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Abstract 

Multilevel regression discontinuity designs have been increasingly used in education research to evaluate the 

effectiveness of policy and programs. It is common to ignore a level of nesting in a three-level data structure 

(students nested in classrooms/teachers nested in schools), whether unwittingly during data analysis or due to 

resource constraints during the planning phase. This study investigates the consequences of ignoring 

intermediate or top level in blocked three-level regression discontinuity designs (BIRD3; treatment is at level 1) 

during data analysis and planning. Monte Carlo simulation results indicated that ignoring a level during analysis 

did not affect the accuracy of treatment effect estimates; however, it affected the precision (standard errors, 

power, and Type I error rates). Ignoring the intermediate level did not cause a significant problem. Power rates 

were slightly underestimated, whereas Type I error rates were stable. In contrast, ignoring a top-level resulted in 

overestimated power rates; however, severe inflation in Type I error deemed this strategy ineffective. As for the 

design phase, when the intermediate level was ignored, it is viable to use parameters from a two-level blocked 

regression discontinuity model (BIRD2) to plan a BIRD3 design. However, level 2 parameters from the BIRD2 

model should be substituted for level 3 parameters in the BIRD3 design. When the top level was ignored, using 

parameters from the BIRD2 model to plan a BIRD3 design should be avoided. 

Keywords: blocked regression discontinuity designs, multilevel models, hierarchical linear models, ignoring a 

level of nesting, power analysis 

Introduction 

One fundamental assumption of Ordinary Least Squares (OLS) regression is that observations are conditionally 

independent. This assumption is violated when errors are not independent of each other (presenting 

autocorrelation) due to the nesting of observations within organizational structures (Bickel, 2007; Finch & 

Bolin, 2017; Goldstein, 2011; Hox, 2010; Raudenbush & Bryk, 2002; Snijder & Bosker, 2011). Violation of 

independence presents challenges to hypothesis testing. It is well known that bias in point estimates is ignorable, 

but OLS regression produces overly optimistic standard errors, leading to inflated Type I errors (Finch & Bolin, 

2017; Singer, 1987; Fox, 1997). Multilevel linear modeling (MLM) is a compelling option for remedying the 

violation of independent errors when the nesting structure consists of mutually exclusive groups (such as 

classrooms, teachers, or schools in education systems).  

Additionally, MLM allows inspection of more complex research questions. One can study the influence 

of contextual factors on the outcome of interest (as predictors). One can also study the influence of contextual 

factors on the estimates of predictors (as moderators). The latter can be translated into substantial research 

questions on treatment effect heterogeneity and cross-level interactions. In the past 30 years, MLM has been 

prevalently used in education research to answer substantive research questions owing to rapid advances in its 

methodology, development of publicly available software, and accessible literature (e.g., Bickel, 2007; Finch & 

Bolin, 2017; Goldstein, 2011; Hox, 2010; Raudenbush & Bryk, 2002; Snijder & Bosker, 2011, among many 

others). 
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However, the complex structure of the education system presents challenges to data collection efforts. 

Data collection efforts on all levels of organizations and actors (students, teachers, administrators, schools, and 

states) are partially hindered by a lack of economic resources, missing administrative records, or researchers' 

unwitting ignorance. In one scenario, a researcher could collect data from only students, in the other, from 

students and classrooms/teachers but not schools, yet in another, from students and schools but not 

classrooms/teachers. In other words, one of the levels in the organizational structure (e.g., classroom/teachers or 

schools) could be ignored or omitted. The omission of intermediate level (classrooms/teachers) is typical in 

practice, sometimes due to the absence of administrative records that identify which classroom or teacher the 

child belongs to (Zhu et al., 2011) or due to simplicity or small sample sizes (Van den Noorthgate et al., 2005). 

In education, the most common version of ignoring a level of nesting occurs when classroom-level information 

is ignored. However, variance attributed to the classroom level can exceed that of the school level (Goldstein, 

2011; Muthen, 1991), or the magnitude of this variance can be subject-specific. For instance, the proportion of 

variance in the mathematic achievement attributed to the classroom level is higher than the proportion of 

variance in the reading achievement compared to the school level variance (Nye et al., 2004; Raudenbush & 

Bryk, 2002). Despite the possibility of a sizeable proportion of variance attributed to the intermediate level, 

many empirical studies did not acknowledge classroom level information in the analysis (e.g., Konu et al., 2002; 

Raudenbush & Bryk, 1986). Some recent evaluation studies indicated that regression discontinuity designs 

(RDDs) are not exempt from this practice (see Jenkins et al., 2016; Konstantopoulos & Shen, 2016; Luyten, 

2006; May et al., 2016). The literature consistently demonstrated that ignoring a top or intermediate level has a 

detrimental effect on variance components and standard errors (Moerbeek, 2004; Opdenakker & Van Damme, 

2000; Van den Noortgate et al., 2005; Zhu et al., 2011). From this point forward, we will refer to level 1 as L1, 

level 2 as L2, and level 3 as L3. 

Effects of Ignoring a Level of Nesting on Variance Components  

Using a three-level model (students as L1– classrooms/teachers as L2 – schools as L3), in the case of a balanced 

design†, Moerbeek (2004) found that ignoring L3 did not affect the variance component at L1 but inflated the 

variance component at L2. The inflation in the L2 variance was approximately equal to the ignored amount at 

L3. Similarly, using a four-level model (students as L1 – teachers as L2 – classrooms as L3 – schools as L4), 

Van den Noortgate et al. (2005) concluded that omission of L4 did not affect variance components at L2 and L1. 

However, the ignored variance at L4 was transferred to the variance at L3.  

Ignoring an intermediate level is more complicated than ignoring the top level. Van den Noortgate et al. 

(2005) found that the omission of an intermediate level (L2 or L3 in a four-level model) resulted in inflated 

variance components at the flanking levels. For example, the variance was distributed to L2 and L4 when L3 

was ignored. This finding is in line with Moerbeek (2004) and Opdenakker and Van Damme (2000). Moerbeek 

(2004) noted that inflation in variance components depended on the magnitude of the variance component at the 

ignored level, the level at which the predictor variable was measured, and sample sizes at one or more levels.  

Effects of Ignoring a Level of Nesting on Standard Errors 

The literature has already established that fixed effect estimates are not affected as much when one relies on 

OLS estimation instead of MLM, whereas standard errors are overly optimistic (Finch & Bolin, 2017; Singer, 

1987; Fox, 1997). If one relies on OLS estimation instead of MLM in the face of a multilevel data structure, it 

implies that all levels of nesting are ignored. When the variance component of a given level is affected due to 

ignoring a level of nesting, standard errors of the estimates are also affected (Opdenakker & Van Damme, 

2000).  

In the case of a balanced design, using a three-level model (students as L1– classrooms as L2– schools 

as L3), Moerbek (2004) found that inflation in standard errors depended on the ignored level (L2 versus L3), the 

level at which predictor variable was measured, the magnitude of the proportion of variance attributed to the 

ignored level, and sample sizes at each level. For example, ignoring L2 inflates standard errors for fixed effect 

estimates at L1, resulting in a loss of power but not those at L3 (Moerbek, 2004). However, as Moerbek (2004) 

noted, if the proportion of variance attributed to the ignored level was minor, standard errors of fixed effect 

estimates were not affected to a great extent. This finding was later confirmed by Zhu et al. (2011) using 

empirical data.   

Using a four-level model (students as L1– teachers as L2 - classrooms as L3– schools as level 4), Van 

den Noortgate et al. (2005) found that, in general, the standard error of the intercept and estimates at the 

adjacent levels were affected. When level 4 was ignored, the standard error of the estimate for predictors at L3 

                                                           
†
 A balanced design means having the same number of lower-level units per higher-level unit. For example, a balanced two-

level design would have n number of level 1 units for each level 2 unit. 
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was affected. When L3 was ignored in balanced data, the standard error of the estimate for predictors at L2 

increased. When the data was unbalanced and L3 was ignored, the standard error of the estimates for predictors 

at level 4 decreased.  

Opdenakker and Van Damme (2000) found that regardless of which level is ignored, the standard error 

of the intercept was underestimated. However, when L4 was ignored, the standard error of the estimates at L1 

and L2 was not affected as much. Zhu et al. (2011) extended previous work on ignoring a level of nesting by 

mainly focusing on the design phase of cluster-randomized trials rather than analysis, although results apply to 

both. In particular, the authors considered design parameters from two-level data to design three-level studies. 

Manipulating and analyzing four empirical multi-site datasets (including elementary and secondary school data), 

Zhu et al. (2011) concluded that ignoring the intermediate level had no substantial effects on statistical power or 

standard error of the estimate for predictors at the top level. Additionally, they concluded that using design 

parameters from a two-level model to design a three-level study did not pose a substantial threat to the precision 

of the treatment effect at the top level.  

Evidence from Empirical Studies that Ignore a Level of Nesting in RDD 

From 2000 onward, several studies used RDD with a discontinuity at L1. These studies, one way or another, 

adjusted their estimates for clustering. About a quarter of them used the MLM framework to adjust for 

clustering (e.g., Hustedt et al., 2015; Luyten, 2006; Luyten et al., 2008; May et al., 2016), and about a quarter of 

them used Lee and Card (2008) method (e.g., Balu et al., 2015; Cortes, 2015; Deke et al., 2012; Harrington et 

al., 2016; Reardon et al., 2010). The remaining studies either used bootstrap methods or none (e.g., Jenkins et 

al., 2016; Klerman et al., 2015; Leeds et al., 2017; Ludwig & Miller, 2005; Matsudarie, 2008; Wong et al., 

2008). The four RDDs relying on the individual level cutoff and the MLM framework are summarized below.  

Hustedt et al. (2015) evaluated the effectiveness of the Arkansas Better Chance (ABC) initiative at 

kindergarten on student achievement, relying on the state's strict age-based admission criteria to the program. 

Although they analyzed the data using a single-level RDD, district-level information was included in the model 

as fixed effects. Luyten (2006) used Trends in International Mathematics and Science Study (TIMSS) 1995 

large-scale assessment data to examine the effect of an extra year of schooling on student achievement, relying 

on the cutoff that split students into consecutive grades. Similarly, Luyten et al. (2008) used Progress in 

International Reading Literacy Study (PIRLS) 2000 large-scale assessment data to examine the effect of an extra 

year of schooling on student achievement, relying on the cutoff that split students into 9th and 10th grades. 

Luyten (2006) and Luyten et al. (2008) analyzed the data using a two-level RDD model where the effect of an 

extra year of schooling was assumed to vary across schools randomly. May et al. (2016) evaluated the 

effectiveness of Reading Recovery i3 Scale-Up on students' achievement in first and third grades relying on 

students' pretest scores. They analyzed the data using a two-level RDD model where the program effect was 

assumed to vary across schools randomly. In summary, four RDDs relying on individual level cutoff-based 

assignment and the MLM framework could have been analyzed by acknowledging the classroom level 

information (intermediate level) or district or state-level fixed effects (top-level).  

Problem Statement 

Drawing from four multi-site empirical elementary and secondary school datasets, Zhu et al. (2011) concluded 

that ignoring the intermediate level did not pose a substantial threat to the design and analysis of three-level 

cluster-randomized trials. However, scholars in school effectiveness research portray a different picture 

(Moerbek, 2004; Opdenakker & Van Damme, 2000; van Der Noortgate et al., 2005). Unlike Zhu et al. (2011), 

these scholars usually focused on the analysis phase. From a design perspective, Zhu et al. (2011) showed that 

using design parameters from a two-level model (the intermediate level was ignored) is viable for designing a 

three-level study where the treatment variable is at the top level. Whether these findings can be extended to 

designs with the L1 treatment variable is unclear. In this study, within the context of blocked three-level RDD 

design (BIRD3), we investigate whether it is plausible to use parameters from a misspecified blocked two-level 

RDD design (BIRD2) model (either intermediate or top-level in BIRD3 design is ignored) to plan a future 

BIRD3 design. Specifically, we investigate the following questions: 

1. How do variance components shift when intermediate or top level in a BIRD3 model is ignored?  

2. How is the precision of the treatment effect estimate (an L1 predictor) affected by these 

misspecifications?  

3. Can we use design parameters from a misspecified BIRD2 model (where intermediate or top level in 

BIRD3 design was ignored) to plan a future BIRD3 design?  

Method 

Consider a sample with three levels of nesting structure (e.g., students as L1 – classrooms as L2 – schools as 

L3), with an assignment variable S and a predetermined cutoff S0  at L1 (from which treatment variable T is 
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derived), a covariate X at L1, a covariate W at L2, and a covariate V at L3. Assume intercept and treatment effect 

is random across L2 and L3 units. Also, assume that the data is balanced: n number of L1 units per L2 unit, J 

number of L2 units per L3 unit, and K number of L3 units. Balanced data is not the requirement for the model or 

the estimation procedure; however, the power rate of the average treatment effect approximates formula-based 

power rates in the cosa R package (Bulus & Dong, 2021a; Bulus & Dong, 2021b) and PowerUp! software 

(Dong & Maynard, 2013).  

Next, we describe statistical models (unconditional, treatment-only, and full models) for the correctly 

specified BIRD3 model. We also define standardized variance parameters such as intra-class correlation 

coefficients, R-squared values, and treatment effect heterogeneity. These standardized parameters can be used in 

subsequent precision calculations (statistical power, minimum required sample size, and minimum detectable 

effect size). Furthermore, we also describe standardized standard error formulas for the L1 treatment effect in 

BIRD3 and BIRD2 designs. Standardized standard error formulas require standardized variance parameters as 

input and provide the basis for precision calculations.  

Statistical Models 

Unconditional Model 

The following unconditional model is used to obtain variance parameters   ,   
 , and   

 , as defined below, 

which will be used to calculate various standardized parameters along with parameters from the full model.  

L1:                   

L2:                 

L3:               , 

where             ,            
   and            

  . 

Treatment-only Model 

The following model is used to obtain variance parameters    
  and    

 , as defined below, which will be used to 

calculate various standardized parameters along with parameters from the unconditional and full models.  

L1:                             

L2:                 

                

L3:                

                , 

where             
  , (

    

    
)  ((

 
 
)  (

    
     

       
 

)) and (
    
    

)  ((
 
 
)  (

    
     

       
 

))  

Full Model 

The following model is used to generate data for Monte Carlo simulations. It is also used to obtain variance 

parameters        
 ,     

 , and      
 , as defined below, which are used to calculate various standardized 

parameters along with the parameters from the unconditional and treatment-only model. This model also 

estimates Monte Carlo-based treatment effect, standard error, and power and Type I error rates for a given 

scenario.  

L1:                        (       )                   

L2:                        

                        

           

           

L3:                       
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where                 
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Using parameters from unconditional, treatment only, and full models define 

   
  
 

  
    

    , which is the proportion of variance in the outcome between L2 units; 

   
  
 

  
    

    , which is the proportion of variance in the outcome between L3 units; 

   
   
 

  
  

, which is the treatment effect heterogeneity across L2 units; 

   
   
 

  
  

, which is the treatment effect heterogeneity across L3 units; 

  
           

    , which is the L1 variance explained by L1 variables; 

   
         

     
 , which is the proportion of variance at L2 on the treatment explained by L2 variables; 

   
         

     
 , which is the proportion of variance at L3 on the treatment explained by L3 variables. 

Next, we provide standardized standard error formulas for treatment effect in BIRD3 and BIRD2 design which 

are re-parameterized using standardized variance parameters defined above.  

Standardized Standard Error for the Correctly Specified BIRD3 Model 

For the correctly specified BIRD3 model, standardized standard error of the treatment effect takes the form of 

(Bulus & Dong, 2022) 

  ( ̂   )  √
          

  

 
 

          
  

  
 

              
        

         
 

where RDDE is the regression discontinuity design effect and takes the form of              
   when the 

linear form of the score variable is considered (Bulus, 2022; Bulus & Dong, 2022; Schochet, 2008, 2009).    
  is 

the squared correlation between treatment and score variables. It is defined as    
       √          , 

where     is the covariance between T and S, and    is the standard deviation of S (see Bulus, 2022; Bulus & 

Dong, 2022; Schochet, 2008, 2009).  

Monte Carlo Simulation 

Population Parameters and Scenarios  

We generated                  and derived   from   and    such that    0.5 or 0.2. Coefficients were 

manipulated such that    and    values are close to those commonly encountered in education settings. The two 

scenarios that produce different values of    and    are as follows: Scenario 1 yields         and        , 

and Scenario 2 yields          and         approximately. 

 

Scenario 1 

L1:                      (       )                  

L2:                       

                       

L3:                     
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where            , (
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Scenario 2 

L1:                       (       )                  

L2:                        

                        

L3:                   

                      , 

where            , (
    

    
)  ((

 
 
)  (

    
  

)) and (
    
    

)  ((
 
 
)  (

  
    

)). 

Along with the four scenarios (Scenario 1 or 2, by    0.5 or 0.2) above, we determined treatment 

effect as       0.25 for statistical power simulation and as       0 for Type I error simulation. Additionally, 

we differed sample size    50 or 100, and kept     20 and    5 constant across all the scenarios. Sample 

sizes were chosen to approximate those commonly encountered in education. Although    5 may not be as 

common, it is an ideal minimum number to obtain consistent variance estimates. In total, there were eight 

scenarios for statistical power simulation (P1-P8) and eight scenarios for Type I error simulation (T1-T8).  

Analysis 

We used PROC MIXED in SAS with default restricted maximum likelihood (REML) estimation and 

unstructured (UN) variance-covariance structure. The data were generated for these eight (P1-P8 and T1-T8) 

scenarios using parameters described in the equations (see Monte Carlo Simulation section). As for the correctly 

specified model, each generated data set was analyzed using the "Null Model," "Treatment-only Model," and 

"Full Model." For each scenario, the procedure was replicated 5000 times. Monte Carlo-based standard error 

(    ) was calculated as the standard deviation of the 5000 treatment effect estimates. Monte Carlo-based 

power and Type I error rates were calculated based on the proportion of replications rejecting the null with a p-

value smaller than 0.05. Other estimated parameters were averaged over 5000 replications. The standardized 

parameters are based on averages of 5000 replications. There were 5000 rows for estimates, standard errors, and 

variance parameters, but only their averages were used to obtain standardized variance parameters.  

Power Calculations 

Averages of 5000 raw estimates were transformed into standardized parameters according to definitions in the 

"Null Model," "Treatment-only Model," and "Full Model" described in the earlier section. Then, the 

standardized parameters were used in power.bird3()function in the cosa R library (Bulus & Dong, 2021a, 

2021b). Model parameters, corresponding arguments, and their possible range are defined in Table 1. There are 

four combination of power calculations. One could ignore either intermediate or top level in a BIRD3 design, 

and use L2 parameters obtained from a BIRD2 model for either L2 or L3 parameters in a BIRD3 design.  

 

Table 1. BIRD3 model parameters, corresponding cosa R package arguments, and their range 

Parameter    
    

√  
    

    
    

  
 

  
    

    
    

  
 

  
    

    
    

   
 

  
  

    
   
 

  
  

 

power.bird3() es rho2 rho3 omega2 Omega3 

Range           [0,1] [0,1] [0,1] [0,1] 

Parameter 

  : number of L3 

covariates excluding 

treatment 
  

    
       

 

  
    

    
     
 

   
     

    
     
 

   
  

 : proportion 

of subjects 

below (or 

above) the 

cutoff 

power.bird3() g3 r21 r2t2 r2t3 p 
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Range       [0,1] [0,1] [0,1] (0,1) 

Parameter            

power.bird3() n1 n2 n2   

Range                     

When intermediate level is ignored, and L2 parameters from a BIRD2 model is used for L3 parameters 

in a future BIRD3 design the following code format is used. Note that L2 parameters in a future BIRD3 design 

are constrained to zero; thus, rho2 = 0, omega2 = 0, and r2t2 = 0.  

 

When intermediate level is ignored, and L2 parameters from a BIRD2 model is used for L2 parameters 

in a future BIRD3 design the following code format is used. Note that L3 parameters in a future BIRD3 design 

are constrained to zero; thus, rho3 = 0, omega3 = 0, and r2t3 = 0. 

 

When top level is ignored, and L2 parameters from a BIRD2 model is used for L3 parameters in a 

future BIRD3 design the following code format is used. Note that L2 parameters in a future BIRD3 design are 

constrained to zero; thus, rho2 = 0, omega2 = 0, and r2t2 = 0.  

 

 When top level is ignored, and L2 parameters from a BIRD2 model is used for L2 parameters in a 

future BIRD3 design the following code format is used. Note that L3 parameters in a future BIRD3 design are 

constrained to zero; thus, rho3 = 0, omega3 = 0, and r2t3 = 0 as in the following.  

 

 

Results 

Results presented in Table 2 answer the "How do variance components shift when intermediate or top level in a 

BIRD3 model is ignored?” question. Table 2 presents unconditional variances for correctly specified BIRD3 

and misspecified BIRD2 models. For the correctly specified BIRD3 model, sources of variation in the outcome 

are attributed to L1 (students), L2 (classrooms), and L3 (schools), denoted as   ,    
 , and   

 , respectively. For 

the misspecified BIRD2 model, sources of variation in the outcome are attributed to L1 (students) and L2 

(classrooms or schools), denoted as    and   
 , respectively. In the misspecified BIRD2 models, one could either 

ignore the intermediate level for which   
  refers to the between-school variance or the top level for which   

  

refers to the between-classroom variance. In what follows, we use the term "model" to refer to the analysis 

model and "design" to refer to the planned model. For example, the "BIRD3 model" refers to the analysis 

model, whereas the "BIRD3 design" refers to the planned model.   

Table 2 demonstrates how variance parameters for the unconditional model shift when intermediate or 

top level was ignored. The variance of the ignored level was distributed to the flanking levels when the 

intermediate level was ignored. The variance distributed to the bottom level model was proportionally more 

(~80%) than the variance distributed to the top level (~%20). The variance of the bottom level remained the 

same when the top level was ignored. However, variance of the top level in the new BIRD2 model was 

approximately equal to the sum of L2 and L3 variance in the BIRD3 model. In both cases, the total variance was 

preserved.  

 

power.bird3(es = 0.10, rho2 = 0, rho3 = .30, omega2 = 0, omega3 = .54, 

            g3 = 1, r21 = 0.22, r2t2 = 0, r2t3 = 0.08, 

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
 

power.bird3(es = 0.10, rho3 = 0, rho2 = .30, omega3 = 0, omega2 = .54, 

            g3 = 0, r21 = 0.22, r2t3 = 0, r2t2 = 0.08, 

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 

power.bird3(es = 0.10, rho3 = .61, rho2 = 0, omega3 = .65, omega2 = 0,  

            g3 = 1, r21 = 0.53, r2t3 = 0.04, r2t2 = 0,  

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 

power.bird3(es = 0.10, rho2 = .61, rho3 = 0, omega2 = .65, omega3 = 0,  

            g3 = 0, r21 = 0.53, r2t2 = 0.04, r2t3 = 0,  

            p = 0.50, n1 = 20, n2 = 5, n3 = 50) 
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Table 2. Unconditional variance parameters for BIRD3 and misspecified BIRD2 models 

Analysis 

Model 
Specification Parameter P1 P2 P3 P4 P5 P6 P7 P8 

BIRD3  
Correctly 

specified 

   2.15 9.66 2.15 9.66 1.92 9.49 1.92 9.48 

  
  2.08 1.89 2.07 1.90 1.69 1.64 1.69 1.63 

  
  1.27 1.21 1.27 1.21 1.11 1.08 1.11 1.08 

BIRD2 
Intermediate-level 

is ignored  
   3.83 11.18 3.83 11.19 3.29 10.81 3.29 10.80 

  
  1.66 1.58 1.67 1.58 1.44 1.39 1.43 1.39 

BIRD2 
Top-level is 

ignored  

   2.15 9.66 2.15 9.66 1.92 9.49 1.92 9.48 

  
  3.32 3.08 3.33 3.10 2.78 2.69 2.79 2.70 

The same symbol bears different meanings in different models.   : L1 variance.   
 : L2 variance.   

 : L3 variance. Numbers are 

averages of 5000 replications.   

It is ideal for a researcher to analyze data with three levels of nesting using the BIRD3 model. It is also 

desirable for a researcher to plan a BIRD3 design using parameters reported in existing scholarly work in which 

BIRD3 models were utilized. However, it is also possible for a researcher to analyze data with three levels of 

nesting using the BIRD2 model where either intermediate level (classrooms) or top-level (schools) is ignored. 

Results presented in Tables 3 to 6 answer the "How is the precision of the treatment effect estimate (an L1 

predictor) affected by these misspecifications?” question. When the intermediate level is ignored in a BIRD3 

model, it becomes a BIRD2 model where the previous third level remains the top level. The variance component 

of the ignored level is distributed to the new top and bottom levels. The sample size for the top level remains the 

same ( ); however, the sample size for the bottom level is now the combined sample size    ). Finally, the 

degrees of freedom for the test statistic does not change. When the top-level is ignored; however, the variance 

component at the bottom level does not change, whereas the variance of the ignored level is conveyed to the 

new top level. The sample size for the new top level is now combined (  ), whereas the sample size for the new 

bottom level remains the same ( ). On the contrary, the degrees of freedom for the test statistic changes due to 

the increased top-level sample size. 

When the intermediate level was ignored, MC simulation results indicated that power rates were 

slightly underestimated (see Table 3), whereas Type I error rates did not change substantially (see Table 4). In 

contrast, when the top-level was ignored, power rates were overestimated, and Type I errors were severely 

inflated. As the top-level sample size is one of the most critical determinants of power, the change in the top-

level sample size alone was sufficient to overestimate power (see Table 5). However, Type I error rates were 

severely inflated (see Table 6). Inflated Type I error rates offset the benefit of having an overpowered model.  

The result of the MC simulation for the correctly specified BIRD3 model is provided in Tables 1A and 

2A in Appendix A for comparison purposes. There was a close correspondence between MC-based power rates 

and those calculated via the cosa R package (see Table 1A). Type I error rates match the 5% nominal rate (see 

Table 2A). The tables in the Appendix A provide a baseline for further exploring and comparing power 

calculations in the following sections.  

 

Table 3. Comparison of power rates from BIRD3 and L2-ignored model 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

MC Power from BIRD2 0.38 0.28 0.65 0.49 0.38 0.24 0.62 0.42 

AD in Powers -0.07 -0.03 -0.09 -0.03 -0.07 -0.01 -0.10 -0.03 

RD in Powers -15.09 -8.29 -12.05 -5.16 -16.02 -5.53 -13.57 -7.28 

AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.   

Table 4. Comparison of Type I error rates from BIRD3 and L2-ignored model 

Scenario T1 T2 T3 T4 T5 T6 T7 T8 

MC Type I Error from BIRD3 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

MC Type I Error from BIRD2 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.05 

AD in Type I Errors 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 

RD in Type I Errors -5.90 2.14 8.95 -4.17 2.19 -2.45 -12.04 -8.65 

AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.   

Table 5. Comparison of power rates from BIRD3 and L3-ignored model 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 
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MC Power from BIRD3 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

MC Power from BIRD2 0.62 0.43 0.86 0.66 0.63 0.34 0.84 0.54 

AD in Powers 0.18 0.13 0.12 0.14 0.19 0.08 0.12 0.09 

RD in Powers  40.68 43.44 16.00 26.01 41.50 30.66 16.52 20.36 

AD: Absolute difference. RD: Relative difference (%). Power rates are based on 5000 replications.   

Table 6. Comparison of Type I error rates from BIRD3 and L3-ignored model 

Analysis Model T1 T2 T3 T4 T5 T6 T7 T8 

MC Type I Error from BIRD3 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

MC Type I Error from BIRD2 0.15 0.15 0.16 0.14 0.14 0.10 0.14 0.10 

AD in Type I Errors 0.09 0.09 0.11 0.09 0.09 0.05 0.09 0.05 

RD in Type I Errors 159.03 158.93 208.56 168.94 161.68 79.72 156.20 90.60 

AD: Absolute difference. RD: Relative difference (%). Type I error rates are based on 5000 replications.   

The results presented earlier were related to the analysis phase. A researcher can use parameters from a 

misspecified BIRD2 model (assuming intermediate/top level is not available or ignored) to plan a BIRD3 

design. Results presented in Tables 7 and 8 answer the "Can we use design parameters from a misspecified 

BIRD2 model (either intermediate or top level ignored) to plan a future BIRD3 design?” question. Table 7 

presents the misspecified BIRD2 model where the intermediate level was ignored. Power rates for a future 

BIRD3 design were calculated considering two cases. In the first case, one can use L2 parameters in the BIRD2 

model for L3 parameters in the BIRD3 design (thus, L2 parameters in the BIRD3 design were all constrained to 

zero). In the second case, one can use L2 parameters in the BIRD2 model for L2 parameters in the BIRD3 

design (thus, L3 parameters in the BIRD3 design were all constrained to zero).  

When the intermediate level was ignored, considering case (i), calculated power rates slightly 

underestimated MC-based power rates for the misspecified BIRD2 model (see Table 7). They also 

underestimated MC-based power rates for the correctly specified BIRD3 model (see Table 1A in Appendix). 

However, in case (ii), calculated power rates were somewhat optimistic, substantially exceeding MC-based 

power rates of both BIRD2 and BIRD3 models (see Table 8 and Table 1A in Appendix). On the contrary, when 

the top-level was ignored, calculated power rates in case (i) were severely underestimated compared to both the 

BIRD2 model (see Table 8) and BIRD3 models (see Table 1A in Appendix), and in case (ii) they were unstable 

considering both models. The term "unstable" means we observed no trend regarding the magnitude or direction 

of the difference from MC-based power rates. 

Table 7. Power rates for the misspecified BIRD2 model (L2-ignored) 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

 ̂    0.24 0.25 0.25 0.25 0.25 0.24 0.25 0.25 

  ( ̂   ) 0.15 0.18 0.11 0.13 0.15 0.20 0.11 0.14 

  ( ̂   ) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

   0.30 0.12 0.30 0.12 0.30 0.11 0.30 0.11 

   0.54 0.49 0.53 0.48 0.66 0.57 0.65 0.57 

  
  0.22 0.04 0.22 0.04 0.22 0.03 0.22 0.03 

   
  0.08 0.07 0.07 0.06 0.07 0.07 0.07 0.06 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

    0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

    ( ̂   ) 0.15 0.19 0.11 0.13 0.15 0.21 0.11 0.14 

MC Power 0.38 0.28 0.65 0.49 0.38 0.24 0.62 0.42 

(i) cosa R Package (use L2 parameters in the BIRD2 

model for L3 parameters in the BIRD3 design) 0.33 0.24 0.67 0.44 0.38 0.22 0.59 0.40 

(ii) cosa R Package (use L2 parameters in the 

BIRD2 model for L2 parameters in BIRD3 the 

design) 0.64 0.33 0.95 0.58 0.73 0.29 0.92 0.53 

Results are based on 5000 replications.  ̂   : Treatment effect. SE: Standard Error. ES: Effect size.    : Proportion of variance in 

the outcome between L2 units.   : Treatment effect heterogeneity across L2 units.   
 : Proportion of variance in the outcome 

explained by L1 covariates.    
 : Proportion of variance in the treatment effect explained by L2 covariates. p: Proportion of 

subjects fall below (or above) cutoff score on the assignment variable.    : Correlation between the assignment variable and the 

treatment status. nJ: The average number of L1 units per L2 unit was set to 100. K: Number of L3 units.  
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Table 8. Power rates for the misspecified BIRD2 model (L3-ignored) 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

 ̂    0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

  ( ̂   ) 0.10 0.14 0.07 0.10 0.11 0.17 0.07 0.12 

  ( ̂   ) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

   0.61 0.24 0.61 0.24 0.59 0.22 0.59 0.22 

   0.65 0.52 0.65 0.52 0.77 0.60 0.77 0.59 

  
  0.53 0.07 0.54 0.07 0.48 0.05 0.48 0.05 

   
  0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.04 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

    0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

JK 250 250 500 500 250 250 500 500 

    ( ̂   ) 0.14 0.19 0.10 0.13 0.14 0.20 0.10 0.14 

MC Power 0.62 0.43 0.86 0.66 0.63 0.34 0.84 0.54 

(i) cosa R Package (use L2 parameters in the BIRD2 

model for L3 parameters in the BIRD3 design)  0.20 0.20 0.23 0.19 0.23 0.18 0.20 0.18 

(ii) cosa R Package (use L2 parameters in the 

BIRD2 model for L2 parameters in the BIRD3 

design) 0.61 0.33 0.69 0.33 0.70 0.30 0.62 0.30 

Results are based on 5000 replications.  ̂   : Treatment effect. SE: Standard Error. ES: Effect size.    : Proportion of variance in 

the outcome between L2 units.   : Treatment effect heterogeneity across L2 units.   
 : Proportion of variance in the outcome 

explained by L1 covariates.    
 : Proportion of variance in the treatment effect explained by L2 covariates. p: Proportion of 

subjects fall below (or above) cutoff score on the assignment variable.    : Correlation between the assignment variable and the 

treatment status. n: The average number of L1 units per L2 unit was set to 20. JK: Number of L2 units. AD: Absolute difference. 

RD: Relative difference.  

 

Discussion 

This study investigated the consequences of ignoring either intermediate or top level on variance parameters and 

precision estimates in blocked three-level regression discontinuity (BIRD3) designs. There are various reasons 

to employ a misspecified model in this fashion (BIRD2 instead of BIRD3). The intermediate or top level 

information may be missing, the analysis may be too complex, or the researcher may be unaware of the 

consequences. Furthermore, BIRD2 models are common in practice; consequently, researchers may have no 

choice but to use parameters from BIRD2 models to plan for a BIRD3 design.  

From an analysis perspective, when the intermediate level was ignored in the BIRD3 model, most of 

the variance in the ignored level shifted to the new bottom level, and a small portion of the variance shifted to 

the new top level. These results are in line with Moerbeek (2004), Van den Noortgate et al. (2005), and 

Opdenakker and Van Damme (2000). The shift in variance components causes a slight underestimation of 

power rates. It can be neglected if the variance of the intermediate level is small to moderate. This finding is in 

line with Zhu et al. (2011).  

However, classroom-level variance can exceed school-level variance in practice (Goldstein, 2011; 

Muthen, 1991). One way to decide whether to acknowledge or ignore an intermediate level is to base the 

modeling decision on the model fit (Opdenakker & Van Damme, 2000). Suppose the chi-square test of 

difference indicates a substantial difference between the model that ignores and the model that acknowledges 

the intermediate level. In this case, it is advisable to acknowledge the intermediate level and pursue the analysis 

accordingly. Another way is to look at the L2 intra-class correlation coefficient. One could ignore the 

intermediate level if the intra-class correlation coefficient is small.    

Since Type I errors did not change substantially when the intermediate level was ignored, one could use 

parameters from a misspecified BIRD2 model to plan for a BIRD3 design. The deterioration in the power rates 

will be negligible if L2 parameters in the misspecified BIRD2 model are used for L3 parameters in a future 

BIRD3 design. The top-level sample size could be oversampled by a few units to compensate for this. However, 

when L2 parameters of the misspecified BIRD2 model are used for L2 parameters in a future BIRD3 design, the 

test statistics will be underpowered during analysis. This approach should be avoided.  

Ignoring the top level was more problematic, even with a small L3 variance. When the top level was 

ignored, the variance of the ignored level in the BIRD3 model shifted to the new top level, which is in line with 
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Moerbeek (2004) and Van den Noortgate et al. (2005). The shift in the variance reduces the power rate 

substantially; however, the increase in the sample size at the top level often compensates for this loss of power. 

Regardless, it should be avoided because Type I error rates were severely inflated.  

Limitations  

Results and their implications are limited to the simulated scenarios. Furthermore, ignoring a level may also 

mean omitting relevant variables at that level which introduces omitted variable bias. Functional form 

misspecification is another topic that deserves attention. Bulus (2022) recently found that for balanced RDD 

designs (p = 0.50), power rates for a linear form of the score variable, linear form interacting with the treatment 

variable, or quadratic form of the score variable do not change. However, a quadratic form of the score variable 

interacting with the treatment variable requires a larger sample size to reach the same power rate as the lower 

polynomial forms. He also found that power rates may differ across different functional form specifications for 

unbalanced designs (e.g., p = 0.20). In this study, only the linear form of the score variable was considered. The 

incorrect functional form may complicate misspecification even further.  
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Appendix A 

Table 1A. Power rates for the correctly specified BIRD3 model 

Scenario P1 P2 P3 P4 P5 P6 P7 P8 

 ̂    0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

  ( ̂   ) 0.14 0.18 0.10 0.13 0.14 0.19 0.10 0.14 

  ( ̂   ) 0.10 0.07 0.11 0.07 0.12 0.07 0.11 0.07 

   0.38 0.15 0.38 0.15 0.36 0.13 0.36 0.13 

   0.23 0.09 0.23 0.09 0.23 0.09 0.23 0.09 

   0.77 0.57 0.77 0.56 0.90 0.64 0.91 0.65 

   0.47 0.47 0.46 0.46 0.54 0.52 0.52 0.52 

  
  0.53 0.07 0.54 0.07 0.48 0.05 0.48 0.05 

   
  0.06 0.07 0.06 0.06 0.05 0.07 0.05 0.06 

   
  0.13 0.11 0.11 0.09 0.13 0.14 0.11 0.09 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

    0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

    ( ̂   ) 0.14 0.18 0.10 0.13 0.14 0.20 0.10 0.14 

MC Power 0.44 0.30 0.74 0.52 0.45 0.26 0.72 0.45 

Power from cosa R Package  0.42 0.26 0.73 0.48 0.44 0.25 0.72 0.45 

Note. Results are based on 5000 replications.  ̂   : Treatment effect. SE: Standard Error. ES: Effect size.    : Proportion of 

variance in the outcome between L2 units.   : Proportion of variance in the outcome between L3 units.   : Treatment effect 

heterogeneity across L2 units.   : Treatment effect heterogeneity across L3 units.   
 : Proportion of variance in the outcome 

explained by L1 covariates.    
 : Proportion of variance in the treatment effect explained by L2 covariates.    

 : Proportion of 

variance in the treatment effect explained by L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the 

assignment variable.    : Correlation between the assignment variable and the treatment status. n: Average number of L1 

units per L2 units, which was set to 20. J: Average number of L2 units per L3 units, which was set to 5. K: Number of L3 

units.  

Table 2A. Type I error rates for the correctly specified BIRD3 model 

Scenario T1 T2 T3 T4 T5 T6 T7 T8 

 ̂    0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 

  ( ̂   ) 0.14 0.18 0.10 0.13 0.14 0.19 0.10 0.14 

  ( ̂   ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   0.39 0.15 0.39 0.15 0.36 0.13 0.36 0.13 

   0.23 0.10 0.23 0.10 0.24 0.09 0.24 0.09 

   0.77 0.57 0.77 0.56 0.90 0.64 0.91 0.65 

   0.47 0.47 0.46 0.46 0.54 0.52 0.53 0.52 

  
  0.51 0.06 0.51 0.06 0.46 0.05 0.46 0.05 

   
  0.06 0.07 0.06 0.06 0.05 0.07 0.05 0.06 

   
  0.13 0.10 0.11 0.09 0.13 0.13 0.12 0.10 

p 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 

    0.80 0.80 0.80 0.80 0.70 0.70 0.70 0.70 

K 50 50 100 100 50 50 100 100 

    ( ̂   ) 0.14 0.18 0.10 0.13 0.14 0.20 0.10 0.14 

MC Type I Error 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05 

Type I Error from cosa R Package 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Results are based on 5000 replications.  ̂   : Treatment effect. SE: Standard Error. ES: Effect size.    : Proportion of variance 

in the outcome between L2 units.   : Proportion of variance in the outcome between L3 units.   : Treatment effect 

heterogeneity across L2 units.   : Treatment effect heterogeneity across L3 units.   
 : Proportion of variance in the outcome 

explained by L1 covariates.    
 : Proportion of variance in the treatment effect explained by L2 covariates.    

 : Proportion of 

variance in the treatment effect explained by L3 covariates. p: Proportion of subjects fall below (or above) cutoff score on the 

assignment variable.    : Correlation between the assignment variable and the treatment status. n: Average number of L1 units 

per L2 units, which was set to 20. J: Average number of L2 units per L3 units, which was set to 5. K: Number of L3 units.  

 

 


