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Abstarct. The projection method allows solving sparse linear systems. Solving the sparse linear systems is a common 

problem which arises from many complex applications. The problems to be solved often are of very large size. Combination 

of the preconditioners with the projection methods continues to play an important role in solving the sparse linear system. 

In this paper, we propose a new technique to solve a linear system. This approach is called incomplete LU factorization on 

Full Orthogonalization method (ILUFOM). Here we present and examine a number of techniques for solving sparse linear 

systems using incomplete LU factorization. Particularly GMRES and FOM method with some preconditions are considered. 

The efficiency of the algorithm is demonstrated using an example. According to our experiments, ILUFOM improves the 

convergence of FOM.  

Keywords: Preconditioning, Projection method, LU Factorization, Full Orthogonalization Method 

Projeksiyon Yöntemi Üzerine Eksik LU Faktörizasyonu 

Özet. Projeksiyon yöntemi seyrek doğrusal sistemleri çözümüne izin verir. Seyrek doğrusal sistemlerinin çözümü, çok 

karmaşık uygulamalarda ortaya çıkan yaygın bir problemdir. Çözülen problemler sıklıkla çok büyük boyutlardadır. Projeksiyon 

yöntemleri ile ön şartlandırıcı kombinasyonu seyrek lineer sistem çözümünde önemli bir rol oynamaya devam etmektedir. Bu 

yazıda, doğrusal bir sistemi çözmek için yeni bir teknik öneriyoruz. Bu yaklaşıma, Tam Ortogonalleştirme metodu (ILUFOM) 

üzerine eksik LU çarpanlara ayırma denir. Burada mevcut ve eksik LU çarpanlara kullanarak seyrek doğrusal sistemleri çözmek 

için bir takım teknikler sunduk ve inceledik. Özellikle bazı önkoşullarla GMRES ve FORM yöntemleri ele alınmıştır. 

Algoritmanın etkinliği bir örnekle gösterilmiştir. Deneylere göre, ILUFOM, FOM yakınsamasını iyileştirmektedir. 

Anahtar Kelimeler: Ön koşullandırma, projeksiyon metodu, LU çarpanlara ayırma, Tam Ortogonalleştirme metodu 

 

1. INTRODUCTION 

Solving the linear system Ax=b is one of the most important problems in linear algebra and has 

important applications in automatic control theory, signal processing and telecommunications. There 

are two types of methods for solving linear systems:  

1. Direct methods  

2. Iterative methods  

The direct methods like Gaussian elimination and the method based on the QR factorization consist 

of a finite number of steps that all must be performed for any given instance before the solution is 

obtained. On the other hand, iterative methods are based on computing a sequence of approximations to 

the solution x by choosing initial solution x and computation stops whenever a certain desired accuracy 

is obtained or after certain number of iterations [7] and [8]. The iterative methods are used primarily for 

large and sparse systems. These methods include the following: the Jacobi method, the Gauss-Seidel 

method, the successive over relaxation method, the conjugate gradient method with and without 

preconditioner, the GMRES method and the FOM method [12,13,15]. 

The basic idea behind an iterative method is first to write the system Ax=b in an equivalent form: 
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then, starting with an initial approximation x(1) of the solution vector x, generate a sequence of 

approximation    iteratively defined by 

 

With a hope that under certain mild conditions, the sequence converges to the solution as 

. 

To solve the linear system  by an iterative method we need to know: 

1. How to convert the system  in the form of   and 

2. Which choice of x makes iteration converge faster [7]. 

In this paper, the iterative FOM method is described and for faster convergence some preconditions 

are applied for this method and the results of FOM method compare with GMRES method. Section 2 

reviews some fundamental concepts of the FOM method and GMRES method with basic idea of ITALU 

and MERLU preconditions and their algorithms. In sections 3 we use preconditioners for these methods. 

The results of methods with preconditioners for some matrix and comparison of the results are in section 

4 and section 5 is conclusion. 

2. BASIC DEFINITIONS 

2.1 Notations 

We will often need to extract lower and upper triangular parts of matrices. Given an  matrix X, 

we denote  the strict lower triangular part of X, and  the upper triangular part of X (which includes 

the diagonal of X).  is the lower triangular part of X and replacing its diagonal entries by ones. The 

inner product of two  matrices is defined as: 

 
 

 denotes the Euclidean norm of vector v. The Frobenius norm  is the 2-norm associated 

with this inner product, i.e. 

 

 
 

Condition number of matrix A is defined as: 

 

 
 

Matrix A is a well-condition matrix if Cond(A)  1 [15]. 

 

 

2.2. Approximate LU Factorization 

 

For approximate factorization in form of: 

 

such that matrix is error matrix of the approximate factorization, our goal is to minimize matrix , 

i.e. finding sparse matrices and such that are a better pair of factors than . By replacing 

 and  the new error for the new factors is: 
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We would like new error be equal to zero. By replacing the matrix by , we have: 

 

 
 

By neglecting the quadratic term , we have to solve the nonlinear system 8 in form of: 

 

 
 

For solving system 9, we should perform two phases 

1-We will consider a few approaches in the spirit of approximate inverse-type techniques which try to 

and sparse triangular factors , that approximately minimize the Frobenius norm of the left-hand 

side of 9. 2-We exploit an alternating procedure at the matrix level which fixes  

(i.e. we set ) and solves for , and then fixes the resulting  and solves for  and repeat 

the process until converges to zero [4] and [14]. 

 

2.3. Some Iterative Methods for solving linear systems 

2.3.1. Generalized Minimum Residual Method 

The nth Krylov subspace for linear system   and normalized  is 

 

 
 

GMRES approximates the exact solution of  by the vector  that maximizes the 

Euclidean norm of the residual  

The vectors  might be almost linearly dependent, so instead of this basis, the 

Arnoldi iteration is used to find orthonormal vectors which form a basis for  Hence, the 

vector  can be written as  with where is the m-by-n matrix formed by 

The Arnodli process also produces an m+1-by-n upper Hessenberg matrix  with 

 

Because columns of  are orthogonal, we have 

 

Where   is the first vector in the standard basis of  and is the first trial 

vector (usually zero). Hence,  can be found by minimizing the Euclidean norm of the residual [12], 

[10] and [15]. Algorithm 2.1 is the GMRES method algorithm. 
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2.3.2.  Full Orthogonalization Method 

Given an initial vector to the original linear system   we now consider an orthogonal projection 

method, which takes , with  

 

 

in which This method seeks an approximate solution  from the affine subspace 

 of dimension m by imposing the Galerkin condition 

 

If   in Arnoldi's method and we set , then 

 

and 

 

As a result, the approximate solution using the above m-dimensional subspaces is given by 

 

where 

 

A method based on this approach is called the Full Orthogonalization Method (FOM) [12] and [15]. 

Algorithm 2.2 is the FOM method algorithm. 
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2.4. Preconditioning 

Preconditioning is a procedure of a transforming the problem conditions into a form that is more suitable 

for numerical solution and solving the problem mathematically. Preconditioning is typically related to 

reducing a condition number of the problem. Preconditioners are also useful in iterative methods to solve 

a linear system  for  since the rate of convergence for most iterative linear solvers increases 

as the lower condition number of a matrix. Preconditioned iterative solvers are typically used for large 

and especially sparse matrices. 

2.4.1. Approximate Inverses Techniques 

Our goal is to find sparse matrix M such that minimize  

 

Let P be a preconditioner of A, we can obtain a matrix M such that AM approximates  by 

trying to approximately minimize  

 

Matrix M can be computed approximately by solving the linear systems  where  is the jth 

column of P. Becuase is sparse, so we can fnd ith column of M such that it is sparse. One method for 

solving linear systems alternatively, is to update the whole matrix in each iteration. For 

example, we can obtain  by 

 

 
where matrix S is a search direction matrix and the scalar  is selected to minimize the objective function 

associated with  We can change the problem in the form: 

 
where F(M) is a quadratic function on the space of matrices. The simplest choice of matrix S is 

the residual matrix  [11], [6] and [5]. 
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2.4.2. Alternating L-U descent methods (MERLU) 

 

In equation 8, if we choose updates while L is kept frozen, then sparse matrix  

is obtained that minimizes 

 

 
 

Where is the current factorization error. 

The following section will be exploited that the optimum  is  We have 

 

 
 

The gradient matrix of  at is This means when  is a small 

multiple of   then  will decrease  Now a steepest descent method can be devised but 

is not necessarily upper triangular, hence  will not be upper triangular as desired. We 

use operation for  and define G as 

 

 

which is the upper triangular part of  

For choosing the best in 15, we should minimize the quadratic form: 

 

 
 

yielding 

 

 
 

The L part can be obtained by repeating the above argument. If we replace the objective function 

17 by 

 

 
 

the gradient array becomes  We obtained a correction strict lower triangular  to L and

 so we have 
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The Algorithm 2.3 shows the steps of this method. 

 

 
 

2.4.3. Alternating Sparse-Sparse Iteration (Italu) 

 

In Equation 8, we set . If  U is nonsingular we have 

 

 
 

We can obtain the correction to L by solving system  but the updated matrix 

is not necessarily unit lower triangular therefore we use operation  for  or the 

operation 

 for  We repeat this procedure by freezing  U and updating  L and vice versa alternatively. 

This iteration is summarized in the following two equations: 

 

 
and 

 

 
 

The Algorithm 2.4 shows the steps of this method. 
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3.  USING PRECONDITIONS WITH FOM METHOD 

 

For using methods we first compute matrix M by using preconditioner. In preconditioner ITALU(1) we 

run ITALU algorithm two times and the output of first running time is used for and  in next 

iteration. The preconditioner MERLU(1) also have the same definition [2] and [1]. 

 

3.1. Left-Preconditioned FOM 

 

The left preconditioned FOM algorithm defines as the FOM algorithm applied to the system 

 

 
 

The straightforward application of FOM to the above linear system yields the following 

preconditioned version of FOM. The Algorithm 3.1 is FOM method with left preconditioned algorithm. 
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The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov subspace 

 

 
All residual vectors and their norms that are computed by the algorithm correspond to the 

preconditioned residuals, namely   instead or the original (unpreconditioned) 

residuals   

 

We compare the results of this algorithm with GMRES method with Left Preconditioning results. 

For more detail [4]. 

 

4. RESULTS 

For each matrix described in table.1 we run Algorithms FOM with left preconditioner and GMRES with 

left preconditioner for preconditioner MERELU (1) and table.2 shows performance of this 

preconditioner and figure.1 shows coverage rate of FOM and GMRES method with MERELU(1) 

pereconditioner. 

 

Relative tolerance is set to droptol = 0.2 and Matlab's estimated condition number yields 

. 

 

The results show the FOM method with left preconditioner MERELU(1) converges faster than 

GMRES method with left preconditioner MERELU(1). 

 

In next execution we run FOM and GMRES methods with left preconditioner ITALU(1) for each 

matrix described in table.3 and table.4 shows performance of this preconditioner and figure.2 shows 

coverage rate of FOM and GMRES method with ITALU(1) pereconditioner. 
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Figure 1. Converge rate of MERELU(1) preconditioner 

 

 

 
 

Figure 2. Converge rate of ITALU(1) preconditioner. 
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Table 1. Properties Matrix. 

 
 

 

Table 2. Performance of MERELU(1) preconditioner for FOM and GMRES methods. 

 
 

 

Table 3. Properties Matrix. 

 
 

 
Table 4. Performance of ITALU(1) preconditioner for FOM and GMRES methods. 

 

The results show the FOM method with left preconditioner ITALU(1) converge equal or faster than 

GMRES method with left preconditioner ITALU(1). 

 

5. CONCLUSION 

 

In this paper, we reviewed iterative GMRES and FOM methods for solving linear system Ax=b and 

prescribe ITALU and MERELU preconditioners for decreasing condition number of system. The results 

showed that the FOM method with left preconditioner MERELU(1) converges faster than GMRES 

method with left preconditioner MERELU(1) and FOM method with left precon-ditioner ITALU(1) 

converges equally or faster than GMRES method with left preconditioner ITALU(1). 
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