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Abstract
The purpose of this study is to test predictive performance of Asymmetric Normal

Mixture GARCH (NMAGARCH) and other GARCH models based on Kupiec and Chris-
toffersen tests for Turkish equity market. The empirical results show that the NMA-
GARCH perform better based on %99 CI out-of-sample forecasting Christoffersen test
where GARCH with normal and student-t distribution perform better based on %95
Cl out-of-sample forecasting Christoffersen test and Kupiec test. These results show
that none of the model including NMAGARCH outperforms other models in all cases
as trading position or confidence intervals and the real implications of these results for
Value-at-Risk estimation is that volatility model should be chosen according to confi-
dence interval and trading positions. Besides, NMAGARCH increases predictive perfor-
mance for higher confidence internal as Basel requires.   

Key Words: GARCH, Asymmetric Normal Mixture GARCH, Christoffersen Test, Emerging Markets
JEL Codes: C52, C32, G0

Özet - Risk Yönetiminde Asimetrik Normal Karma GARCH Modelinin 
Öngörü Performans›: Türkiye Uygulamas›

Bu çal›flman›n amac›, Türk hisse senedi piyasas› için Asimetrik Normal Karma
GARCH (NMAGARCH) ve di¤er GARCH modellerinin öngörü performans›n› Kupiec
ve Christoffersen geriye dönük testleri ile test etmektir. Ampirik bulgular %99 güven
aral›¤› için örneklem d›fl› Christoffersen testine göre NMAGARCH modelinin,  %95
güven aral›¤› için örneklem d›fl› Christoffersen ve Kupiec testlerine göre normal ve
student-t da¤›l›ml› GARCH modelinin di¤er modellerden daha iyi sonuç verdi¤ini gös-
termektedir. Bu sonuçlar, NMAGARCH modeli de dâhil olmak üzere hiçbir modelin
di¤er modellere göre tüm posizyon ve güven aral›klar›nda daha iyi sonuç vermedi¤i-
ni göstermektedir ve Riske Maruz De¤er hesaplamas›nda bu bulgunun sonucu vola-
tilite modelinin ticaret posizyonu ve güven aral›¤›na göre seçilmesi gerekti¤idir. Ay-
r›ca, NMAGARCH modeli Basel’›nda gerektirdi¤i flekilde yüksek güven aral›¤›nda ön-
görü performans›n› artt›rmaktad›r.  

Anahtar Kelimeler: GARCH, Asimetrik Normal Karma GARCH, Christoffersen Testi, Geliflmekte Olan Piyasalar 
JEL S›n›flamas›: C52, C32, G0
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1. Introduction

Modeling return volatility of the financial instruments is a crucial task for risk

management, trading and hedging strategies. Especially in the developing markets

in which non-linear behaviors in stock returns and asymmetries in the return volatil-

ities occur due to dynamic and chaotic financial environment, advanced financial

modeling techniques are required for accurate and correct estimation of return

volatility. 

In emerging markets, because of portfolio investments of hedge funds, low mar-

ket volume and unstable political and economic conditions, the volatility in the

returns of financial variables are relatively higher and shows an asymmetric charac-

ter in that it increases in case of emergence of negative information. What is more,

high volatility in the form of shocks causes regime switches, which are not easy to

be estimated and modeled with static econometric models.   

In the finance literature, among many volatility models, the most successful mod-

els are seen as the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) models by Bollerslev (1986), who generalizes the seminal idea on

Autoregressive Conditional Heteroskedasticity (ARCH) by Engle (1982), and their

numerous generalizations that add asymmetries, long memory, or structural breaks.

GARCH models are popular due to their ability to capture many of the typical styl-

ized facts of financial time series, such as time-varying volatility, persistence and

volatility clustering. Andersen and Bollerslev (1998) find that GARCH models do real-

ly provide good volatility forecasts, in particular when a good proxy for the latent

volatility, such as the realized volatility, is adopted.  

In this paper, five main GARCH models are used to estimate the stock market vo-

latility. In addition, each model is applied on the time series with different normality

assumptions, mainly normal distribution, Student’s t distribution and skewed Stu-

dent’s t distribution. In recent research, asymmetric normal mixture GARCH models

have been used in volatility modeling. Research by Alexander and Lazar (2003,

2005, 2006) uses GARCH(1,1) models with normal mixture conditional densities ha-

ving flexible individual variance processes and time-varying conditional higher mo-

ments.

The importance of using (asymmetric) normal mixture GARCH process lies in the

fact that it can captures tails in the financial time series more properly. That is very

important for modeling return volatility in the emerging financial markets where

asymmetric high volatility observed during financial shocks. The emerging markets
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are open to internal or external shocks observed due to hot money movements, low

trade volume, thin trading and instability. Markov regime switching models are used

to capture the effects of the sudden shocks in the emerging markets. The normal

mixture GARCH models are similar to Markov switching models and easier for use

as it will be explained in the methodology part. This paper tries to estimate the re-

turn volatility in the Istanbul Stock Exchange by using five GARCH models including

the normal mixture GARCH models with tree different normality distributions. The

aim of this research is to examine if the normal mixture GARCH models produce mo-

re accurate results and are able to capture shocks as long memory processes.       

The paper is constructed as follows. In the next part, a literature review on the

predictive performance in return volatility in financial markets is presented. The test

results in the literature with different markets and sample periods are compared. In

the third part, the methodologies of the GARCH models and different normality dis-

tributions are introduced. The importance is given on the methodology of asymmet-

ric normal mixture GARCH model introduced by Alexander and Lazar (2003, 2005).

After presenting the descriptive statistics of the data, empirical tests and Kupiec and

Christoffersen back-tests are implemented. The predictive performances of the fifte-

en GARCH models in-sample and out-of-sample forecasting results are compared.

The paper ends with suggestions for risk management and trading functions for

their Value-at-Risk calculations and future financial research conducted in the transi-

tory economics.

2. Literature Review

Early empirical evidence has shown that a high ARCH order should be used to cap-

ture the dynamics of the conditional variance. GARCH process constructed by Bollers-

lev (1986) solves the problem in the ARCH model. GARCH model is based on an infi-

nite ARCH specification and reduces the number of estimated parameters by imposing

non-linear restrictions on them. 

The GARCH models are extended under different motivation and assumption by

researchers. The alternative models are Exponential GARCH (EGARCH, Nel-

son(1991)), GJR (Glosten, Jagannathan, and Runkle, 1993), Asymmetric Power

ARCH (APARCH, Ding, Granger, and Engle (1993)), Integrated GARCH (IGARCH,

Engle and Bollerslev (1986)), Fractionally Integrated GARCH (FIGARCH, Baillie, Bol-

lerslev, and Mikkelsen (1996) and Chung (1999)), Fractionally Integrated Exponen-

tial GARCH (FIEGARCH, Bollerslev and Mikkelsen (1996)), Fractionally Integrated

Asymmetric Power ARCH (FIAPARCH, Tse (1998)) and Hyperbolic GARCH
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(HYGRACH, Davidson (2001)). Ackert and Racine (1999), Darrat and Benkato

(2003) and Puttonen (1995) use different GARCH models with different markets

and time periods and conclude that the GARCH models are successful to model the

volatility in the stock returns. As a long memory process, the normal mixture GARCH

model captures shocks effects in the time series is used by Alexander and Lazar

(2005, 2006). 

The GARCH models are used with different assumptions on normality distributi-

ons. Bollerslev and Wooldridge (1992) shows that under the normality assumption,

the quasi maximum likelihood estimator is consistent if the conditional mean and

the conditional variance are correctly specified. This estimator is, however, ineffici-

ent with the degree of inefficiency increasing with the degree of departure from

normality. Since the issue of fat-tails is crucial in empirical finance, using a more ap-

propriate distribution might reduce the excess kurtosis displayed by the residuals of

conditional heteroscedasticity models. Palm (1996), Pagan (1996) and Bollerslev,

Chou, and Kroner (1992) use fat-tailed distributions in the literature. Bollerslev

(1987), Hsieh (1989), Baillie and Bollerslev (1989) and Palm and Vlaar (1997) show

that these distributions perform better in capturing the higher observed kurtosis.

The importance of skewness is explained in many researches. In a recent study,

Christoffersen and Jacobs (2004) show that a simple asymmetric GARCH, that cap-

tures the leverage effect, performs best of all GARCH model considered. Bekaert

and Wu (2000) and Wu (2001) display the fact that the ‘leverage effect’ in stocks

determines a strong negative correlation between returns and volatility, which is the

most important reason for skewness in stock returns. Christoffersen, Heston and Ja-

cobs (2004), Bates (1991) focus on the connection between time-variability in the

physical conditional skewness and the empirical characteristics of option implied vo-

latility skews.

The difference between the physical and risk neutral skews is among the recent is-

sues in financial research. Bates (2003) states that the difference between the risk-ne-

utral and observed distributions cannot be explained unless the existence of a time-

varying volatility risk premium is considered. Bates (2003) conducts the research ba-

sed on real-world models with a single volatility component. However, Haas, Mittnik

and Paolella (2004) and Alexander and Lazar (2005) show that GARCH models with

time-varying volatility provide a better fit to the physical conditional densities than

GARCH specifications with only one volatility state. The conditional higher moments

endogenously determined are time varying in those models. Therefore, their implied

volatility skews exhibit the features of risk neutral index skews. 
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Non-normality in conditional and unconditional returns is higher than that can be

captured by GARCH(1,1) models with normally distributed errors. Bollerslev (1987)

constructs GARCH(1,1) model with Student-t distribution. Fernandez and Steel

(1998) extend the model to the skewed t-distribution. These t-GARCH models have

no time-variation in the conditional higher moments. On the other hand, Haas, Mitt-

nik and Paolella (2004) and Alexander and Lazar (2006) in their recent researches

conduct GARCH(1,1) models with normal mixture conditional densities. The normal

mixture GARCH models are flexible in individual variance processes and have time-

varying conditional higher moments. Alexander and Lazar (2006) show that if the

model has more than two variance components, biases in parameter estimates are

likely to result, and the estimated conditional skewness and excess kurtosis can be

unstable over time. For modeling major exchange rate time-series, they find that the

mixture of two GARCH(1,1) components models outperform both symmetric and

asymmetric t-GARCH models and normal mixture GARCH(1,1) models with more

than two components. 

For stock market returns volatility, there are certain discrete time-varying models

in the literature based on asymmetric GARCH models Engle and Ng (1993), Glosten,

Jagahannathan, and Runkle (1993) Nelson (1991) show that the models capture

only one source of skewness, namely, the leverage effect. Additional structure is

needed to capture the empirical observations about the nature of skewness in the

risk-neutral equity index skew. This paper deals with the problem by using asymmet-

ric normal mixture GARCH model with reality check.  

3. Methodology

Reliable forecasting of return volatility in the financial markets is crucial for tra-

ding, risk management and derivative pricing. Return volatility is affected by time

dependent information flows resulting in pronounced temporal volatility clustering.

Therefore, financial time series should be parameterized with Autoregressive Condi-

tional Heteroskedastic (ARCH) models modeling a time-turn varying conditional va-

riance as a linear function of past squared residuals and of its past values. In other

words, ARCH models are used to forecast conditional variances in that the variance

of the dependent variable is modeled as a function of past values of the dependent

variable or exogenous variables. ARCH models are constructed by Engle (1982) and

generalized as GARCH by Bollerslev (1986) and Taylor (1986). 

Different GARCH models are used to estimate the return volatility of financial

instruments. EGARCH (Nelson, 1991), GJR (Glosten, Jagannathan and Runkle;
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1993), APARCH (Ding, Granger and Engle; 1993), IGARCH (Engle and Bollerslev;

1986), FIGARCH (Chung, 1999), FIEGARCH (Bollerslev and Mikkelsen, 1996), FIA-

PARCH (Tse, 1998) and HYGARCH (Davidson, 2001) are the most known extensions

and/or revisions of the ARCH model. The researches show that GARCH models can

provide good in-sample parameter estimates and, when the appropriate volatility

measure is used, reliable out-of-sample volatility forecasts. Recently the asymmetric

normal mixture GARCH model has been used to capture asymmetric volatility in the

returns. This paper tests the predictive performance of different GARCH models

with normal, Student’s t and skewed Student’s t distributions of the error terms.

Following fifteen models are constructed and compared for estimating return

volatility in the Istanbul Stock Exchange. 

i) GARCH with normally distributed errors

ii) GARCH with symmetric Student’s t distributed errors

iii) GARCH with skewed Student’s t distributed errors

iv) GRJ with normally distributed errors

v) GRJ with symmetric Student’s t distributed errors

vi) GRJ with skewed Student’s t distributed errors

vii) FIGARCH with normally distributed errors  

viii) FIGARCH with symmetric Student’s t distributed errors

ix) FIGARCH with skewed Student’s t distributed errors

x) HYGARCH with normally distributed errors 

xi) HYGARCH with symmetric Student’s t distributed errors

xii) HYGARCH with skewed Student’s t distributed errors

xiii) NM-AGARCH with normally distributed errors

xiv) NM-AGARCH with symmetric Student’s t distributed errors

xv) NM-AGARCH with skewed Student’s t distributed errors

In a static linear model , the error term is accepted as a

random variable with normal distribution and homoscedasticity or equal variance

denoted in the Eq. 1. 

(1)

Engle (1982) constructs Autoregressive Conditional Heteroscedasticity (ARCH)

model to explicit the time-varying variance. 

Var ε
i

/ χ
i( ) = E εi - E εi / χ i( )[ ]

2

= σ 2

εi( )yi = α + βχ
i

+ εi( )

12 Atilla Çifter, Alper Özün



(2)

Where D(.) is a probability density function with mean 0 and unit variance. In the

Eq. 2, σi is the conditional variance of εt and varies on time and ω is constant. The

conditional variance of εt is indeed an increasing function of the square of the shock

that occurred in t-1. If εt-1 was large in absolute value, and εt is expected to be

large as well (Laurent and Jean-Philippe, 2002). 

A high ARCH order has to be selected to catch the dynamics of the conditioal

variance. Bollerslev (1986) constructs Generalized ARCH (GARCH) for this issue. The

GARCH Model includes the effects of both the linear variance and conditional vari-

ance of the past.  

(3)

Where again {εt} is a sequence of iid random variables with mean 0 and varian-

ce . The latter constrain on αi

+ βi implies that the unconditional variance of εt is finite, whereas its condtional va-

riance envolves ever time(Tsay, 2005). 

The volatility in the returns increases more than the expected with the negative

information if there is asymmetry in the time series. The first GARCH model captu-

ring the asymmetry in the volatility is Exponential GARCH constructed by Nelson

(1991).

(4)

(5)

In the model, the parameters are positive since the logarithmic values of the con-

ditional variance are employed. The Eq. 5 adds the asymmetric characteristic in the

model. While “θ” determines the sign of the error term affecting the conditional va-

riance and “γ”states the size effect. If there is asymmetry in the time series, θ sho-

uld be less than zero. 

In (σ t ) = δ + (1+αlL) f (u t- l / σ t / 1
1- 2 )+β1Inσ t - l

f ut -1 /σ t -1
1/ 2( ) =θu t -1 + γ ut -1 / σ t -1

1/2 −E u t - 1 /σ t -1
1/ 2( )

σ t
2

1.0,α0 > 0,αi ≥ 0, βj ≥ 0, and (αi + βi ) < 1
i =l

max( m .n )

∑

σ t
2 = α0 + αi εt - i

2

i =1

m

∑ + β iσ t - j
2

j =l

m

∑

σ t
2

εt = z tσt

z t = i.i.d .D(0.1)

σ t
2 = ω + α iεt - i

2

i =1

q

∑
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Gloslen, Jagannathan and Runkle (1993), and Zakoian(1994) state that asymme-

try in the return volatility can be modeled by adding a dummy variable into GARCH

model. GJR (Threshold GARCH) model is shown on Eq. 6.

(6)

In the model, if ut-1 higher than zero, It-1 is equal to 1, otherwise, equal to zero.

ARCH parameters in the conditional variance vary between α1 + γ1 and α1 in accor-

dance with the sign of the error term. The positive news are affected on the α1

while the negative news do α1 and γ1. If γ1 is higher than 1, it is accepted that there

is asymmetry effect while γ1 is equal to zero, on the other hand, the news impact

curve is symmetric. 

In time series with high frequency, the sum of the Alpha and Beta parameters

for the conditional variance estimated by GARCH (p,q) model is near or equal to 1

meaning that the volatility effects of the last observations in dataset increase. The

same situation is valid for mean equation, as well. When sum of all Auto Regressi-

ve (AR) and Moving Average (MA) parameters is equal to 1,  Auto Regressive Integ-

rated Moving Average (ARIMA) process is expected (Laurent and Peters, 2002). The

GARCH (p,q) process can be modeled as an Auto Regressive Moving Avegare (AR-

MA) process and written as on the Eq. 7 by using lag operator. 

(7)

The [1-α(L)-β(L)] function has a unit root, the sum of Alpha and Beta parameters

is 1 and gives Integrated GARCH model of Engle and Bollerslev (1986). IGARCH

model is denoted in the Eq. 8 (Laurent and Peters 2001). 

(8)

When the IGARCH process is modeled as a conditional variance of the squared

error terms, it can be written in GARCH formulation as in Eq. 9. 

(9)

In the time series, if the fractional difference of yt has a static process, yt is in the

fractional integration. In the (1-L)d = yt = εt equation, if d equals to 0, yt is static

and its autocorrelations are zero. If d is 1, on the other hand, yt has unit root with

zero frequency. In case of 0<d<1, the autocorrelations of yt slowly reaches into ze-

ro. For that reason, the fractionally integrated models are seen as the models inclu-

σ t
2 =

ω

1− β (L )
+ 1− φ (L )(1− L) 1− β (L )[ ]{

−1
εt -1

2

φ (L)(1−L)εt
2 = ω + 1− β (L)[ ] εt

2 − σ t
2( )

1−α(L) − β (L)[ ]εt
2 =ω + 1− β (L)[ ] εt

2 − σ t
2( )

σt =α0 +α1 u t -1
2 + γlut -1

2 l t -1 + β1σt - 1
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ding long memory (Harris and Sollis, 2003). The models with long memory requires

in case of high volatility and shocks.

Baillie, Bollerslev and Mikkelsen (1996) constructed Fractionally Integrated

GARCH (FIGARCH) model by replacing the lag operator with (1-L)d in the IGARCH

model. FIGARCH-BBM is represented in the Eq. 10.

(10)

The conditional variance in the FIGARCH (BBM) model is calculated by Eq. 11 where

(11)

Chung (1999) modifies the FIGARCH (BBM) model as it is in the Eq. 12 since ω

has theoretical problem and difficulties in the modeling in the practice. 

(12)

Where σ2 is the unconditional variance of εt. In this article, FIGARCH model sug-

gested by Chung (1999) is tested. 

Anther integrated model developed by Davidson (2002) as a special version of

FIGARCH is Hyperbolic GARCH. Davidson (2002) uses near epoch dependency in

order to reach long-term memory (Saltoglu, 2003). HYGARCH model can be written

in the Eq. 13 (Laurent and Peters, 2002). 

(13)

Recently, normal mixture GARCH (NM-GARCH) models have been started to use

in detecting the shocks and long-term memory in the returns of the financial instru-

ments. According to Alexander and Lazar (2005), NM-GARCH model can be seen as

the Markov switching GARCH model in a restricted  form where the transition pro-

babilities are independent of the past state. They argue that the NM-GARCH models

are easier to estimate than the Markov switching model constructed by Hamilton

and Susmel (1994). What is more, in the NM-GARCH models, the individual varian-

ces are only tied with each other through their dependence on the error term. 

The methodologies of the NM GARCH models are constructed and formulized by

Alexander and Lazar (2005). We follow Alexander and Lazar (2005) in presenting

the models. 

σ t
2 = ω 1− β L( )[ ]

−1
+ 1− 1− β L( )[ ]

−1
φ L( ) 1+α 1−L( )d⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

σ t
2 =σ t -1

2 + 1− β L( )[ ]
−1
φ L( ) 1−L( )d⎧

⎨
⎩

⎫
⎬
⎭
εt

2 −σ t -1
2( )

σ t
2 =ω 1− β L( )[ ]

−1
+ 1− 1− β L( )[ ]

−1
φ L( ) 1−L( )d⎧

⎨
⎩

⎫
⎬
⎭
εt

2

ω*= 1−β L( )[ ]
−1

,λ L( )= 1− 1−β L( )[ ]
−1
φ L( ) 1−L( )d⎧

⎨
⎩

⎫
⎬
⎭
εt

2,0 <d<1, and σ t
2 =ω* +λ L( )

φ L( ) 1− L( )d
εt

2 −σ t
2( ) = 1− β L( )[ ] εt

2 −σ t
2( )εt

2
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The asymmetric normal mixture GARCH model has one equation for the mean

and K conditional variance components representing different market conditions.

The error term has a conditional normal mixture density with zero mean as a weigh-

ted average of K normal density functions with different means and variances. 

(14)

From the Eq. 14, the conditional density of the error term is derived as

(15)

where ϕ is normal density functions with different constant means μi and differ-

ent time varying variances for i = 1,…, K.

In the model, it is assumed that K variances follow normal mixture GARCH

processes. The NM-GARCH is represented in the Eq. 16. 

(16)

NM-AGARCH based on the Engle and Ng, (1993) model is in Eq. 17.  

(17)

NM-GJR GARCH based on Glosten et al, (1993) is given by Eq. 18.  

(18)

where , and 0 otherwise. 

For both models, the overall conditional variance is

(19)

When K is bigger than 1, the existence of second, third and fourth moments are

assured by imposing less stringent conditions than in the single component in which K

is equal to 1. For asymmetric NM-GARCH models, the conditions for the non-negativity

of variance and the finiteness of the third moment are represented in the Eq. 20. 

(20)0 < pi < 1, i =1,K,K−1, pi

i =1

K-1

∑ < 1, 0 <αi , 0 ≤ β i < 1

σ t
2 = piσit

2 + piμ i
2

i =1

K

∑
i=1

K

∑

d t =1 if εt < 0

σ it
2 =α0 +αi εt -1

2 +λi dt-1
− εt -1

2 +βiσ it-1
2 for i=1,K,K

σ it
2 =α0+αi εt -1

2 − λ( )
2

+ βi σ it −1
2 for i =1,K,K

σit
2 =α0 +αi εt -1

2 + β iσ it −1
2 for i =1,K,K

σ it
2

η εt( ) = p iϕ i

i =1

K

∑

εt / I t −1 NM p1, ,pK ,μ1, ,μK ,σ1t
2 , ,σ Kt

2( ), pi =1,
i=1

K

∑ pi =1
i=1

K

∑ μi
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In the NM-GARCH Model, we should have Eq. 21. 

(21)

For the NM-AGARCH model, the Eq. 22 is valid.

(22)

and for the NM-GRJ GARCH Model, we should have Eq. 23.  

(23)

According to Alexander and Lazar (2005), both models have persistent asy-

mmetry, when the conditional returns density is a mixture of normal density com-

ponents having different means; it is generated by the difference between the ex-

pected returns under different market conditions. However, only the NM-AGARCH

and NM-GRJ GARCH models have dynamic asymmetry emerging when the λi para-

meters in the component variance processes capture time-varying short-term asy-

mmetries arising from the leverage effect. If λi is positive, the conditional variance

is higher following a negative unexpected return at time t - 1 than following a po-

sitive unexpected return. In the markets, since negative news corresponds to a ne-

gative unexpected return, positive λi should be expected. 

One of the assumptions in linear equation is to estimate the variance with normal

distribution. The log-likelihood function of the standard normal distribution is given by

Eq. 24(Peters, 2001) where T is the number of observations and . In normal

distribution, skewness and kurtosis take the value of (0, 3).

zt =
εt
σt

m = p iμ i
2 +

i =1

K

∑ piω i

1− β i( )
> 0, n =

pi 1−αi − 0.5λ − β i( )
1− β i( )i= l

K

∑
i =1
∑ > 0

and ω i + αi + 0.5λ( ) m
n

> 0

K

m = piμ i
2 +

i=1

K

∑
pi ω i +αi λi

2( )
1− β i( )

> 0, n =
pi 1−αi β i( )

1− β i( )i=l

K

∑
i=1

K

∑ > 0

and ω i +αi
m
n

+ λi
2 > 0

⎛

⎝
⎜

m =
i=1

K

∑ p iμ i
2 +

i=1

K

∑ p iω i

β( )i1 -

0, n =
i=1

K

∑ p i( )αi1- -β i

( )βi1−

<0

and ω i +αi
m
n

> 0
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(24)

Starting with Bollerslev(1987) and Hsieh(1989), Baillie and Bollerslev(1989) and

Palm and Vlaar(1997) show that fat-tailed distributions like Student-t perform better

to capture higher observed kurtosis. The log-likelihood function of the sdudent-t distri-

bution is given by Eq. 25 (Saltoglu, 2003). Like normal distribution, student-t distribu-

tion is also a symmetric.

(25)

Where ν is the degree of freedom, 2 < ν < ∞ and Γ(.) is the gama function. The

main drawback of these two distributions is that although student-t may account for

fat tails, they are symmetric. Recently, Lambert ve Laurent (2001) applied skewed stu-

dent-t distribution that is proposed by Fernandez ve Steel (1998) in Value at risk esti-

mation (Peters,2001). 

The main advantage of this density is that it considers both asymmetry and fat-tai-

led-ness(Saltoglu, 2003). If Γ(.) denotes the gamma function in the log-likelihood of a

standardized skewed student-t is given by Eq. 26(Peters, 2001). 

(26)

Where is the asymmetry parameter, η is 
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Forecasting ability of GARCH Models has been determined by squared daily re-

turns, Root Mean Squared Error (RMSE) or absolute failure rate that is offered by

Basle Committee on Banking Supervision (1996a, 1996b). The Basel backtesting is

based on recording daily exceptions as comparing one year of Profit&Loss to a %99

one tail confidence 1 day value at risk with an exception whenever Profit&Loss<-va-

lue at risk. Since Basel backtesting procedure do not consider failure rate in shock

positions we do not test models with this test. In order to compare asymmetric mix-

ture GARCH and other GARCH models we use two widely used back testing proce-

dures, Kupiec and Christoffersen test. 

In Kupiec test, define f as the ratio of the number of observations exceeding

Var(x) to the number of total observation (T) and pre-specified VaR level as α (Tang

and Shieh, 2006). The statistic of Kupiec LR test is given by Eq. 27 (Kupiec, 1995).

LR is distributed as chi-square distribution.

(27)

The VaRs of α quantile for long and short trading position are computed as in

Equation 28, 29 and 30 for normal, student-t and skewed student-t respectively(Tang

and Shieh, 2006). 

(28)

(29)

(30)

Where zα, stα,ν and skstα,ν,ξ are left or right tail quantile at α % for normal, stu-

dent-t and skewed student-t distributions respectively. 

Christoffersen test (Christoffersen, 1998) focuses on the probability of failure ra-

te and is based on testing whether Pr(r1 < vt) = p after conditioning on all informa-

tion available at time t (Sarma et all, 2001). The importance of testing conditional

coverage arises with volatility clustering in financial time series. 

Christoffersen test can be applied as follows (Saltoglu, 2003). Define Pα =

Pr(yt<VaRt(α)) to test H0:pα = α against H1: pα ≠ α. Consider {1(yt < VaR (α)}

which has a binomial likelihood L(pα)=(1-pα)n0(pα)n1. where n0 = 1 yt >VaRt(t=R

T

∑

VARlong = μ t − zασ t , VAR short = μ t − zασ t

VARlong = μ t − stα ,νσ t , VAR short = μ t − stα ,νσ t

VARlong = μ t − skstα ,ν ,ξσ t , VAR short = μ t − skstα ,ν ,ξσ t

LR = 2 log f x 1− f( )T -x⎡
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. Under the null hypothesis, it becomes . L(α) = (1 -

α)n0αn1. Thus the likelihood ratio test statistics is in Eq. 31.

(31)

We estimate VaR with  α = 0.01 and α = 0.05 confidence interval and backtest

VaR models with Kupiec in-sample and out-of-sample forecasting and Christoffersen

in-sample and out-of-sample forecasting test. We chose %99 C.I. as Basel II requires

%99 C.I. and %95 C.I. to compare VaR results with different C.I. level.

4. Data and Empirical Results 

Data

Istanbul Stock Exchange Rate (ISE-100 Index) is from Bloomberg. Our dataset co-

vers 2412 daily observations from 01/10/1996 to 11/07/2006. We constituted the

series in log-differenced level. Figure 1 shows ISE Index in log-differenced series. By

performing Augmented Dickey–Fuller (Dickey and Fuller, 1981) test we found that

ISE Index is stationary at log differenced level (as Augmented Dickey-Fuller test of

I(1) with  0 lags  is equal to -48.2929 {<%1}). The estimation process is run using

10 years of data (1996-2005) while the remaining 5 year (252*5 days) is used for

out-of-sample forecasting.

LR = 2In L α( )( ) / L p( ) d⎯ →⎯ χ 1( )

α( )) and n1 = 1 yt<VaRtα( )( )t=R

T

∑
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Figure  1. ISE Log-differenced series



Empirical Results 

In this subsection, we report estimation and Kupiec and Christoffersen tests

results for Asymmetric Normal Mixture GARCH and other GARCH Models and

detailed in Methodology section. We used Ox programming language (see Doornik,

1999) and parameters are estimated using Quasi Maximum Likelihood technique

(Bollerslev and Woolridge, 1992) and BFGS quasi-Newton method optimization

algorithm used. Estimation of Asymmetric Normal Mixture GARCH is performed

with modified version  of Alexander and Lazar(2006) codes and other GARCH mod-

els is carried out with G@rch 3.0 (Laurent and Peters, 2002).

Table 1 and Table 2 shows GARCH, GRJ, FIGARCH and HYGARCH estimation re-

sults with normal, student-t and skewed student-t distributions. α and β1 parame-

ters for all of the models statistically significant. Student parameters (ν) are statisti-

cally significant for all the GARCH models and thus shows that time series is fat tai-

led. For the skewed student-t distribution, the asymmetric parameters (ξ) are nega-

tive and statistically significant for all GARCH models. Thus show that the density

distribution of ISE skewed to to left. 
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Table 1.  Estimation Results from GARCH(1,1) and GRJ(1,1) 



Estimated long memory parameter of d for FiGARCH and hyperbolic parameter

of In(α) for HyGARCH are statistically significant (Table 2). 

As reported in Table 3, ω, α, β1 and normal mixture γ (Gamma) parameter statis-

tically significant for all of the Asymmetric Normal Mixture Models. Besides student-t

and skewed student-t parameters ν-Student t, ξ-Skewness and ν-Skewness are also

statistically significant. These results shows that Asymmetric Normal Mixture GARCH

models may perform better and this hypothesis can be tested with backtesting proce-

dures such as Kupiec and Christoffersen tests.

Table 4 shows Root Mean Squared Errors(RMSE), Mean Squared Errors(MSE), in-

formation criteria test and Nyblom test(Nyblom, 1994) results.  Nyblom tests statistics

shows that all of the models’ parameters are stable. 
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Table 2. Estimation Results from FIGARCH(1,d,1) and HYGARCH(1,d,1)

Table 3.  Estimation Results from NORMAL MIXTURE-AGARCH(1,1) 



*  1 day ahead out-of-sample forecasting based on 252 days evaluation. 
**  Q-Statistics on Squared Standardized Residuals

As reported in Çifter (2004), RMSE or MSE may not be adequate backtesting test
as these tests do not consider tail probability and overshooting effects. This can be
seen in Figure 2 as RMSE is maximum for NMGARCH models where Akaike criteria
tests are not maximum for NMGARCH models. Kupiec and Christoffersen tests can
be more consistent to compare GARCH models.
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Table 4. Forecast Evaluation Measures* 
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Figure  2. RMSE and Akaike Values



We compared VaR models with Kupiec test for long and short trading positions.

We define a failure rate for long trading position as percentage of negative returns

smaller than one-step ahead VaR for long position (left tail of the density distribution

of the returns) and a failure rate as the percentage of positive returns larger than one-

step ahead VaR for short position (right tail of the density distribution of the returns).

The empirical results based on Kupiec in-sample forecasting test are summarized in

Table 5 and Figure 3. The table contains Kupiec failure rates for short and long position

VaR. Number of in-sample-forecasting is 15 days and confidence interval(C.I.) is chosen

as with α=0.01 and α=0.05. Table 5 can be read as follow. If the model is estimated

accurately, it should explain the actual observations very well. The failure rate should

be equal to the pre-specified VaR level, and Kupiec LR test would not reject its null

hypothesis as failure rate equals to α (Tang and Shieh, 2006). 

In sample VaR results for long and short trading positions are reported in Table

5. The empirical results of Kupiec in-sample forecasting test shows that NMAGARCH

with Gaussian distribution for short position and FIGARCH(1,d,1) with skewed stu-

dent-t distribution performs better for α=0.05 where NMAGARCH with student-t for

short position and GRJ with student-t and HYGARCH with skewed student-t distri-

bution for long position performs better for  α=0.01. These results show that none

of the model outperforms other models based on Kupiec in-sample forecasting.

Since in-sample forecasting estimates VaR with only know the past performance,

out-of-sample forecasting is more consistent. Our out-of-sample forecast evaluation

uses one step ahead prediction for 252x5 days forecast sample. Out of sample VaR

results for long and short trading positions are reported in Table 6 and Figure 4. The

empirical results of Kupiec out-of-sample forecasting test shows that FI-

GARCH(1,d,1) with skewed student-t distribution and HYGARCH(1,d,1) with ske-

wed student-t distribution for short position and HYGARCH(1,d,1) with student-t

distribution performs better for α=0.05 where NMAGARCH with Gaussian distribu-

tion for short position and GRJ with Gaussian distribution and NMAGARCH with Ga-

ussian distribution for long position performs better for α=0.01. The empirical evi-

dence is in favor of the FIGARCH with skewed student-t, HYGARCH with skewed

student-t, GRJ with Gaussian, GRJ with student-t and NMAGARCH with Gaussian

distribution based on Kupiec in-sample and out-of-sample forecasting. 

Christoffersen test VaR results for in-sample and out-of-sample forecasting are re-

ported in Table 7 and Figure 5. The empirical results in-of-sample forecasting results

shows that NM-AGARCH with Gaussian distribution for α=0.05 and FIGARCH(1,d,1)

with Gaussian distribution for α=0.01 performs better where out-of-sample forecas-

ting results show that GARCH(1,1) with Gaussian distribution for α=0.05 and NMA-

GARCH  with student-t for α=0.01 performs better. 
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Empirical results based on Kupiec and Christoffersen tests show that volatility

model should be chosen in accordance with confidence interval and trading positi-

ons. However, NMAGARCH model has better predictive performance for higher

confidence interval. The Basel II Accord requires accurate volatility model, which is

statistically significant at 99 % confidence level. 

Figure 6 shows out-of-sample estimation for GARCH and NM-AGARCH with ga-

ussian and skewed student-t distribution. NM-AGARCH captures fat-tailed behavior

of the data(shocks) better than GARCH.

*, **  are %5 and %10 confidence level respectively.  

δ Number of forecast:15 days
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Table 5.  In-Sample-Forecasting Kupiec Test 



*, ** are %5 and %10 confidence level respectively. 

δ Number of forecast:252*5 days and 1 day ahead
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Table 6.  Out-of-Sample Forecasting Kupiec Test 



& Number of forecast(in-sample):15 days ahead
δ Number of forecast(out-of-sample): 1 day ahead for 252*5 days sample
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Table 7. Christoffersen Test  
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5. Conclusion 

Though volatility in stock returns provides opportunity in earning profit for tra-

ders, it is a threat for risk managers in balancing risk-return relationship. In emer-

ging markets, return volatility is relatively high due to low market volume, unstable

political and economic conditions, and hot money from international investment

portfolios. High volatility and non-linear returns in stock prices require advanced vo-

latility measurement models based on non-normal distribution of returns. They sho-

uld catch the fat tails and regime switches, which are not easy to be estimated and

modeled with static econometric models.   

In this paper, the return volatility of stocks traded in the Istanbul Stock Exchan-

ge is estimated by different GARCH models. The research is especially interested in

the predictive performance of Asymmetric Normal Mixture GARCH (NMAGARCH)

based on Kupiec and Christoffersen tests for the Istanbul Stock Exchange National

100 Index. In this respect, this article includes the first research employing the NMA-

GARCH model in Turkish equity markets. What is more, it has original contribution

to the finance literature by conducting reality check of the NMAGARCH model with

comparing the classical GARCH models.  

By examining fifteen GARCH models with alternative return distribution assump-

tions, the paper shows that the NMAGARCH perform better based on 99 %confi-

dence interval out-of-sample forecasting Christoffersen test. On the other hand, Fi-

GARCH with skewed student-t, HyGARCH with skewed student-t, GRJ with normal,

GRJ with student-t and NMAGARCH with Gaussian distribution perform better ba-

sed on 95 % confidence interval out-of-sample forecasting Christoffersen test and

Kupiec tests. 

The empirical evidence has a crucial concluding remark in prediction of stock

market volatility. These results show that none of the model including NMAGARCH

outperforms other models in all cases as trading position or confidence intervals and

the real implications of these results for Value-at-Risk estimation is that volatility mo-

del should be chosen according to confidence interval and trading positions. Howe-

ver, NMAGARCH model has better predictive performance for higher confidence in-

terval. The Basel II Accord requires accurate volatility model, which is statistically sig-

nificant at 99 % confidence level. The paper show that for accurate internal volati-

lity models being proper for the Basel II Accord, advanced models based on financi-

al computing should be constructed by examining the nature of the markets under

investigation.    
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