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Abstarct. The projection method allows solving sparse linear systems. Solving the sparse linear systems is a common
problem which arises from many complex applications. The problems to be solved often are of very large size. Combination
of the preconditioners with the projection methods continues to play an important role in solving the sparse linear system.
In this paper, we propose a new technique to solve a linear system. This approach is called incomplete LU factorization on
Full Orthogonalization method (ILUFOM). Here we present and examine a number of techniques for solving sparse linear
systems using incomplete LU factorization. Particularly GMRES and FOM method with some preconditions are considered.
The efficiency of the algorithm is demonstrated using an example. According to our experiments, ILUFOM improves the
convergence of FOM.
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Projeksiyon Yontemi Uzerine Eksik LU Faktorizasyonu

Ozet. Projeksiyon yontemi seyrek dogrusal sistemleri ¢oziimiine izin verir. Seyrek dogrusal sistemlerinin ¢oziimii, ok
karmasik uygulamalarda ortaya ¢ikan yaygin bir problemdir. Coziilen problemler siklikla ¢ok biiyiik boyutlardadir. Projeksiyon
yontemleri ile 6n sartlandirict kombinasyonu seyrek lineer sistem ¢oziimiinde 6nemli bir rol oynamaya devam etmektedir. Bu
yazida, dogrusal bir sistemi ¢ozmek igin yeni bir teknik 6neriyoruz. Bu yaklagima, Tam Ortogonallestirme metodu (ILUFOM)
tizerine eksik LU ¢arpanlara ayirma denir. Burada mevcut ve eksik LU garpanlara kullanarak seyrek dogrusal sistemleri ¢6zmek
icin bir takim teknikler sunduk ve inceledik. Ozellikle bazi énkosullarla GMRES ve FORM yéntemleri ele alinmstir.
Algoritmanin etkinligi bir 6rnekle gosterilmistir. Deneylere gore, ILUFOM, FOM yakinsamasini iyilestirmektedir.

Anahtar Kelimeler: On kosullandirma, projeksiyon metodu, LU ¢arpanlara ayirma, Tam Ortogonallestirme metodu

1. INTRODUCTION

Solving the linear system Ax=b is one of the most important problems in linear algebra and has
important applications in automatic control theory, signal processing and telecommunications. There
are two types of methods for solving linear systems:

1. Direct methods

2. lterative methods

The direct methods like Gaussian elimination and the method based on the QR factorization consist

of a finite number of steps that all must be performed for any given instance before the solution is
obtained. On the other hand, iterative methods are based on computing a sequence of approximations to
the solution x by choosing initial solution x and computation stops whenever a certain desired accuracy
is obtained or after certain number of iterations [7] and [8]. The iterative methods are used primarily for
large and sparse systems. These methods include the following: the Jacobi method, the Gauss-Seidel
method, the successive over relaxation method, the conjugate gradient method with and without
preconditioner, the GMRES method and the FOM method [12,13,15].

The basic idea behind an iterative method is first to write the system Ax=b in an equivalent form:

r=Br+r (1)
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then, starting with an initial approximation x® of the solution vector X, generate a sequence of

AE)
approximation {‘:’ } iteratively defined by
g = Ba®) tr £=1,2,:.- (2)
(k) .
With a hope that under certain mild conditions, the sequence ‘l[.'*I '} converges to the solution as
kE— oo,
To solve the linear system Ax = b by an iterative method we need to know:

1. How to convert the system Az = & in the form of * = Bx +r and
2. Which choice of x makes iteration converge faster [7].

In this paper, the iterative FOM method is described and for faster convergence some preconditions
are applied for this method and the results of FOM method compare with GMRES method. Section 2
reviews some fundamental concepts of the FOM method and GMRES method with basic idea of ITALU
and MERLU preconditions and their algorithms. In sections 3 we use preconditioners for these methods.
The results of methods with preconditioners for some matrix and comparison of the results are in section
4 and section 5 is conclusion.

2. BASIC DEFINITIONS

2.1 Notations
We will often need to extract lower and upper triangular parts of matrices. Given an N = N matrix X,
we denote 7" the strict lower triangular part of X, and ©'T" the upper triangular part of X (which includes

the diagonal of X). 77 s the lower triangular part of X and replacing its diagonal entries by ones. The
inner product of two ' :« N matrices is defined as:
(X,Y) =Tr(YTX) (3)

|| denotes the Euclidean norm of vector v. The Frobenius norm |' |"' is the 2-norm associated
with this inner product, i.e.
I X = [Tr{ XtX ljl-’"—’ (4)
Condition number of matrix A is defined as:

Cond(A) = || All|lA~Y| (5)

Matrix A is a well-condition matrix if Cond(A)~ 1 [15].

2.2. Approximate LU Factorization
For approximate factorization in form of:
A=LU+R (6)
such that matrix B is error matrix of the approximate factorization, our goal is to minimize matrix R,

i.e. finding sparse matrices L and U suchthat LI are a better pair of factors than .17 . By replacing
L=L+XpandU = L+ Xt the new error for the new factors is:
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A— AL XN+ Xg) = (A —IY) — XU — LXp — Xi Xy (7)

We would like new error be equal to zero. By replacing the matrix (A-LU)by R | we have:

-\-I_L'T + LXy + .\-1_.\';' —R=0. (8)
By neglecting the quadratic term XXy , We have to solve the nonlinear system 8 in form of:
XU+ LXy—R=0. (9)

For solving system 9, we should perform two phases

1-We will consider a few approach_es in the spirit of approximate inverse-type techniques which try to

and sparse triangular factors XL, Xv that approximately minimize the Frobenius norm of the left-hand
side of 9. 2-We exploit an alternating procedure at the matrix level which fixes [/

(i.e. we set Xv = {1y and solves for XL, and then fixes the resulting L and solves for Xv and repeat
the process until R converges to zero [4] and [14].
2.3.Some lterative Methods for solving linear systems
2.3.1. Generalized Minimum Residual Method

The nth Krylov subspace for linear system 4 =& and normalized ? (i-e- [ = 1) js

km{A.b) = Span {b. Ab A%b,.-. . A™ lb} (10)

GMRES approximates the exact solution of Az = b by the vector Tnfn that maximizes the
Euclidean norm of the residual "» = “1%n — b.

1 . . . . )
The vectors - Ab. -+ A" D might be almost linearly dependent, so instead of this basis, the
Arnoldi iteration is used to find orthonormal vectors 91" * 9 which form a basis for = Hence, the

vector Zn€%n can be written as T» = @n¥n with Yn€l" where Un is the m-by-n matrix formed by

91:° " +4nThe Arnodli process also produces an m+1-by-n upper Hessenberg matrix Him with

-’4(—2n = f:-2|r+]h|'ru
Because columns of = are orthogonal, we have
|Azy — b|| = ||Hm — Bei|

n+1 [ * L . .
Where €1 is the first vector in the standard basis of -+ 7 = [[b— A0l anq 0 js the first trial

vector (usually zero). Hence, “# can be found by minimizing the Euclidean norm of the residual [12],
[10] and [15]. Algorithm 2.1 is the GMRES method algorithm.
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Algorithm 2.1: Generalized Minimum Residual Method
Input: Matrix A, vectors b and rg , dimension m

1. Compute ro = b — .4}1‘” , B=||rollz, v1 =ro/B
2. For j=1.2,....m Do

3. Compute w; = Av;

4. For i=1...j

5. hij = (w;,v)

_h

6. ““j = U'J U‘l'{
7. End Do
8. hjs1; = |lwj|l2. if hj41; =0 Set m = j and goto 11

9. vj11 =wj/hji1;
10. End Do

11. Define the (m 4 1) x m Hessenberg matrix H,, = {his hcicmir1<iem

12. Compute y,, the minimize of ||fe; — H_yl|» and z,,, = x5 + Vi

2.3.2. Full Orthogonalization Method

Given an initial vector *' to the original linear system Ax=b we now consider an orthogonal projection
method, which takes & = £m (4. 70) with

km (A, rp) = Span {m. Arg, A2rg. -~ A™ [l‘q)} (11)

in which o = b — Axo.This method seeks an approximate solution *m from the affine subspace
To + Fm of dimension m by imposing the Galerkin condition

b— Az, 1K,,. (12)
i T I_:ﬂul_ﬂ in Arnoldi's method and we set 7 = 7o |:r, then
VIAV,, = H, (13)
and
VErg = VI (Bvy) = Be. (14)

As a result, the approximate solution using the above m-dimensional subspaces is given by

T = 20 + "'mym

where

Ym = H—l{;g(,] ).

m

A method based on this approach is called the Full Orthogonalization Method (FOM) [12] and [15].
Algorithm 2.2 is the FOM method algorithm.
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Algorithm 2.2: Full Orthogonalization Method
Input: Matrix A , Vectors b and xp, dimension m

1. Compute ro =b— Azg , 8 = ||rol|2, v1 = ro/B

2. Define m x m matrix H,,, = {IIL_,};.J:L_“J” :Set H,, =0
3. For j=1.2.....m Do

4. Compute w; = Av;

5. Fori=1,--+,3

6. hij = (wj,v;)

7. w; = w; — hv;
8. End Do
9. Compute hji1 5 = ||wj]l, . if hj11; =0 Set m = j and goto 12

10. Compute v,y = w;/hj 1

11. End Do

12. Compute ¥y, = H,,,I( Bey) and 2 = 2o + VinYm

2.4.Preconditioning

Preconditioning is a procedure of a transforming the problem conditions into a form that is more suitable
for numerical solution and solving the problem mathematically. Preconditioning is typically related to
reducing a condition number of the problem. Preconditioners are also useful in iterative methods to solve

a linear system Az = b for  since the rate of convergence for most iterative linear solvers increases
as the lower condition number of a matrix. Preconditioned iterative solvers are typically used for large
and especially sparse matrices.

2.4.1. Approximate Inverses Techniques

Our goal is to find sparse matrix M such that minimize [/ —AM[F.

Let P be a preconditioner of A, we can obtain a matrix M such that AM approximates I' = LI’ by
trying to approximately minimize |7 — AM||r.

Matrix M can be computed approximately by solving the linear systems Am; = pi where P+ is the jth
column of P. Becuase Fiis sparse, so we can fnd ith column of M such that it is sparse. One method for

solving linear systems Am; =¢; alternatively, is to update the whole matrix in each iteration. For
example, we can obtain Mrew by

M, ... =M+ aS (15)
where matrix S is a search direction matrix and the scalar ¢ is selected to minimize the objective function
associated with Mnew We can change the problem in the form:

F(M) = |P—- AM||% (16)
where F(M) is a quadratic function on the space of V' : N'matrices. The simplest choice of matrix S is
the residual matrix 7 = P — AM [11], [6] and [5].
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2.4.2. Alternating L-U descent methods (MERLU)

In equation 8, if we choose Xz. = 0, i.e. I/ updates while L is kept frozen, then sparse matrix -\
is obtained that minimizes

F(Xy) = lA — LU + Xu)||% = IR — LXy|* (17)

Where /2 = A — LU js the current factorization error.
The following section will be exploited that the optimum X js L' R. we have

IR — LXy||} = Tr([R — LXy|T[R — LXy)) = |R|} — 2Tr(RTLXy) + |LXul}.  (18)

The gradient matrix of /' (Xt7) at X = 0js G = —2LT R. This means whenXt is a small
multiple of L"R then X7 will decrease £ (X17) Now a steepest descent method can be devised but

¥ TR . . o . .
G=LR is not necessarily upper triangular, hence X will not be upper triangular as desired. We
use operation 0T for L' R and define G as

G = [L"Rlyr (19)

which is the upper triangular part of L' 12

For choosing the best in 15, we should minimize the quadratic form:

IR — aLG|} =Tr (IR — aLG]" [R — aLG]) = ||R|} — 2aTr(RTLG) + ®||LG|#  (20)

yielding

(R.LG) _ Tr(RTLG)
(LG,LG)  Tr((LG)'LG)

ay =

(21)

The L part can be obtained by repeating the above argument. If we replace the objective function
17 by

14— (L + Xp)Ul% = |R— X U7 (:

1o
X

the gradient array becomes —2RIUT We obtained a correction strict lower triangular X to L and
' T
G = [L" Rlur 5o we have

_ (R.GLU)  Tr(R'GLU)
(GLU,GLU) — Tr((G:UYGrUY

af, (23)
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The Algorithm 2.3 shows the steps of this method.

Algorithm 2.3: MERLU (Minimal Energy Residual descent for LU)
Input: Initial Lower Triangular matrix and Upper Triangular matrix U

1. Select an initial pair LU (with L = L;rp, U = Upr)
2. Until convergence Do

3. Compute R :=A— LU

4. Compute G = [LTR]L,T

Apply mumerical dropping to G

ot

6. Compute a = (R,C)/||C||},Where C = wG

-1

. Compute U :== G + aU

8. Compute R:=A— LU

9. Compute G = [RU" ,]”‘

10. Apply numerical dropping to G

11. Compute a = (R,C)/||C||},where C = GU

12. Compute L:=L+aG

13. EndDo

2.4.3. Alternating Sparse-Sparse Iteration (Italu)

In Equation 8, we set Xo =0 1fUis nonsingular we have

XtU=R— X = RU. (24)

. . . TyT _ pT )
We can obtain the correction to L by solving system USXL =R pyt the updated matrix

L+ XL js not necessarily unit lower triangular therefore we use operation WLt for L+ XL orthe
operation

Lero for X1 we repeat this procedure by freezing U and updating L and vice versa alternatively.
This iteration is summarized in the following two equations:

Uk = Uk + [Lg (A — LUy (25)
and
Lk‘-l»l - Ll\' + [(-4 = Lk["rk+l)(‘r}‘-___ll](_"['

The Algorithm 2.4 shows the steps of this method.
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Algorithm 2.4: ITALU (Iterative Threshold Alternating Lower-Upper Correction)
Input: initial matrix Lower Triangularl, and matrix upper Triangular U,

1. Given: A Uy , Lo(with Up = [Uolyrp 1 Lo = [Lolprp)
2. For k=0.....Do

3. Compute R = A — LUy

4. Compute Xy = [Li ' Ry]ype

. Apply numerical dropping to Xy

(W)

6. U1 = U+ Xu

. If det(Ug,,) == 0 Abort ‘Singular U reached’

=1

8. Compute Ry 0 =A— LUy
9. Compute Xy, = [Ry.q/2Ux : 1], I
10. Apply numerical dropping to X,

11. Ly = Ly + X,

12. EndDo

3. USING PRECONDITIONS WITH FOM METHOD

For using methods we first compute matrix M by using preconditioner. In preconditioner ITALU(1) we
run ITALU algorithm two times and the output of first running time is used for Lo and Uo in next
iteration. The preconditioner MERLU(1) also have the same definition [2] and [1].

3.1. Left-Preconditioned FOM
The left preconditioned FOM algorithm defines as the FOM algorithm applied to the system
M~1Az = M~'b.

The straightforward application of FOM to the above linear system yields the following
preconditioned version of FOM. The Algorithm 3.1 is FOM method with left preconditioned algorithm.
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Algorithm 3.1: FOM Method with Left Preconditioning
Input: Matrix A , Vectors b and zy, ditnension m, precondition M

1. Compute rg = M1 (b— Axp) , 8 = |rolla,v1 = r0/B

2. Define m x m matrix Hy, = {hi;}, ., .. :Set Hp =0

T
3. Forj=1,2.---,m Do
4. Compute w; = M ! Av;

5 Fori=1,2,---.j

6. hij = (:U'_l,' \ ".‘"

7. Wwj; = w5 — ]7,']!','
8. End Do
9. Compute hj ;= | w;| , . if hj; 1 ; =0 Set m = j and goto 12

10. Compute vjs1 = wj/hjy1j

11. End Do

12. Compute ym = If,ﬂl(j‘l) and z;m = 2o + Vinym

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov subspace

Span {I‘Q. M 1Ar, . (M~ 1A ‘)m* l r()} (27)
All residual vectors and their norms that are computed by the algorithm correspond to the

. . v — M- L . . .
preconditioned residuals, namely “m = M= {b=Azxm) instead or the original (unpreconditioned)

residuals P~ A%m

We compare the results of this algorithm with GMRES method with Left Preconditioning results.
For more detail [4].

4. RESULTS

For each matrix described in table.1 we run Algorithms FOM with left preconditioner and GMRES with
left preconditioner for preconditioner MERELU (1) and table.2 shows performance of this
preconditioner and figure.1 shows coverage rate of FOM and GMRES method with MERELU(1)
pereconditioner.

Relative tolerance is set to droptol = 0.2 and Matlab's estimated condition number yields
cond(A) = 4.03E + 05

The results show the FOM method with left preconditioner MERELU(1) converges faster than
GMRES method with left preconditioner MERELU(1).

In next execution we run FOM and GMRES methods with left preconditioner ITALU(1) for each
matrix described in table.3 and table.4 shows performance of this preconditioner and figure.2 shows

coverage rate of FOM and GMRES method with ITALU(1) pereconditioner.
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Figure 2. Converge rate of ITALU(1) preconditioner.
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Table 1. Properties Matrix.

No| Name |n;|ny|n,| ap | ay | a, | shift size Condest

1 | Fd3dA-a [ 15 [ 10 [ 10| 0.1 | 0.1 | 0.1 0.5 | 1500 x 1500 | 2.2776e+003
2 | Fd3dA-b | 15[ 10 [ 10| -0.1 | 0.1 | 0.2 | 0.3 | 1500 x 1500 | 1.4804e+003
3 | Fd3dA-d | 10 [ 10 [ 10] 0.3 | 0.2 [-0.2 | 0.5 | 1000 x 1000 | 2.4336e+003
4 | Fd3dA-e [ 10 | 10 [ 10| 0.1 | 0.4 ] 0.1 0.3 | 1000 x 1000 | 1.1814e+003

Table 2. Performance of MERELU(1) preconditioner for FOM and GMRES methods.

MERELU(1)-FOM | MERELU(1)-GMRES

No | Name [iter| residual iter | residual

1 Fd3dA-a | 36 2.259e-007 201 1.737e-006

2 | Fd3dA-b | 24 3.494e-007 42 3.761e-007

3 | Fd3dA-d | 23 1.734e-007 32 3.499e-007

4 Fd3dA-e | 19 2.100e-007 27 2.809e-007

Table 3. Properties Matrix.

No| Name |[n, |n,|n.|ar | ay | a, | shift size Condest
1 Fd3dB-a [ 10 | 15 [ 10 [ 0.1 [ 0.1 [ 0.1 [ 0.5 | 1500 x 1500 | 2.2776e+003
2 Fd3dB-¢ [ 10 [ 10 | 10 | 0.1 | 0.5 ] 0.1 | -0.5 | 1000 x 1000 | 7.2148¢+003
3 |Fd3dB-d|10]|10[10]02(02]02]| 05 1000 x 1000 | 1.8625e-+003
4 Fd3dB-e [ 10 [ 10 | 10 | 0.1 | 0.0 ] 0.0 | 0.3 1000 =< 1000 586.6568

Table 4. Performance of ITALU(1) preconditioner for FOM and GMRES methods.

ITALU(1)-FOM | ITALU(1)-GMRES
No Name iter | residual | iter residual
| Fd3dB-a | 21 1.661e-007 | 62 6.308e-007
2 Fd3dB-c I8 | 3.931e-007 | 29 2.410e-007
3 | Fd3dB-d | 13 | 1.971e-007 | 17 4.349e-007
4 Fd3dB-e 12 | 7.500e-008 | 12 1.536e-007

The results show the FOM method with left preconditioner ITALU(1) converge equal or faster than
GMRES method with left preconditioner ITALU(1).

5. CONCLUSION

In this paper, we reviewed iterative GMRES and FOM methods for solving linear system Ax=b and
prescribe ITALU and MERELU preconditioners for decreasing condition number of system. The results
showed that the FOM method with left preconditioner MERELU(1) converges faster than GMRES
method with left preconditioner MERELU(1) and FOM method with left precon-ditioner ITALU(1)
converges equally or faster than GMRES method with left preconditioner ITALU(1).
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