

A new species of the genus *Neophyllobius* Berlese (Acari: Camerobiidae) from Denizli province, Turkey

Mustafa AKYOL

Department of Biology, Faculty of Arts and Sciences, Manisa Celal Bayar University, Manisa, Turkey e-mail: mustafa.akyol@cbu.edu.tr

Received: 18 April 2020

Accepted: 1 June 2020

Available online: 29 July 2020

ABSTRACT: A new species viz. *Neophyllobius denizliensis* **sp. nov.,** collected from soil and litter under *Verbascum* sp., is described and illustrated based on adult female, protonymph and larva. An updated key to all known species of genus *Neophyllobius* of Turkey is provided.

Keywords: Acari, Raphignathoidea, *Neophyllobius*, new species, Turkey. **Zoobank**: http://zoobank.org/42CE1610-ACBF-4430-8651-C13145F530B3

INTRODUCTION

Camerobiidae is the second largest family of the superfamily Raphignathoidea. Members of the family Camerobiidae (Acari: Raphignathoidea) are freeliving predatory mites that feed on small arthropods and commonly found in soil and plant litter (Meyer, 1962; Bolland, 1986, 1991; Gerson and Smiley, 1990; Fan and Zhang, 2005; Khanjani et al., 2010, 2014; Fan and Walter, 2011). This family contains seven genera, with more than 160 species, of which Neophyllobius Berlese is the largest genus (Khaustov and Abramov, 2017; Akyol, 2018; Zmudzinski, 2020). Up till now, 23 species of Neophyllobius have been reported from Turkey (Koc and Ayyıldız, 1996; Koç, 1999, 2001; Koç and Madanlar, 2002; Doğan and Ayyıldız, 2003; Akyol and Koç, 2006a-c; Akyol, 2013, 2018; Uluçay and Koç, 2014; Çobanoğlu and Yeşilayer, 2016; Doğan, 2019). In this paper, a new species, Neophyllobius denizliensis sp. nov., is described and illustrated based on the adult female, protonymph and larva from Denizli province (Turkey). Also, a key to all known species of genus Neophyllobius of Turkey is partly modified and updated.

MATERIALS AND METHODS

The mite specimens were collected from soil and litter under *Verbascum* sp. (Scrophulariaceae), in Denizli province (Turkey), and brought to the laboratory in plastic bags and extracted by Berlese-Tullgren funnels for seven days. Mites were collected in 70% ethanol and then mounted on slides in modified Hoyer's medium. The mite figures were drawn and measured by means of a research microscope (Nikon Eclipse E 400). The setal nomenclature follows those of Kethley (1990) and Grandjean (1944). All measurements were given in micrometres (μ m). Measurements of legs were taken from base of femur to tips of tarsal claws. The specimens mounted on slide are deposited in the (CBZM), Manisa, Turkey.

RESULTS AND DISCUSSION

Family: Camerobiidae Southcott, 1957

Genus: Neophyllobius Berlese, 1886

Type species: *Neophyllobius elegans* Berlese, 1886.

Diagnosis: Idiosoma with 15 (excluding *pdx* with 14) pairs of lanceolate setae. One pair of peritremes arising from middle of forepart of stylophore and loop along edges. Counts of setae and solenidia from palptrochanter to palptarsus: 0, 2, 1, 3 + 1 claw, 2 setae + 1-2 eupathidia + 1 solenidion. Genital shields with one pair of setae, anal shields with three pairs of pseudanal setae. Solenidion ω on basal halves of tarsi I and II. Tarsi I-II each with 2 medio-ventral setae in a longitudinal line and III-IV each with 1-2 medio-ventral setae. Counts of setae and solenidia of legs I-IV: coxae (excluding 1*a*, 3*a* and 4*a*) 2 + 1elcp, 1, 2, 2; trochanters 1, 1, 1, 1; femora 3-4, 2-4, 1-3, 1-3; genua 1 + 1 κ , 1 + 1 κ , 1, 1; tibiae 9 + 1 ϕ , 8 + 1 ϕ , 8 + 1 ϕ , 7 + 1 ϕ ; tarsi 9-10 + 1 ω , 9-10 + 1 ω , 7-8 + 0-1 ω , 7-8 (Fan and Zhang, 2005).

Neophyllobius denizliensis **sp. nov.**

Female (n=1) (Figure 1)

Body ovoid, length (excluding gnathosoma) 333, width 268.

Gnathosoma (Fig. 1B). Length of gnathosoma 104. Infracapitulum with one pair of subcapitular setae (m 21) and two pairs of adoral setae (or_{1-2}). Cheliceral stylets retracted, invisible. Palpus five segmented: Tarsus with two setae, one small solenidion and two eupathidia; tibia with three setae and one bladelike seta; genu with one serrated seta; femur with two serrated setae and trochanter without setae (Fig 1G).

Dorsum of idiosoma (Fig. 1A) Almost ovoid; integument striated; two pairs of eyes between *sci* and *sce* setae present; fifteen pairs of dorsal setae set on tubercles, *pdx* present, dorsal body setae with denticles. Lengths of setae: *vi* 62, *ve* 52, *sci* 52, *sce* 57, *c*₁ 52, *c*₂ 78, *d*₁ 133, *d*₂ 52, *e*₁ 104, *e*₂ 55, *f*₁ 73, *f*₂ 39, *h*₁ 29, *h*₂ 26, *pdx* 44. Setae *d*₁ and *e*₁ longer than others.

Figure 1. *Neophyllobius denizliensis* sp. nov. (Female) – A. Dorsal view of idiosoma, B. Ventral view of idiosoma, C. Leg I, D. Leg II, E. Leg III, F. Leg IV, G. Palp.

Figure 2. *Neophyllobius denizliensis* **sp. nov.**, Protonymph (A-G) and Larva (H-M) – **A.** Dorsal view of idiosoma, **B.** Ventral view of idiosoma, **C.** Leg I, **D.** Leg II, **E.** Leg III, **F.** Leg IV, **G.** Palp, **H.** Dorsal view of idiosoma, **I.** Ventral view of idiosoma, **J.** Leg I, **K.** Leg II, **L.** Leg III, **M.** Palp.

Venter of idiosoma (Fig. 1B). All ventral surface striated. All coxal area with sligtly striated and reticulated. Venter with three pairs of smooth setae (1*a* 21, 3*a* 29, 4*a* 16). Endopodal shields absent. Anogenital area with one pair of aggenital setae (*ag* 10), one pair of genital setae (*g* 10) and three pairs of pseudanal setae (*ps*₁₋₃). Cupules *ih* situated laterally to anal opening.

Legs (Figs 1C-F). Length of legs: leg I 442, leg II 382, leg III 421, leg IV 424. Setal formula of leg segments (solenidia in parentheses) as follows: coxae 3-1-2-2, trochantera 1-1-1-1, femora 4-3-2-2, genua $1(+\kappa)-1(+\kappa)-1-1$, tibiae $9(+\phi)-8(+\phi)-8(+\phi)-7(+\phi)$, tarsi $10(+\omega)-10(+\omega)-8-8$. Tarsi I-IV with two midventral setae. All genual setae whip-like.

Protonymph (n= 3) (Figures 2A-G)

Length of body (excluding gnathosoma) (minimum and maximum measurements): 182-216, width 169-203.

Gnathosoma (Fig. 2B). Length of gnathosoma 65. Infracapitulum with one pair of setae medioventrally (*m* 10-13) and two pairs of adoral setae (or_{1-2}). Cheliceral stylets retracted, invisible. Palpus five segmented: Tarsus with two setae, one small solenidion and two eupathidia; tibia with three setae and one bladelike seta; genu with one serrated seta; femur with two serrated setae and trochanter without setae (Fig 2G).

Dorsum of idiosoma (Fig. 2A). Dorsum as in female. Lengths of setae (minimum and maximum measurements): *vi* 39-47, *ve* 34-39, *sci* 31-34, *sce* 34-39, *c*₁ 34-39, *c*₂ 47-57, *d*₁ 60-78, *d*₂ 31-39, *e*₁ 39-52, *e*₂ 31-34, *f*₁ 34-42, *f*₂ 26-31, *h*₁ 21-23, *h*₂ 18-23.

Venter of idiosoma (Fig. 2B). With three pairs of setae (1*a* 16-18, 3*a* 16-18, 4*a* 10-13) and three pairs of pseudanal setae (*ps*₁₋₃). Aggenital and genital setae absent. Cupules *ih* situated laterally to anal opening.

Legs. (Figs 2C-F). Length of legs (minimum and maximum measurements): leg I 299-343, leg II 268-299, leg III 281-315, leg IV 273-325. Setal formula of leg segments (solenidia in parentheses) as follows: coxae 3-1-2-0, trochanters 1-1-1-0, femora 3-2-1-1, genua $1(+\kappa)-1(+\kappa)-1-1$, tibiae $6(+\phi)-6(+\phi)-5(+\phi)-3(+\phi)$, tarsi $8(+\omega)-8(+\omega)-7-5$.

Larva (n= 1) (Figures 2H-M)

Length of body (excluding gnathosoma) 190, width 203.

Gnathosoma (Figs 2I, M). Length of gnathosoma 65. Infracapitulum with two pairs of adoral setae (or_{1-2}), and without setae *m*. Cheliceral stylets retracted, invisible. Palpus five segmented: Tarsus with two setae and two eupathidia; tibia with three setae and one bladelike seta; genu with one serrated seta; femur with one serrated setae and trochanter without setae. Palpal solenidion absent (Fig. 2M).

Dorsum of idiosoma (Fig. 2H). As in protonymph except fourteen pairs of dorsal setae set on small tubercles, pdx absent, dorsal body setae with minute denticles. Length of

setae: vi 29, ve 29, sci 21, sce 34, c1 29, c2 42, d1 47, d2 34, e1 39, e2 29, f1 34, f2 26, h1 16, h2 13.

Venter of idiosoma (Fig. 21). Venter with two pairs of setae (1*a* 16, 3*a* 16), three pairs of pseudanal setae (ps_{1-3}). Setae 4*a*, aggenital and genital setae absent. Cupules *ih* situated laterally to anal opening.

Legs (Figs 2J-L). Lengths of legs: leg I 260, leg II 221, leg III 247. Setal formula of leg segments (solenidia in parentheses) as follows: coxae 1-0-0, trochanters 0-0-0, femora 2-2-1, genua $1(+\kappa)-1(+\kappa)-1$, tibiae $3(+\phi)-3(+\phi)-3(+\phi)$, tarsi $7(+\omega)-7(+\omega)-5$. All tarsi with one midventral setae.

Male and Deutonymph. Unknown.

Etymology. This species is named after the locality, Denizli, where it was found.

Material examined. Holotype female, three female protonymphs and one larva from litter and soil under *Verbascum* sp., 37°22'38"N 29°25'56"E, 1084 m a.s.l., 14 July 2019, Acıpayam district, Denizli province, Turkey, coll. M. Akyol.

Remarks. *Neophyllobius denizliensis* **sp. nov.** is similar to *N. hispanicus* Bolland in that setae e_1 do not reach the margin of dorsum, c_1 reach the base of d_1 , pdx do not reach the base of d_1 , and same the legs chaetotaxy (Bolland, 1991). However, it differs from *N. hispanicus* by the following combination of characters: (1) almost dorsocentral setae longer (pdx 44, c_1 52, d_1 133, e_1 104, f_1 73) in the new species versus (pdx 40, c_1 40, d_1 85, e_1 80, f_1 60 in *N. hispanicus*); (2) third seta on femur I the longest seta in the new species, whereas shortest in *N. hispanicus*; (3) first and second setae on femur II same in length in the new species oppose to second setae the longest in *N. hispanicus*; (4) palp tarsus with ω in the new species, versus without in *N. hispanicus*; (5) ratio d_1/h_1 4.58 in the new species (2.83 in *N. hispanicus*).

Key to Neophyllobius species of Turkey

This key is partly modified and updated from Akyol (2013) and Bolland (1991).

1. Tarsus IV with one midventral seta 2
- Tarsus IV with two midventral setae 4
2. Femur IV with two setae
- Femur IV with one setae N. orhani Doğan and Ayyıldız
3. Tarsus II with $10(+\omega)$ setae <i>N. fani</i> Doğan and Ayyıldız
- Tarsus II with 9(+ ω) setae <i>N. yunusi</i> Akyol and Koç
4. Femur II with three setae 5
- Femur II with four setae N. sultanensis Akyol and Koç
5. Distal end of the tibia I with one solenidion

- Distal end of tibia I with two solenidion
6. Setae c_1 just reaching, or shorter than the distance to bases of e_1
- Setae c_1 long, passes at least bases of e_1
7. Setae e_1 as long as or shorter than c_1
- Setae e_1 longer than c_1
8. d ₁ longest setae, tarsi II with 9(+ω) setae
- <i>e</i> ¹ longest setae, tarsi II with 10(+ω) setae <i>N. podocarpi</i> Bolland
9. Setae e_1 shorter than c_1
- Setae <i>e</i> ₁ as long as <i>c</i> ₁ <i>N. pathenocissi</i> Bolland
10. <i>d</i> ₁ longest setae <i>N. afyonensis</i> Akyol and Koç
- c1 longest setae N. turcicus Koç and Ayyıldız
11. Setae d_1 do not reach at all the bases of f_1
- Setae d_1 reach or pass bases of f_1
12. Setae e_1 do not reach margin of the dorsum
- Setae <i>e</i> ¹ reach margin of the dorsum 17
13. Setae e_1 do not pass bases of h_1
- Setae e_1 pass bases of h_1 <i>N. populus</i> Akyol and Koç
14. Setae c_1 pass easily bases of d_1
- Setae c_1 just reach bases of d_1
15. First seta on femur I is the shortest
- Setae on femur I equal in length except for distal setae <i>N. persiaensis</i> Khanjani and Ueckermann
16. Setae c_1 , d_1 , e_1 and f_1 almost subequal length
- Setae <i>c</i> ₁ , <i>d</i> ₁ , <i>e</i> ₁ and <i>f</i> ₁ not subequal length
17. Most distal seta on femur I longer than the third one
- Most distal seta on femur I shorter than the third one
18. The third seta on femur I longer than 1/2 the length of the fourth 20
- The third seta on femur I shorter than 1/2 the length of the fourth

19. Setae <i>pdx</i> reaching the marginal side of the dorsum <i>N. lamimani</i> Bolland
- Setae <i>pdx</i> not reaching the marginal side of the dorsum
20. Some dorsacentral setae reach the bases of the next dorsacentral setae and longer than the other dorsacentral setae, i.e. e_1 and f_1 , tarsi II with 9(+ ω) setae
- All dorsacentral setae bases of the next dorsacentral setae
21. Genu I setae not reaching second row of tibia setae
- Genu I setae reaching or longer than distance to second row of tibia setae
22. Genu II setae not whip-like
- Genu II setae whip-like23
23. Setae <i>pdx</i> shorter than <i>c</i> ¹ <i>N. askalensis</i> Doğan and Ayyıldız
- Setae <i>pdx</i> equal in length with <i>c</i> ₁ <i>N. quercus</i> Uluçay and Koç

Funding

There is no fund for the present study.

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

REFERENCES

- Akyol, M. 2013. Two new species of the genus *Neophyllobius* Berlese (Acari: Camerobiidae) from Turkey. International Journal of Acarology, 39 (7): 542-546. doi: 10.1080/01647954.2013.839741
- Akyol, M. 2018. Two new records of *Neophyllobius* mites (Acari: Prostigmata: Camerobiidae) for the Turkish fauna. KSU Journal of Agriculture and Nature, 21 (2): 106-110. doi: 10.18016/ksudobil.304398
- Akyol, M. and Koç, K. 2006a. New species of *Neophyllobius* and *Tycherobius* (Acari, Camerobiidae from Turkey). Biologia, 61 (5): 487-495. doi: 10.2478/s11756-006-0081-1
- Akyol, M. and Koç, K. 2006b. The camerobiid mites (Acari: Camerobiidae) of Turkey. Biologia, 61 (2): 125-132. doi: 10.2478/s11756-006-0020-1
- Akyol, M. and Koç, K. 2006c. Two new species of *Neo-phyllobius* (Acari: Camerobiidae) from Turkey. Zootaxa, 1196: 63-68.

- Bolland, H.R. 1986. Review of the systematics of the family Camerobiidae (Acari, Raphignathoidea). I. The genera *Camerobia, Decaphyllobius, Tillandsobius,* and *Tycherobius.* Tijdschrift voor Entomologie, 129: 191-215.
- Bolland, H.R. 1991. Review of the systematics of the family Camerobiidae, II. The genus *Neophyllobius* Berlese, 1886 (Acari: Raphignathoidea). Genus, 2 (2): 59-226.
- Çobanoğlu, S. and Yeşilayer, A. 2016. Neophyllobius persiaensis Khanjani & Ueckermann (Acari, Camerobiidae); new record of the species from the parks and ornamental plants in İstanbul (Turkey). Turkish Bulletin of Entomology, 6 (1): 3-8. doi: 10.16969/teb.48209
- Doğan, S. 2019. Raphignathoidea (Acari: Trombidiformes) of Turkey: A review of progress on the systematics, with an updated checklist. Acarological Studies, 1 (2): 129-151.
- Doğan, S. and Ayyıldız, N. 2003. New species of *Neo-phyllobius* (Acari, Camerobiidae) and description of *Cryptognathus ozkani* (Acari, Cryptognathidae) male from Turkey. Biologia, 58 (2): 121-132.
- Fan, Q-H. and Zhang, Z-Q. 2005. Raphignathoidea (Acari: Prostigmata). Fauna of New Zealand, 52: 1-400.
- Fan, Q-H. and Walter, D.E. 2011. Acamerobia inflatus gen. n. & sp. n. from Australia (Acari: Prostigmata: Raphignathoidea: Camerobiidae) with notes on the idiosomal chaetotaxy. Zootaxa, 3045: 45-56. doi:10.11646/zootaxa.3045.1.3
- Gerson, U. and Smiley, R.L. 1990. Acarina biocontrol agents. Chapman and Hall, London, England, 96-97.
- Grandjean, F. 1944. Observations sur les acariens de la famille des Stigmaeidae. Archives des Sciences physiques et naturelles, 26: 103-131. [In French]
- Kethley, J. 1990. Acarina: Prostigmata (Actinedida). In: Soil biology guide. Dindal D.L. (Ed.). John Wiley and Sons, New York, USA, 667-756.
- Khanjani, M., Asali Fayaz, B. and Nori Ghanbalani, G. 2010. Two new species of the genus *Neophyllobius* Berlese (Acari: Camerobiidae) from Iran. Zootaxa, 2521: 53-64. doi: 10.11646/zootaxa.2521.1.4

- Khanjani, M., Hoseini, M.A., Yazdanpanah, S. and Masoudian, F. 2014. *Neophyllobius lorestanicus* sp. nov. and *N. ostovani* sp. nov. (Acari: Camerobiidae) from Iran. Zootaxa, 3764 (4): 441-454. doi: 10.11646/zootaxa.3764.4.4
- Khaustov, A.A. and Abramov, V.V. 2017. A new species and a new record of raphignathoid mites (Acari: Raphignathoidea: Camerobiidae, Stigmaeidae) occurring in the galleries of bark beetles (Coleoptera: Curculionidae: Scolytinae) from Russia. Systematic and Applied Acarology, 22(9): 1385-1398. doi:10.11158/saa.22.9.6
- Koç, K. 1999. Neophyllobius communis and its developmental stages (Acari, Camerobiidae). Entomologishe Berichten, Amsterdam, 59: 119-123.
- Koç, K. 2001. A new record of *Neophyllobius* Berlese (Actinedida: Camerobiidae) for the fauna of Turkey. Turkish Journal of Entomology, 25 (4): 257-262.
- Koç, K. and Ayyıldız, N. 1996. A new species of *Neo-phyllobius* Berlese (Acari: Camerobiidae) from Turkey. International Journal of Acarology, 22 (4): 291-294. doi: 10.1080/01647959608684107
- Koç, K. and Madanlar, N. 2002. A new species of *Neo-phyllobius* Berlese (Acari: Camerobiidae) from Turkey. Acarologia, 42 (1): 61-66.
- Meyer, M.K.P. 1962. Two new predators of red scale (*Aonidiella auranti*) in South Africa. South African Journal of Agricultural Science, 5(3): 411-417.
- Uluçay, İ. and Koç, K. 2014. A new species of *Neophyllobius* and description of male of *Neophyllobius yunusi* (Acari: Camerobiidae) from Turkey. International Journal of Acarology, 40 (1): 15-22. doi: 10.1080/01647954.2013.870226
- Zmudzinski, M. 2020. New fossil stilt-legged mites of *Neo-phyllobius* Berlese, 1886 (Acariformes, Camerobiidae) from Eocene Baltic amber. Journal of Paleontology, 1-20.

doi: 10.1017/jpa.2020.13

Edited by: Salih Doğan Reviewed by: Three anonymous referees

Citation: Akyol, M. 2020. A new species of the genus *Neophyllobius* Berlese (Acari: Camerobiidae) from Denizli province, Turkey. Acarological Studies, 2 (2): 88-93.