;, pe;, &} is an orthonormal basis of vector fields on M, a suitable contraction of (40) with

respectto X and V gives

(41)

S(p¥,0U) + 2ng(p¥, gu) = - (127~ 2T 20 )

2n-1\+(8n? + 7 — 2n) g (@Y, pU)
for any vector fields Y and U on M.
From equations (4) and (11), we get

SY,U) = (t+4n®)g(Y,U) — (t + 4n? + 2n)n(Y)n),
which implies that M is an n-Einstein manifold.

Hence, we have the following.

Theorem 5.1 Let M bea (2n + 1)-dimensional ¢-conharmonically flat Kenmotsu manifold with

respect to the generalized Tanaka-Webster connection. Then M is an n-Einstein manifold.
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6. ¢ -Concircularly Flat Kenmotsu Manifold With Generalized Tanaka-Webster

Connection

Let M be a (2n + 1)-dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The concircular curvature tensor [13] of M is defined by;

T

Z(X,YV = ROV = 5es (g (V, V)X = g (X, VD). (42)
From (17), (27) and (42), we get
ZX, V)V =RX, V)V + g, NX — gX,V)Y (43)
~ TR (Y, V)X — g VY.

Definition 6.1 A differentiable manifold M satisfying the condition
9*Z(@X, pY)pU = 0, (44)
is called ¢@-concircularly flat.
It is obvious that (44) holds if and only if
9(Z(@X, pY)U,9V) =0, (45)
forany X,Y,U,V € TM.

Ona (2n + 1)-dimensional ¢-concircularly flat Kenmotsu manifold, we obtain

T+4n?+2n (g(qJY. pU)g(pX, pV) )

J(R(@X, pY)pU,@V) = 2n(zn-1) \—g (X, pU)g(pY, V) (46)

by virtue of (42). Using (17) in the last equation above, we have

JR(@X, pY)pU, V) + g(@Y,pU)g(@X, oV) — g(@X, U)g(¢Y, V)

=_T+4n2+zn(g(<pY,<pU)g(<pX,<pV) ) (47)
2n(zn-1) \~g (X, pU)g (@Y, V) /)

Taking into account the orthonormal ¢-basis {e;, pe;, £} of M and contraction of (47) gives

T+4n?%+2n

S(¢Y,oU) + 2ng(¢Y, @U) = = ((2n — g (oY, 9U)), (48)

for any vector fields Y and U on M.
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From (4) and (11), we get

T+2n T+4n?+2n

S, U) = (522) g(v,0) - ( )nn),

which implies that M is an n-Einstein manifold.

2n 2n

Therefore we have the following.

Theorem 6.1 Let M be a (2n + 1)-dimensional ¢-concircularly flat Kenmotsu manifold with

respect to the generalized Tanaka-Webster connection. Then M is an n-Einstein manifold.
7. @-Projectively Flat Kenmotsu Manifold With Generalized Tanaka-Webster Connection

Let M be a (2n+ 1)-dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The projective curvature tensor [13] of M is defined by
P(X,Y)Z = R(X,Y)Z - —(S(Y,Z)X — S(X, Z)Y). (49)
By using (17) and (26), from (49) we obtain

P(X,Y)Z =R(X,Y)Z + g(Y,2)X — g(X,Z)Y (50)

1 (S(Y, D)X + 2ng(Y,Z2)X
2n (—S(X, 2)Y — 2ng(X, Z)Y)'

N 2n
Definition 7.1 A differentiable manifold M satisfying the condition

@*P(X, pY)pU = 0, (51)

is called ¢@-projectively flat.

One can easily see that ¢?P(@X, pY)eU = 0 holds if and only if

g(P(pX,9Y)pU, V) = 0, (52)

forany X,Y,U,V € TM.

In view of (49), ona (2n + 1)-dimensional ¢-projectively flat Kenmotsu manifold, we have

IR(@X, oYU, 9V) =~ (5;(5(’)();; l;)ug);(p();’f ;)V)) (53)
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Then from (53), we have

gR(@X, oY)pU, V) + g(@Y,pU)g(@X, oV) — g(@X, U)g(¢Y, V)
S(eY,pU)g(@X,@V)
1 [ +2ng(@Y, eU)g(@X, ¢V)

~ | —S(pX, e g(pY, V) | 4)

—2ng(eX, U)g (Y, ¢V)
by virtue of (17) and (26).

Choosing {e;, pe;, ¢} as an orthonormal ¢-basis of M and so by suitable contraction of (54) with

respect to X and V' we obtain

1 ((Zn — DS(Y, U) )

2 \+(4n? — 2n)g (oY, pU) (55)

S(@Y,U) + 2ng (@Y, pU) =

for any vector fields Y and U on M.
From equations (4) and (11), we get

S(Y,U) =-2ng(Y,U),
which implies that M is an Einstein manifold.

Hence, we have the following.

Theorem 7.1 Let M be a (2n + 1)-dimensional ¢-projectively flat Kenmotsu manifold with

respect to the generalized Tanaka-Webster connection. Then M is an Einstein manifold.
8. @-W , Flat Kenmotsu Manifold With Generalized Tanaka-Webster Connection

In [7] Pokhariyal and Mishra have introduced new tensor fields, called W, and E-tensor
field, in a Riemannian manifold and study their properties.

The curvature tensor W, is defined by
Wo(X,Y,Z, V) =R(X,Y,Z, V) + ﬁ(g(X, S, V) —g(Y,2)S(X, V),
where S is a Ricci tensor of type (0,2).
Let M be a (2n+ 1) -dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The W,-curvature tensor of M is defined by

W,(X,Y)Z = R(X,Y)Z — i (9(Y,2)QX — g(X,Z)QY). (56)
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By using (17) and (27) in the last equation above we obtain
Wo(X,Y)Z =R(X,V)Z + g(Y,Z)X — g(X,2)Y

1 (g(Y,2)QX + 2ng(Y,Z2)X
~on (—g(X, 7)QY — 2ng (X, Z)Y)'

2n

Definition 8.1 A differentiable manifold M satisfying the condition
P*W, (90X, 9Y)U = 0,
is called ¢@-W, flat.
It can be easily seen that @2W, (X, pY)e@U = 0 holds if and only if
g(W(@X, pY)pU, 9V) = 0,
forany X,Y,U,V € TM.

In view of (56), ¢-W, flatness on a (2n + 1)-dimensional Kenmotsu manifold means that

S(@X, pV)g (@Y, @U)
—S(¢Y,9V)g(9X, V)

= 1
JR(pX, YU, pV) = g(

Then we have

JR(@X, Y)oU, V) + g(@Y,pU)g(@X, oV) — g(@X, pU)g(eY, V)

S(eX, V) g (oY, pU)
1 [ +2ng (X, 9V)g (@Y, U)
| =S(@Y, V) g(pX,oU) |
—2ng(¢Y, V) g(9X, pU)

via (17), (26) and (60).

(57)

(58)

(59)

(60)

(61)

Let {e;, pe;, £} be an orthonormal ¢-basis of M. If we contract (61) with respectto X and V we

get
_ 1 ((T+4nH)g(eY, @U)
for any vector fields Y and U on M.
From equations (4) and (11), then we get
T T+4n%+2n
S, U) = (2n+1) g¥,U) - ( 2n+1

which implies that M is an n-Einstein manifold.

Therefore, we have the following.

)n@m),

(62)

Theorem 8.1 Let M be a (2n + 1)-dimensional ¢-W , flat Kenmotsu manifold with respect to

the generalized Tanaka-Webster connection. Then M is an n-Einstein manifold.

90



9. ¢ -Pseudo Projectively Flat Kenmotsu Manifold with Generalized Tanaka-Webster

Connection

Prasad [8] defined and studied a tensor field P on a Riemannian manifold of dimension n,

which includes projective curvature tensor P. This tensor field P is known as pseudo-projective

curvature tensor.

In this section, we study pseudo-projective curvature tensor in a Kenmotsu manifold with respect

to the generalized Tanaka-Webster connection V and we denote this curvature tensor with PP.

Let M be a (2n+ 1) -dimensional Kenmotsu manifold with respect to the generalized

Tanaka-Webster connection. The pseudo-projective curvature tensor PP of M with generalized

Tanaka-Webster connection V is defined by

PP(X,Y)V =aR(X,Y)V + b(S(Y,NX — S(X,V)Y)

= (G=+b) G X - gx, VIV,

T en+1) \2n

where a and b are constants such that a, b # 0.
If =1 and b = —— then (63) takes the form
2n+2

PP(X,Y)V = R(X,Y)V + —(S(Y,V)X — S(X,V)Y)

T
(2n+2)n

By using (17), (26) and (27) in (64), we get

PP(X,Y)V=RX, V)V +g(Y,V)X —g(X,V)Y
1 (S(Y, V)X + 2ng(Y, )X
(—S(X, Y — 2ng(X, V)Y)

T+4n?%+2n
(2n+2)n

2n+2

g, V)X —gX,v)y).

Definition 9.1 A differentiable manifold M satisfying the condition
@*PP(pX, Y)pU = 0,

is called ¢@-pseudo projectively flat.
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It can be easily seen that @?PP (X, pY)eU = 0 holds if and only if
g(PP(pX, pY)U,9V) = 0, (67)
forany X,Y,U,V € TM.

One can easily see that on a ¢-pseudo projectively flat Kenmotsu manifold,

sdanmmson=z(Gr o)

2n+2
7 (g(<pY,<pU)g(<pX,<pV)) (68)
@n+2n \—g (X, pU) g(@Y,pV))’

holds, in view of (63). Using equations (17), (26) and (27) in (68), we have

JR(@X, oY)pU, V) + g(@Y,pU)g(@X, oV) — g(@X, pU)g(¢Y, V)
S(pX, pU)g (@Y, 9V)
__1 [ +2ng(eX,@U)g(eY,¢V) (69)
n+2| =SV, pU)g(@X, V)
=2ng (@Y, pU)g(pX, V)
an2+42
o @Y, 00X, 0V) = g(9X, 9U) g (0¥, 9V).

(2n+2)n

Choosing {e;, pe;, £} as an orthonormal basis of vector fields in M and contracting (69), we

obtain

L (@=zsron)
2n+2 \—(4n? — 2n)g (@Y, pU)

T+4n%42n
(2n+2)n

S(@Y,@U) + 2ng(@Y,pU) = (70)

+ (2n - Dg(eY, ol)),

for any vector fields Y and U on M.
From equations (4) and (11), we get

t(2n—-1)+2n(4n?-1)

)9(r,v) — (=D (),

which implies that M is an n-Einstein manifold.

T(2n—-1)-2n(n+1)
4an?+n

s,y = (

Therefore, we have the following.

Theorem 9.1 Let M be a (2n + 1)-dimensional ¢-pseudo projectively flat Kenmotsu manifold

with respect to the generalized Tanaka-Webster connection. Then M is an n-Einstein manifold.

92



Acknowledgement. This paper was supported by Adiyaman University, under Scientific Research
Project No. FEFBAP/2012-005. The authors thank to the referees for useful suggestions.

References

[1] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509,
Berlin-Heidelberg-New York, 1976.

[2] U. C. De, G. Pathak, Indian J. Pure Applied Math., 2004, 35, 159-165.

[3] Y. Ishii, Tensor, 1957, 7 (2), 73-80.

[4] J. B. Jun, U. C. De, G. Pathak, J. Korean Math. Soc., 2005, 42, 435-445.

[5] K. Kenmotsu, Tohoku Math. J., 1972, 24, 93-103.

[6] C. Ozgiir, U. C. De, Mathematica Pannonica, 2006, 17 (2), 221-228.

[7] G. P. Pokhariyal, R. S. Mishra, Yokohama Math. J., 1970, 18, 105-108.

[8] B. Prasad, Bull. Cal. Math. Soc., 2002, 94 (3), 163-166.

[9] N. Tanaka, Japan J. Math., 1976, 2, 131-190.

[10] S. Tanno, Tohoku Math. J., 1969, 21, 21-38.

[11] S. Tanno, Trans. Amer. Math. Soc., 1989, 314 (1), 349-379.

[12] S. M. Webster, J. Diff. Geo., 1979, 13, 25-41.

[13] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics-Vol. 3, World

Scientific, Singapore, 1984,
[14] A. Yildiz, U. C. De, Differential Geometry- Dynamical System, 2010, 12, 289-298.
[15] A. Yildiz, U. C. De, B. E. Acet, SUT Journal of Math, 2009, 45 (2), 89-101.

93



