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ABSTRACT 

In this paper the exact solution for Cauchy problem of first 
order nonlinear partial equation with piece-wise initial condition 
described scalar conservation laws without convexity of the 
state function. In particular, the state functions having four and 
one point of inflection are considered. The structure of solutions 
is investigated. 

Keywords: Scalar conservation laws, state function without 
convexity, convex and concave hull, weak solution 

ÖZET 

Bu makalede bükeyliği olmayan durum fonksiyonuna sahip 
birinci mertebeden nonlineer kısmi türevli diferansiyel denklem 
için yazılmış parçalı sürekli başlangıç koşullu Cauchy probleminin 
gerçek çözümleri elde edilmiştir. Özel olarak, sırasıyla dört ve 
bir dönüm noktalarına sahip durum fonksiyonları ele alınmış ve 
çözümün yapısı incelenmiştir. 

Anahtar Kelimeler: Scaler korunum kanunları, bükeyliği 
olmayan durum fonksiyonu, konveks ve konkav katman, zayıf 
çözüm. 
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1. INTRODUCTION 

In this study we construct the exact solutions of a scalar 
conservation law in one dimension as 

^ + ^ = 0, x 6 R\ t > 0. (1) 
dt dx 

We assume that the flux function is in C1(R1) and has finite 
number of infection points. The equation (1) with the following 
initial condition 

u( x,0) = u0 (x), x 6 R1 (2) 

have been investigated in [2], [4]-[7], [11]—[13], when 
u0(x) 6 Lm(R1). In [3] has been construct fundamental solution of 
the equation (1) with initial condition 

lim u(x, t) = MS(x), x 6 R1, t > 0, 
t 

where the initial value in distribution sense and M 6 R1 is the total 
mass, and S(x) is the Dirac function. It should be noted the 
problem (1), (2) has been investigated in [1] from practical point of 
view. In [8]-[11] the method for obtaining the exact solution of 
this kind problem is proposed. 

2. CONSTRUCTION OF THE EXACT SOLUTION 

In this section we will construct two problems for different state 
functions with piecewise constant initial function. As the state 

function f (u) we consider the functions - C 0 s 2 u and — , 
2 3 

respectively. 

„ - ^ „ /•/ x cos2u 
2.1. The case of f (u) = —-— 

In order to find the exact solutions of these problems, according to 
[4], [12] we formulate the following definitions. We denote by X 
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the set functions of f defined on [a, fi] which satisfy the 

inequality f > f (u) . 

Definition 1. The function defined by the relation f = inf f (u) is 
f 6X 

called a convex hull on [a, fi] of a function f (u) . 

Definition 2. The function defined by the relation f = inf f (u) is 

called a concave hull on [a, fi] of a function f (u) . 
f 6X 

1. At first we will consider the problem (1), (2) for the case 
5K 5K 

2 4 , 4 
. . . cos2u , . 

f (u) = on the interval . As it is seen from the 

Figure 1a) the function 0.5cos2u has four inflection points on the 

5k 5k , that is we consider the following equation interval 
4 4 

du . _ du n + sin2u — = 0 
dt dx 

(3) 

with the following initial distribution 

u 0 ( x ) = < 

- , x <0, 
4 

- K x >0. 
4 

(4) 

According to Definition 1, we construct the convex hull of the 
5K 5K „ cos2u , , function on the interval 

2 4 4 
. It is obvious that 

K K . 
u = and u = — are the roots of the equation cos2u = - 1 on 

2 2 

the interval 
5K 5K 

4 , 4 
. In order to construct the convex hull of 

the function - c o s ^ u , we draw the tangential lines from the points 

5 K ,0] and f ^ ,0] to the graph of the function , 
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respectively. We denote the abscissa of points of intersection of 

these tangential lines with graph of the f (u) = -
cos2u 

2 
by v and 

Figure 1: a) The convex hull of the function f (u) = —0.5cos2u ; b) weak 

solution on (X, t ) plane 

cos 2u 
Therefore, the convex hull of the function on the 

2 

interval 
5K 5K 

4 ' 4 
consists of the following: tangential line from 

TT 
the line 

~ * „ ~ L ' 2 J ' 
f 77- 1 A f 77- 1 A 

connecting the points A = 

( 5 t \ 
the point ,0 I, the part of the graph lying 

v 4 J 
f T 1 , - I and B = 
v 2 2 J 

r K 

(* 1 Ï u — ,— I, the part of 
v 2 2 J 

2 
, v and the tangential straight the graph lying on the interval 

( 5t \ 
line from the point — ,0 J . The graph of the convex hull of the 

function — C 0 s 2 u is shown in Fig.1a. 
2 

Since the tangential lines are symmetric, it is easily shown 

that the equations of the tangential line from the point 
5K 

4 
0 

and 
5k ] — ,0 J are x = —kt and x = kt, respectively. Here, 
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r / \ 

— k = — = sin 2v1. We can not obtain the values of v , V and 
V1 

k naturally, but we may say that v is the least positive root of the 
5 t 5 t — , v2 = v1. 
2 2 2 1 equation cot 2^ = - 2v, and v1 + v2 = 

Since all solutions of the equation (1) are lines having slopes 
f '(u) and passing through the origin of the (x, t) plane, we 

X 
convert the function % = — = f '(u) = sin 2u on the interval [—T,0] 

1 X 

and [0 , t ] . Solving this equation we find u(x,t) = ——arcsin y and 

u(x, t) = 1 arcsin X, respectively. 

The graph of the weak solution of the problem (3), (4) on the 

(X,t) plane is illustrated in Fig. 1b. Therefore, the exact solution of 

the problem (3), (4) is 

u( x, t ) = < 

5 ^ 
4 : x < kt, 

1 • x — arcsin —, - kt < x < 0, 
2 t 

1 x 
— arcsin —, 
2 t 

4 

0 < x < kt, 

x > kt. 

(5) 

The time evaluation of the solutions of (5) at value T = 1.0 is 
shown in Fig. 2a. 
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t(u)=-U.b*cosu 
2, 

5jt/4 .3 u -jt/2 V 4 0 Tiif */2 \ jt /4 n 5JIA 

x i V ' \ ' / ' \ ' ^i/ 

Figure 2: a) Time evaluation of the exact solution u ( X, t) a) T = 1 . 0 ; b) The 

concave hull of the function f ( u ) = —0.5 c o s 2 u 

Now, we investigate the Eq. (3) with the following initial 
function 

u 0 ( x ) =< 

5K 
, x <0, 

4 
5K 
— , x >0. 
4 

(6) 

In this case we construct the concave hull of the function 
5 t 5T 
4 ' 4 

. . . cos2u , . 
f (u) = on the interval 

2 
. For this aim, we first 

find the solutions of cos2u = 1, which are u — T and u = T . We 

denote by A and B the points — k,—-
2 

and K,—-
2 

respectively, and we connect the points A and B by a straight line. 

We draw the tangential lines from points — ^ ,0 | and 
4 J 5k 0 

respectively. We also denote the intersections of these tangential 

lines with the graph f (u) = — °os^u by v and v2, respectively. 

cos 2u 
Therefore, the concave hull of the function on the 

interval 
5K 5K 

4 ' 4 

2 

consists of the following: tangential line from 

v 
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the point 5T 

4 
,0 I, the part the graph lying 

T 
v1s 1 2 

f 
line connected of the points A = 

1 

V 
- T , — I and B = 

2 J 

the straight 

1 1 u T , — I, the 
2 J' 

part of the graph lying on the interval 

( I 
line from the point — ,0 J , Fig. 2b. 

T 
v2,~ 

2 
and the tangential 

As above, since the tangential lines are symmetric, their 
equations are * = - k j and * = k j , respectively. The values of v , 
v2 and k can not be found, in general, but we may say that v is 
, , . . ~ , . , cos2v . _ the least positive root of the equation - k = 1 = sin2vx and 

2v 
5 t 5 t 

V1 + v 2 = y , v 2 = y - V1. 

Figure 3: a) weak solution on ( x , t ) plane; b) Time evaluation of the exact 

solution u ( x , t ) T = 1 .0 

Now, we must find the inverse function of f '(u) = sin2u on 

the interval 
" 5T " 

and 
~ 5T 

, - T and T, 
_ 4 _ _ 4 _ 

respectively. It is clear that 

these inverse functions are u( x, t ) = - ^a rcs in X -% and 
2 t 

. . 1 . x 
u(x, t) = — arcsin — + K . 

2 t 

V 
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As a result, the exact solution of this problem is 

4 , 

u( x, t ) = < 

x < k,t, 

1 • x — arcsin K, — kJ < x <0, 
2 t 1 (7) 1 . x v 7 

— arcsin — + K, 
2 t 

5K 

4 , 

0 < x < kt , 

x > kxt. 

The graph of the weak solution of this problem on the (x, t) 
plane is illustrated in Fig. 3 a. The time evaluation of the solution 
(7) at T = 1.0 is shown in Fig. 3b. 

2.2. The case of f (u) = 
u 
3 

According to Definition 1, at first we will construct the convex hull 

of the function f (u) = — on the interval [— 2,2]. For this aim we 

draw the tangential line from point i 2 ,8 ] V 3 J 
to graph of f (u) and 

note by 
' U 3^ 
Un , U the point of intersection of this line with curve 

KMt 

U! / 
u=-sqrt(>Jt) 

U1 

(3/4)1 

1 2 3 
b) 

Figure 4. a) The graph of the convex hull of the function f ( u ) = — ; b) The 

weak solution of u(X, t) on (X, t ) plane 

3 
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— . It is clear that, the value of u0 is found from the relation 
3 u 

m = f \uo) = 
f ( u

1
) - f ( u 0 ) 

as un = —1. 
u Uq 

w 
Therefore the convex hull of the function — on the interval 

3 

[ - 2,2] consists of the following: tangential line from the point 

( 2, ̂  1 and the part of the graph of lies between point of 

( . 1 ] . ( _ 1 ] 
—1,— 

v 3 , 
and — 2 , — 

v 8 , 
, Fig. 4a. 

It is clear that the solution is exposed to jump on the line 

x = Çt, t > 0 which is paralel to the tangential line. From 

Rankino-Hugoniot condition we have Ç = f ( 2 ) — f ( 0) = 1. This 
u 2 — u 0 

jump lies between u0 = —1 (x >Çt) and ^ — H e r e , ^ — | is 

inverse function of the Ç = f '(u) = u2 on the interval [— 2,-1]. 

Hence, u = J - ] = (f')—1 = — x , 1 < £ < 4. 

It is clear that intersection of the function ^ — j with line 

u2 = - 2 take place on the ray — = 4t . But this ray is paralel to the 

tangential line leaving from point ( u
 2

, f (u 2)) = 

Therefore, the solution of the problem (1), (8) is 

i 3 A u 3 
u, , — 

> 3 v 3 

3 
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u( x, t ) = < 

2, x < t 
x 

^ J , t < x < 4t 

- 2, x > 4t. 

(8) 

The weak solution of the problem (1), (8) is shown in Fig. 4b. The 

time evaluation of the solution (1), (8) is demonstrated in Fig. 6b. 

Figure 6. a) The exact solution of u ( x , t) at the value T = 1 .0 ; b) The 

concave hull of the function f ( u ) = — on the interval [— 2 , 2 ] 

Now, we will investigate the case ux = - 2 and u2 = 2, ux < u2. In 

this case we will construct the concave hull the function f (u) = 
u 

on the [u , u2 ]. Let us draw the tangential line from point 

A(- 2, f (u)) = A - 2 , -
3 

to graph of the function f (u) . It is 

clear that, this tangential line will be intersect the graph of f (u) at 

( ,.3 "N 
the point u„ 

u 3 ( 1 ̂  
V,3 y 

3 
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Figure 7. a) The graph of the function (9); b)The weak solution of the problem 
(1), (8) on the (x, t ) plane 

u 
Therefore, the concave hull of the function f (u) = — on the 

interval [— 2,2] consists the part of the graph of f (u) lies between 

points of 
3 y 

and f — 2,—8 j, and tangential line leaving from the 

8 
point of 2 , -~J , Figure 6a. In this case the solution is exposed to 

jump on the ray x = Çt, t > 0 with is paralel to tangential line 

originated from point ( - 2,-8-j. As above, from Rankino-

Hugoniot condition we get Ç = 1. This jump take place between 

x x u0 = 2 (for X > t) and J. Here J is inverse function of 

£ = f '(u) = u2 on the interval [1,2]. From here we have u = ^ , 

1 4 . Therefore the exact solution of the problem (1), (8) (in 

the case ux < u2) is 
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u( X, t) = < 

- 2, x < t 

^y, t < X < 4t 

2, x > 4t. 

(9) 

The graph of the function (9) is shown in Figure 7a. The weak 

solution of the problem (1), (8) is given Figure 7b. 
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