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Abstract

The paper is concerned with the existence of a spectral function for the singular g-Sturm-Liouville problem with
transmission conditions. Furthermore, the Parseval identity and the expansion formula in the eigenfunctions is
established.

Keywords: g-Sturm-Liouville operator, Parseval identity, spectral function, eigenfunction expansion.

Yari1 Eksende Transfer Kosullu g-Sturm-Liouville Probleminin Parseval
Ozdesiligi Uzerine

Oz
Makale, transfer kosullu tekil g-Sturm-Liouville problemi igin bir spektral fonksiyonun varligi ile ilgilidir. Ayrica,
ozfonksiyonlarda genisleme formiilii ve Parseval esitligi olusturulmustur.

Anahtar kelimeler: g-Sturm-Liouville operatorii, Parseval esitligi, spectral funksiyon, 6zfonksiyon genislemesi.

1. Introduction

The growth and applications of the g-calculus which is known as the classical calculus without limits
has been of great interest recently. It was seen that it has an important role in different fields of
mathematics such as mathematical physics, calculus of variations, statistical mechanic and the theory of
quantum. There are lots of details about g-calculus for interested researchers Ernst [1], Kac and Cheung
[2]. Furthermore, for a general introduction to the g-calculus very useful studies have been done such as
Allahverdiev and Tuna [3-5], Annaby and Mansour [6, 7] and Jackson [8, 9].

It is well known that eigenfunction expansion problems are important for solving varies
problems and there are lots of technics for obtained (see Allahverdiev and Tuna [3], Levitan and Sagsjan
[10], Titchmarsh [11], Annaby and Mansour [12]). On the other hand, many researchers have focus on
certain generalizations of Sturm-Liouville problems.

Annaby et al. [13] also studied the eigenfunction expansion for a certain g-Sturm-Liouville
problems by using Titchmarch’s technique and defined some concepts for deriving eigenfunction
expansion problems. Mamedov et al. [14] gave sampling theory associated with g-Sturm-Liouville
operator with discontinuity conditions.

Sturm-Liouville problems with transmission conditions have been investigated by many authors
such as Allahverdiev and Tuna [5], Mukhtarov and Tung [15], Mukhtarov and Yakubov [16] et al. gave
asymptotic formulas for eigenvalues and the corresponding eigenfunction for these problems.
Furthermore, inverse nodal problem for polynomial pencil of Sturm-Liouville operator was studied by
Goktas et al. [17], and scattering properties of eigenparameter was given by Bairamov et al. [18]. It was
proved that the existence of a spectral function for singular g-Sturm-Liouville operators on semi
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unbounded interval by Allahverdiev and Tuna [4] and also they obtained Parseval identity on expansion
formula.
In this study, we consider g-Sturm-Liouville expression as follows:

1
(y) = —aDq—quy(Z) +ul@y(@), {€j=[00ulcqg™),neN.

Here we denote /, := [0,¢), J, := (¢,q~™) and so J: = J; U J,. Suppose that the points 0, ¢, g~™ are
g-regular for the differential expression €. w is real, Lebesque measurable functioninJ and u € Lg (Ji.),
k =1, 2. Recall that c is a g-regular point of the function u which belongs to Lg [c — €, ¢ + €] for some

> 0.

The rest of the study is arranged as follows. In section 2, we give some preliminaries for g-
calculus. In section 3, we investigate the existence of a spectral function, Parseval identity has been
obtained and expansion formula with eigenfunctions for a singular g-Sturm-Liouville problems with
transmission conditions.

2. Preliminaries

We begin with some preliminary facts and notations for quantum calculus (see Kac and Cheung [2],
Annaby and Mansour [6]). Our main tools are dealt with g-derivative and g-integral. Let g be any fixed
constant with g € (0,1), A c R, and a € A. Also a g-difference equation is an equation which includes

an equation which includes g-derivatives of a function defined on A. The g-difference operator is
denoted by D, , the Jackson g-derivative of a function ¢: A — C is defined by

Dyg(a) = w, Va € A\ {0}.

We say that the point 0 in A is the Jackson g-derivative at zero if the limit
¢(aq) — ¢(0)
D,p(0) =———, Va€eAd
q#(0) g a

exists and belongs to C. Here, note that the value of the limit is independent of a (see Jackson [8]).
The Jackson g-integral is given by

a [ee)
[0@t=a-07 ¢ o(ea), @en,
0 k=0
where the series is convergent (see Jackson [9]). Additionally, the following result is satisfied

b b a
fﬁo(()dq(=f <p(()dq(—f @ (Ddyg, Va,b €A,
a 0 0

The Jackson g-integration of ¢ on [0, o) is defined by Hahn [19] by the formula

j 9 (Ddy¢=al—-q) Z q* o(aq®), (a€A),
0

k=—0o0

provided that some converges absolutely. A function ¢ is g-regular at the point zero if the limit

lim ¢(ag™) = ¢(0), (a € AU{0})
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exists. Through the study the functions will be acknowledged g-regular at zero. If ¢ and i are g-regular
at zero, then the following equality holds

fo ¢(()Dq§0(()dq(+f0 9(a9)DqY($)dq¢ = p(a)y(a) — ¢ (0)1(0).

The separable Hilbert space is L2(0,0) == {p| ["19({)|?dq{ < o, ¢:[0,00] - C} with the norm
by

1

0 2
loll = (f |go(<>|2dq<) <o,
0

and given with the inner product as

(0, P) = f POV dgl, @ € 13(0,)

0
(see Annaby et al. [13]).
We call the g-Wronskian of ¢, functions on A if
Wale, ¥](a) = ¢(a)Dgp(a) — P(a)Dgp(a) (2.1)
exists.
3. Results

In this section, we begin with the g-Sturm-Liouville equations as follows

() = =2 Dg-1Dgy(@) + u@yQ) =2y, (€] (3.1)

with the boundary conditions
y(0)cosa + D ,-1y(0)sina = 0, (3.2
y(@ ™)cosa + Dg-1y(q ™)sina =0, (a,f €ER,n €N) (3.3

and transmission conditions:
y(c+) —y1y(c =) —y2Dgy(c =) =0 (3.4)
Day(c+) —y3y(c =) —yaDgy(c =) =0, (3.5)

where 1 is a complex eigenparameter and the potential function u € Ly (J) and notice that it guarantees
y(c+) and D,y (c+) in (3.4) - (3.5) make sense; here we assume that

_ "

Y2
r=|. y4| >0 (3.6)

Furthermore, the class H, = L7 (J1) @ L (J,) is introduced as Hilbert space with the inner
product
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-n

_ 1r4 _
§011/’1dq(+}—/f 02 Podg¢
C

Cc

<¢rlp)Hq = fo

where

(1) ;C€e]y (@), ;C€);
gD(O._{@z(f) ;CETL lp(q)._{lpz(f) ;€

It can be easily obtained by direct manipulation from Annaby [20], (pg. 217). A compact resolvent of
the regular self-adjoint boundary value problem (3.1) -(3.3), (3.4) -(3.5) with transmission was proved
by the same method like Dehghani and Akbarfam [21] and Wang et al. [22] and they also showed that
it has a completely discrete spectrum.

Let us define the eigenvalues of this problem with 4,,.-» (m € N) and

P (@) sTE

Pm;q(() = {(P,(i?q—n Q). ce ]2,

Dm;qm(§) = d({, Aym;q—n) the corresponding real valued eigenfunctions which satisfy conditions (3.2)
-(3.5). If ¢ € H, is areal valued function with

_ (01 ;C€]
0O ={00 lcel

then
lellz, = foc(wl(())qu( +%£q_n((p2({))2dq6 3.7)
B Z a;ﬂ:_n { fo 1O, Oy + % f . 92y (c)dqg}
where

-n

@2y n = foc <¢7(;:)q_n(())2 de¢ + %Lq (¢f,f3q-n(€))2 dq¢

is obtained. Here the equality (3.7) is called the Parseval identity (see Allahverdiev and Tuna [5]).
Now we give a monotone increasing step function on R,

(- Z ! s A<0

2
A< A, q-1<0 Tmiqn
oqgn(A) = 1 (3.8)
l > ;A =>0.
0<Ap;q-n<A Tmiqn

Then we can write (3.7) as;

c 1 q " [e3)
j (wl(c))quu; f (02(D) dgC = f 2(N)do -n(A) (3.9)
0 c — 00
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where

c 1 q "
oD = | 0P el 4 [ 029Dt

We will obtain the Parseval identity for (3.1) -(3.5) from (3.9) by letting g™ — oo.
The function ¢ is bounded variation on interval [a, b] if and only if there exists a positive
constant M such that

D106 — Gl < M
k=1

for all finite partitions P = {{,, {1, ..., {n} Of [a, b].
If ¢:[a, b] = Ris of bounded variation on [a, b], then the total variation of ¢ on [a, b] is defined
to be

V2 (9) 1= sup ) 190 = (i)l
k=1

where we take the supremum over all partitions of [a, b] (see Allahverdiev and Tuna [5]).

Lemma 3.1: For an arbitrary M, the formula

V_MM (O'q—n(ﬂ.)) = z 21 = O'q—n(M) — O'q—n(—M) <Y (310)

~M<Apy g-n<M %mq=n
holds for a positive constant Y = Y(M).

Proof: Firstly assume that sina # 0. Since ¢({, 1) is continuous on domain [0, c] X [-M, M] with the
condition ¢(0,1) = sina, there exists a positive number k such that

k 2
1 sina
Ef(ﬁr(i;)q—n(f,/l)dqf > (3.11)
0
Let us define
1
— . <
<pk(€)=={k 0=C<k
0 ;¢ > k.
From (3.9) and (3.11) we get
k 1 +00 1 k 2
f PEQ)del == f p f i n (G D dl | dog-n(D)
0 —00 0
M k 2 M
L 1.,
2 % Prign(§ D deC | dog-n(D) > 5 sin’a do ()
-M 0 -M

= %sinza{aq—n(M) - Gq—n(—M)}'

so it gives us the inequality (3.10).

407



N. Palamut Kosar / BEU Fen Bilimleri Dergisi 10 (2), 403-414, 2021

If sina = 0, we give a formula for the function ¢ ({) by

1
0 ={rz  0sC<k
0 ;(=>k

Thus we obtain (3.10) by applying the Parseval identity.

Let us now mention the following well known Helly’s first and second theorems, for more
details see Kolmogorov and Fomin [23].

Firstly, recall Helly’s first theorem that given a uniformly bounded sequence {i,,} of monotone
increasing real functions on [a, b], there exists a subsequence {l,[)nk} of {1,,} converging to a monotone
increasing real function ¥ on [a, b].

Secondly, given a sequence {1, } of monotone increasing real functions on [a, b], converging to
a monotone increasing real function , then for every continuous function ¢ on [a, b] we have

b b
1 [ oy, = [ eap.
a a
We introduce the Hilbert space H = L%(J;) @ L7 (J3), (J1 = [0,¢), J5 =(c,0) ) with the
inner product

c

_ 17 __
(o, )y = J;) ©1 1/11dq(+;fc P2 P,dq¢

where

(01 ;C€e (1@, ;C€e)y
"’(O"{goz(a ey "’(O"{wz(o (e

We assume that let ¢ is any non-decreasing function for —oo < A4 < oo. Let us define all measurable
real functions of Hilbert space by L% (R) which holds

| " 02 (Wdo() < oo,

with the inner product

(0, )y = f P(DYQ) da(A).

The fundamental result of the study is given as follows.

Theorem 3.2. The non-decreasing function (1) on —oo < A1 < oo for the g-Sturm-Liouville problem
(2.1)-(2.3) satisfies the following properties:

(i) If
(01D ;C€e);
v ._{‘PZ(O HECyE

is a real valued function and ¢ belongs to H, then there is a function ® € L2 (R) such that

oo

[ 1 n
lim {cbu)— j 21Dy n (G gl — f <p2(<>¢f,33q_n(<,a>dq<}da@)=o (3.12)

—00
n —00

and the Parseval identity
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Cc 1 0 [e'e)
lollz = f (0:@))" dog +3 f (02(0)dyg = f (Do) (3.13)

(i)  Theintegral [ ®(A) ¢({, Amyg—n)da(2) converges to ¢ in H; that is,
(iii)

n—oo

2
hm {L <§01(() _f CI)(A) (P(l)((llm,q_n)do-(l)> dq{

2
1(® n
+ f (soz(f )= f (D) (¢, Am;q—n)da(z)> dqf} = 0.
¢ -n
It should be known that the function o is said to be a spectral function for the boundary-value
problem (3.1)-(3.5).

Proof. We may assume that

@1,6(0) ;¢ €[0,¢)

ve() = {<pz;g(€) ;¢ € (c,q¢]

satisfies three conditions as follows:

(@) Let pg(Q) be identically zero outside the set [0,c) U (c,q~%] with g% < q™
(b) Let @¢($) and Dgee () be g-regular functions at c.
(c) Let @¢({) satisfy the boundary conditions (3.1)-(3.5).

Applying the Parseval identity (3.9) to the function ¢;({) we obtain;

q_€

c 1 [}
| (036@) dat 4o [ (0260) dg = | ooy (3.14)
where
‘ & 1 @
Pe(1) = f RTINS f 026D (8, DS (315)

Because of ¢ (¢, Ap,q—n) holds (3.1), it is clear that
B2 G2 = 7|~y Dbmg 6,20 + g€, D]
From (3.14), we get
0e0) =5 [ 0160 [~2 Dgr1 Dy By n €2 + UD€, 2] g
| " ) [~ 204100922 €. 20 + w91 G D] it

Since ¢ ({) is identically zero in a neighborhood of the point g™ and both ¢;({) and ¢,,4-n(J, 1)
satisfy the boundary conditions (3.1)-(3.3), taking by g-integration by parts we aobtain;
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1€ 1
O =5 [ B0 €D =2 Dy D) + U)ot
1 " 1
e f R IE 2 Der1Dg02(O) + w92, dys.
For any finite M > 0, from (3.9) we have

f cpgu)daq_nu)
[A>M

{f Do (01D [——D D0 (@) + Uy (©)] dyd

2
+;fc ¢r(rf;)q—n(f,l) [—aDq_quwz;g(Z)+u(€)<pz;g(€)] dq(} dag-n(2)
1
=

M /1|>M

f ) {f 90D [—lD D @) + U@y )] dod

2

14" 1

+‘f ¢ff)q—n(€ A [——D —1Dq<ng({)+u(6)<ng(f)] dqz} dog-n(A)
MZJ. [ '1Dq(p1:f(() +u(()(l’1;f(()] dq¢
_Z;I [_aDq‘qu‘PZ:E(O +u(f)§02;§(f)] dgS.

From (3.14), we obtain that

q_s

(0@ g+ [ (026©) it~ [ 07

c

1 (o 1 2
<z | [P0 Dase@ + u@se@)] a8
117 1 2
W}f [_aDq—qu(l’z;f(O+U(Z)(P2;§(Z)] dq¢ (3.16)

We know that the set {aq—n(l)} is bounded from Lemma 3.1. A sequence {{ }, (¥, — o) such
that the function o4-n,;, (1) converges to a monotone function o (1) can be found from Helly’s first and
second theorems. By taking limit with respect to {1, } in (3.16) we get;

q_f

| (@) dgg + S (0e@) - [ A;cb?u)da(z)

Cc

2

sz [ —1Dq(/’1;§(()+u(§)(p1;g(§)] d
1 2
szfc [_aD -1Dq ¢, f(() + u( e, f(()]

Therefore, letting M — oo we get,

| (@) dg =

c

q_f

(fpz;f(( ))2 de§ = j_ :Omd>§(/1)da(/1).
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Let ¢ be any real function on H. It is known that there is a sequence of function {¢¢(¢)}
satisfying the condition (3.1)-(3.5) and such that;

[

i {Of (9@~ p1(©) dgg + H

q_f

((Pz (() - (pZ;E({))Z dq(} =0

Let;

+00

1t
D = | 1@ @D [ 08T C D

0

Then from this we can get;

| (00 @) dog = T oas@) dz= [ jd%u)dau).

Since
c

[ (0160 = 026,0)) dg + | (026 ©@ — 920 @) dgd > 0

0

as é&;,&, —» oo, we have

+ 00

[ (@m0 ,0) do -0, (€t~ ).

— 00

Accordingly there is a limit function & such that

+00

fo (<p1<5>)2dqc+% f (020 ds = | o),

holds by the completeness of the space L2 (R).
Our next aim is to see that;

c q¢
1
Ke (1) = f 21D n G DS+ j 022 (G, Dol
0 c

converges to @ as & — oo in the space L2 (R). Let ¥ be an another real valued function in H. By the
same way; let W () be related with . It is clear that for;

Y1) ;¢ €10,0) Ulc,q7¢]

v = {zpz(é) ;¢ €(q7%, +)

we have;

f (wl(z)—wl(c))quH% f (92() = 2(D) dy¢ = f () — YW}2do(A).
0 c —00

Let us define
() ;¢ €[0,0)U[c,q7°]

v = { 0 7€ (g%, +oo)
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then
1
f (o) - KW o) = f (02(0)2dyg = 0
“o q-¢

as & — oo which proves that K converges to & in L% (RR). This gives us (i).
Now let us give the prove of (ii). Assume that the functions ®(1), W(A) are Fourier transforms
of ¢, Y € H (see [10]). Then & + ¥ are transforms of ¢ + 1. In this manner, by (3.13) we have;

c +00

f (0100 + 1) dyd + f (020 + $2(D)2dy? = f (D) + POV do(h),

f (mc)—wl(c))quu% f (02Q) = >(©)2dyg = f (OO — WI2do (D).
0 c —00

Let us subtract the resulting two equation side by side, we have;

c 1+00 400
| ROUNGIRSE | 0w, = | 20w D) (3.17)
0 [ —00

which is may be called the generalized Parseval identity. Set;

+7T

WO = [ oW ¢L G D), =12

=T

where @ is the function determined in (3.12). Let ¢ € H be a real function which equals zero outside
the set [0,¢) U [c,q™#]. So we can get;

c q*
[ 60O+ [ 0P @)t = f { [owe 6. A)dau)}wl(c)dqc
0 c -7

at =z

5]

c

f D) C A)dam}wz(m ¢

q—ﬂ
= f @ (1) { f ¢,S§3q_n<¢,z>¢1(¢>dq¢+% j ¢$3qn(c,1)wz(z)dqc}dau)

0

_ f () Y1) do (D).

-7

Subtracting (3.17) and (3.18), we have

f (0:© = 0©) ¥a(Odgs + %fm (020 = 0P @) $2(Dds = f )W) do(D).
0 c A>T

From Cauchy-Schwartz inequality, we get
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+ oo

Ofc (01 = 0P @) 1 @dgg +% f (02 - 92 ©@) wa@dg

Cc

< f 2 (N)do (D) f w2 (1) do ().

A>T A>T

If we carry out this inequality to the function;

W) = {QT(() — () ;(€[0,0)U [c,q7H]

0 ;¢ € (q7#, +0),
we get
c 5 q* 5
f (qol(o - o (c)) ded + f (<pz(<) — o (5)) de¢ < f ®2(D)do(A).
0 c A>T
Since the above inequality is not depend of u , the result is achieved by letting T—co. O

4. Conclusion

In this study, we investigate the existence of a spectral function for the singular g-Sturm-Liouville
problem with transmission conditions. We prove the Parseval identity with the help of the inner product
ir_l class Hq = L2(J;) @ L5(J;) as Hilbert space. We also give the expansion formula in the
eigenfunctions.
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