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ABSTRACT 
In this study, we consider the integrated problem of capacity expansion planning and job/machine scheduling in a sewing 

workshop. The separate problems have been studied before; however the important integrated decision has not been previously dealt 
with. We model the problem mathematically and develop an iterative solution approach to aid the decision maker. We demonstrate the 
execution of the approach on a sewing workshop example. The results are discussed together with future research directions.   

Key Words: Capacity expansion problem, Workshop scheduling, Interval scheduling, Operational scheduling problem, Tactical 
scheduling problem. 

ÖZET 
Bu çalışmada bir dikim atölyesinde kapasite artırımı ve iş/makine çizelgeleme problemleri bütünleşik olarak ele alınmıştır. 

Literatürde bu problemler ayrı ayrı çalışılmış olsa da bütünleşik yaklaşımı içeren bir çalışmaya rastlanmamıştır. Problem matematiksel 
olarak modellenmiş ve karar vericiye yardımcı olacak tekrarlı bir çözüm yaklaşımı geliştirilmiştir. Geliştirilen yaklaşımın çalışma 
ilkeleri bir dikim atölyesi örneği üzerinde gösterilmiştir. Sonuçlar gelecek çalışma konusu öneriyle birlikte tartışılmıştır. 

Anahtar Kelimeler: Kapasite artırımı problemi, Atölye çizelgelemesi, Aralık çizelgeleme, Operasyonel çizelgeleme problemi, 
Taktik çizelgeleme problemi. 
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1. INTRODUCTION 

In many industries, swift competition 
renders it extremely difficult to create 
and sustain competitive advantage. 
Foreign competitors and rapid 
technological advances are compelling 
firms to innovate hastily. While such 
industries as consumer electronics and 
communication technology are well-
known examples, the fashion apparel 
industry provides an interesting case 
of hyper-competitive behavior (1). 
Competition in terms of price and 
quality in the fashion apparel industry 
has intensified over the last few 
decades. While low-cost manufacturing in 
less-developed countries initially 
provided an edge for the larger and 
aggressive fashion apparel firms, a 
large number of subcontractors in 
developing countries like Turkey have 
made low-cost global manufacturing 
accessible to even small competitors 
today.  

The increased use of subcontracting in 
all stages of production brought a set 
of innovations in the subcontractor’s 
side, like quick response related with 
timing and know-how, rapid learning, 
cost-cutting techniques, etc. The 
subcontractors are usually small 
companies and many in number, and 
the competition among them is harsh. 
Hence, careful management of 
production and operations is crucial for 
these small companies in order to hold 
their contracts.  

Scheduling of the incoming jobs on the 
machines in the system is a very 
important decision in operations 
management, affecting the lead times, 
turnover rate and the utilization levels 
in the company. A nice literature 
review on scheduling in job shops is 
done by Jain and Meeran (2). Capacity 
planning is another significant 
decision, which influences the machine 
and worker utilization rates, and 

shapes the overall performance. 
Especially in small job-shop type firms, 
these two decisions are vitally 
important.  

We handle the integrated problem of 
capacity expansion and scheduling in 
a sewing workshop in the fashion 
apparel industry. The developed 
approach can also be applied to other 
small job-shop type facilities in the 
industry. Such subcontractors in the 
fashion apparel industry, especially the 
smaller workshops, work with many 
different contracting firms in general. 
The utilization levels in these 
workshops are usually very high and a 
24-hour working day may be required. 
Usually, the incoming orders are 
known in advance to allow for 
planning, and the processing time for 
the order can be estimated by 
experience. In this study, we combine 
the capacity expansion and scheduling 
problems for the subcontractor in such 

366 TEKSTİL ve KONFEKSİYON   4/2010 



 

TEKSTİL ve KONFEKSİYON   4/2010 367 

an environment, present involved 
mathematical models and develop an 
iterative algorithm to find an 
approximate solution. Although the 
scheduling and capacity planning 
problems have been studied, the 
integration of these problems has not 
been studied before. Our study aims to 
fill this important gap in the literature. 
The unique methodology developed in 
this study brings a novel contribution to 
the theory, and may be a pedestal for 
future studies and applications. 

We define the problem in detail, 
provide related mathematical models 
together with the related literature, and 
discuss the gaps in literature in the 
next section. The developed solution 
methodology is presented in section 3. 
We provide a numerical example in the 
context of a sewing workshop, and 
discuss the results in section 4. Finally, 
we conclude with many interesting 
future research topics. 

2. PROBLEM DEFINITION 

We consider a sewing workshop that is 
employed as a subcontractor for many 
different companies in the fashion 
apparel industry. There are m general-
purpose sewing machines in the 
workshop. In the upcoming 
foreseeable periods (the planning 
horizon of the workshop), n jobs 
require processing on the machines. 
We assume that the machines in the 
workshop are identical in speed and 
parallel, so that an incoming job can 
be completed on any of the machines. 
Foreseeable future is defined as a 
number of upcoming periods, during 
which the demand is forecasted with a 
desired level of accuracy. The capacity 
expansion plan will be valid during this 
period, and the length may change 
according to the workshop’s demand 
structure.  

For a capacity expansion plan to be 
technologically and economically 
feasible, making medium-range (3-
month to 3-year) forecasts should be 
possible (3). This may be a very 
probable case for a subcontractor 
workshop with many employer firms 
and a stable demand. Another case 
where capacity expansion plan will 
work is where the machines in the 

workshop have high salvage values 
and could be replaced easily, or where 
the machines can be leased in and out 
as convenient without much difficulty. 
In such a case, increasing or 
decreasing the capacity level of the 
workshop will have a small cost, and 
can be done frequently without having 
to make very accurate forecasts. The 
sewing workshops with general-
purpose sewing machines may fall into 
either of the above categories, 
depending on the demand. 

In our problem we assume that a 
machine can process at most one job 
at a time. The machines are identical 
general-purpose machines, i.e. each 
machine can process each job. There 
are no machine breakdowns; 
machines are available at all times. 
Further, we assume that a job should 
be processed without any interruption 
on at most one machine, i.e. there is 
no preemption or job splitting. All 
parameters are known with certainty 
and are integer numbers, and the 
setup times between job changeovers 
are included in the processing times of 
jobs. 

Each incoming job j has a ready date 
(rj), and a deadline (dj), and the 
processing time of a job is the 
difference between these two dates (pj 
= dj – rj). Each job brings a profit (wj). 
Based on the above assumptions and 
definitions, the workshop resembles a 
reservation system, where incoming 
jobs reserve time slots on the 
machines.  

The scheduling of a subset of the 
incoming jobs on the current set of 
machines so that the total profit will be 
maximized is called an operational 
scheduling problem. With the above 
definitions, this problem for the defined 
workshop could be modeled as 
follows.    

i, j :  Job indices, i, j =1,...,n 
k:  Machine index, k = 1,...,m. 

jkx =  

The binary decision variable defined 
above takes the value of one if job j is 
processed on machine k, and zero 
otherwise. In order to model the 

problem, we form a chronological 
sequence of ready times and 
deadlines. For this purpose, let {t1, t2, 
..., tz} be the sorted sequence of the rjs 
and djs in chronological order with 
duplicates removed. Let Pa be the set 
of jobs that need to be processed in 
the interval [ta, ta+1) for a=1, 2,..., z-1.  

Then the mathematical model for the 
profit maximization problem becomes: 

Maximize ZO =
1 1

m n

j jk
k j

w x
= =
∑∑         s.t. 

1

1 1,.
m

jk
k

..,x j n
=

≤ =∑      (1) 

1 1,...,
a

jk
j P

x k m
∈

a≤ =∑ ∀  (2) 

{ }0,1 1,..., 1,...,jkx k m j∈ = = n    (3) 

The objective function ZO of this binary 
programming model maximizes the 
total profit brought by the processed 
jobs. Note that some jobs may be left 
unprocessed since the processing 
times may be overlapping and we 
have only a limited number of 
machines. Constraint set 1 indicates 
that each job should be processed on 
at most one machine. Constraint set 2 
assures that no machine can process 
more than one job at a time. The 
binary variable constraints 3, together 
with other constraint sets avoid 
preemption and job splitting. 

The capacity planning problem can be 
modeled using the same assumptions 
and definitions. The model answers 
the question “In order to process all 
incoming jobs, how many machines 
should the workshop have?” 

For this purpose, a new binary 
decision variable needs to be defined 
as follows: 

0,  if no job is assigned to machine ,
.

1,  otherwise.
⎧

= ∀⎨
⎩

k

k
y k  

The capacity planning model 
becomes: 

Minimize ZT =   s.t. 
1

m

k
k
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1 1,...,
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1,  if job  is processed on machine 
0,  otherwise.
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1 1,...,
a

jk
j P

x k m
∈

≤ =∑ a∀     (2) 

{ }0,1 1,..., 1,...,jkx k m j∈ = = n     (3) 

1,..., 1,...,jk kx y k m j≤ = = n  (4) 

{ }0,1 1,...,ky k∈ = m      (5) 

The objective function ZT tries to 
minimize the number of machines to 
process all n incoming jobs. The first 
three constraint sets are the same as 
the previous model. Constraint set 4 
prevents ensures the assignment of 
the jobs to only used machines, and 
constraint set 5 indicates the binary 
nature of the machine usage variables 
yk. In this model, m is an upper bound 
on the number of machines in the 
system.  

The profit maximization model described 
above is identical to the model of 
operational interval scheduling, and 
the number minimization model is 
identical to the tactical interval 
scheduling model, both of which are 
well-known and well-studied models in 
literature.  

Interval Scheduling is an important 
problem in scheduling that is frequently 
encountered in manufacturing and 
service sectors. The problem considers 
the scheduling of jobs with predetermined 
ready times and deadlines on identical 
parallel machines. Besides its broad 
application areas in various 
manufacturing systems, the problem 
has important applications in the 
service sector, especially in reservation 
systems (where resource times are 
reserved in advance, such as hotel 
reservation, vehicle rental/repair systems, 
classroom scheduling etc.). The 
interval scheduling problem has been 
studied under different names in 
literature such as fixed job scheduling 
(4, 5, 6, 7, 8, 9), scheduling jobs with 
fixed start and end times (10) or class 
scheduling (11, 12). Kovalyov et al. 
(13) and Kolen et al. (14) provide 
recent reviews on interval scheduling 
problems and applications. The 

problem can be applied to almost any 
reservation system. 

Bouzina and Emmons (15) formulate 
the operational interval scheduling 
problem as a Minimum Cost Network 
Flow (MCNF) problem with n+1 nodes 
and 2n arcs. Hence, the profit 
maximization problem described in this 
section is polynomially solvable. 
Operational interval scheduling has 
been studied under eligibility and time 
limitations by Eliiyi and Azizoğlu (4-7). 
The authors have shown that the 
problem becomes NP-hard under these 
limitations, and provided effective exact 
and approximate solution procedures for 
the problem. Other studies on the 
problem under different sets of 
constraints include (8, 11, 16). 

The tactical interval scheduling described 
above as the capacity planning 
problem was studied by Hashimoto 
and Stevens (17). The problem is 
shown to be polynomially solvable, but 
the problem becomes hard to solve as 
different constraints are added. The 
problem with time limitations has been 
studied by Fischetti et al. (18- 20), and 
several algorithms are proposed by the 
authors for optimal and near-optimal 
solutions. The problem with eligibility 
and availability constraints has been 
studied in (9, 12). 

It is obvious from the above analysis 
that the operational and tactical 
problems have been popular study 
topics separately. However, to the best 
of our knowledge, there has been no 
attempt to combine these two models 
in order to reach an integrated decision 
of incremental capacity expansion and 
scheduling. The integrated problem is 
a very important one, answering the 
following question: “How many extra 
machines should the workshop include 
in order to increase the profit to a 
desired level, and how should the 
incoming jobs be scheduled on these 
extra machines?”. Thus, we intend to 
fill this gap in literature by providing an 

iterative solution approach for the 
mentioned decision. The specifics of 
the approach are provided in the next 
section. 

3. SOLUTION METHODOLOGY 

In this section, we first present the 
existing solution procedures for the 
operational and tactical interval 
scheduling problems, and then we 
provide the developed solution 
approach for the integrated capacity 
expansion and scheduling problem. 

Bouzina and Emmons (15) formulate 
the operational interval scheduling 
problem as a Minimum Cost Network 
Flow (MCNF) problem with n+1 nodes 
and 2n arcs as follows: The jobs are 
sorted in chronological order of ready 
times, and nodes s = V1, V2,…, Vn for 
each job, and a dummy node t = Vn+1 
are created. Each node is connected 
to the next with arc cost zero and 
capacity m, j=1,…,n. Besides, node Vj 
is connected to node Vk, where k is the 
first job not overlapping with job j, 
j=1,…,n. If no such job exists, we 
create the arc (Vj, t). Each of these 
arcs has cost –wj and capacity 1. 
Then, a flow of m from s to t is 
required and the resulting MCNF 
problem is solved.   

The conversion procedure is depicted 
in Figure 1. The jobs in Figure 1(a) are 
to be scheduled on two parallel 
identical machines. Labels correspond 
to job numbers. Assume wj = pj, for 
j=1,…,8, i.e. the profit is charged per 
unit time, as may be possible in a 
sewing workshop. The network 
structure is given in Figure 1(b), where 
each arc is labeled with its cost –wj, 
and capacity 1, except for the arcs on 
the straight line from s to t, whose 
costs and capacities are 0 and 2, 
respectively. When solved, the optimal 
profit becomes 35 and the corresponding 
to processed job set is {4-8}.   
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(a) Instance of the OFJS problem 

 

 

(b) Corresponding network structure 

Figure 1. Instance of the operational interval scheduling problem [Eliiyi (4)] 
 
An optimal solution to the tactical 
interval scheduling problem can be 
found very easily by finding the 
maximum job overlap of the jobs (17). 
According to our notation, the 
maximum job overlap is Maxa{|Pa|}, 
where |Pa| is the cardinality of set Pa. 
For the example in Figure 1, the 
minimum number of machines 
required to carry out all jobs equals 3 
as the maximum job overlap at any 
time equals 3, as well.  

There are currently m machines in the 
sewing workshop, and a total of n jobs 
are expected in the upcoming planning 
horizon. Then, the optimal schedule of 
the workshop with the existing 
machines could easily be determined 
by converting the structure into a 
network as shown in Figure 1, and 
solving the obtained MCNF problem. 
Given this solution, the decision maker 
aims to determine the number of 
additional machines for the workshop 
(the level of capacity expansion), and 
the scheduling of jobs on these 
machines. In other words, he/she 
wants to know the extra contribution 
brought by each level of capacity 
expansion, and make a decision 

accordingly. For solving this integrated 
decision, the iterative approximation 
approach developed in this study 
makes use of the above solution 
procedures.  

We assume that the schedule in the 
current state of the workshop is 
already determined (if not, this can be 
found by solving the operational 
problem once). At this point, some jobs 
are scheduled, and some are left 
unprocessed due to limited number of 
machines. The set of processed jobs is 
called set S. Then, we have n - |S| jobs 
left unscheduled. We first solve a 
tactical problem with n - |S| jobs to find 
the minimum number of machines to 
process all of the jobs. The optimal 
solution of this problem gives us the 
upper limit of economically-efficient 
capacity expansion, that is, an upper 
bound A on machines. In order not to 
let any machine stay idle, there may 
be at most m+A machines in the 
system. Next, we solve subproblems 
with 1, 2, …, A machines. If the initial 
schedule is not known, A+2 problems 
are solved in total, one of which is the 
tactical problem.    

After this point, the decision as to 
determining the preferable expansion 
scheme has to be made. In other 
words, how many extra machines 
should be added to the workshop:  1, 
2, …, or A? In order to make this 
selection, many criteria are to be 
considered. Some of these may be the 
cost of the new machines, technological 
capabilities of the new machines 
(speed, personnel skill requirements, 
etc.), cost of to-be-hired personnel and 
the marginal profit contribution of each 
added machine (economic analysis).  

Additional criteria may exist depending 
on the characteristics of the workshop, 
contracting firms and other environmental 
factors. Hence the selection problem is 
a multi-criteria decision problem. In 
order to help the decision maker in 
making the capacity expansion decision, 
we may draw a function of marginal 
profits brought by each capacity level. 
The curve of the function will help in 
choosing the desired expansion level. 
This is demonstrated through the 
example in the next section. 

Once the decision maker chooses the 
level of expansion, the schedule of the 
jobs on the new machines is automatically 

s = V5 
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determined by the corresponding 
solution of the operational subproblem. 
That is, if the decision maker decides 
that r additional machines will be 
included in the workshop, the solution 
of the subproblem with r machines will 
yield the schedules on those 
machines. The total profit of the 
workshop (excluding the investment 
costs) can be calculated by adding the 
objective function values of the initial 
solution with m machines, and the 
subproblem solution with r machines. 

Maintenance planning of the machines 
may be done according to the obtained 
schedules. This may be handled by 
scheduling the maintenance of each 
machine during the idle intervals.  

4. NUMERICAL EXAMPLE 

We illustrate the execution of our 
iterative solution approach on an 
example in a sewing workshop. For 
demonstration purposes, and for 
evaluating several capacity expansion 
levels, we take a moderate size 
problem with 200 jobs and 2 general 
purpose sewing machines. The jobs 
may be defined as actual pieces to be 
processed (i.e. sewn), or they may be 
aggregated products corresponding to 
order lots. Assume that there are 200 
time intervals in the planning horizon. 
The time intervals do not need to 
correspond to actual days or hours; 
they may be conveniently determined 
by the decision maker, possibly as a 
multiple of job processing times. The 

jobs arrival times follow a uniform 
distribution in the 200-time-unit 
horizon. The processing times and the 
weights (profit contributions) are 
coming from uniform distributions 
U(1,10) and U(1,40), respectively.  

The entire approach is coded in Visual 
C++ on a MS Visual Studio platform, 
calling the ILOG CPLEX 9 library for 
solving the MCNF problem. The codes 
are run on a PC with 1 GB Ram and 
2.20 GHz Core2Duo processor 
configuration.  

At first, the operational problem (i.e. 
the profit maximization problem) is 
considered for 200 jobs and 2 
machines in order to find the current 
schedule of the workshop; let’s call this 
initial problem as P0. The objective 
function value (the total profit) 
becomes 2086, and 117 of the 200 
jobs are left out of the schedule; 
namely they cannot be processed with 
the current capacity.  

Next, the tactical problem (i.e. capacity 
planning problem) is solved, which 
finds the minimum number of 
machines that have to be in the 
workshop to process all incoming jobs. 
The solution to the problem yields 12 
machines. Recall that this number is 
an upper bound on the capacity 
expansion level; acquiring 12 
machines will never be economically 
feasible, but it gives us the maximum 
number of capacity levels that we have 
to evaluate. Since the workshop 
already has 2 sewing machines, 10 

incremental levels of capacity 
expansion are considered, one for 
each machine, up to 12 machines. 
Then, 10 operational subproblems are 
solved incrementally with the 
unscheduled 117 jobs and 1, 2, …, 10 
machines. Call these subproblems as 
P1, P2, …, P10.  

The results of the solutions for the 
subproblems are summarized in Table 
1. Note that the capacity level 
corresponding to P1 is 3 machines (2 
existing and 1 additional), level 
corresponding to P2 is 4 machines, 
and so on. The Objective Function 
Value (OFV) column presents the total 
profit found by the subproblem, the 
Cum. OFV column shows the 
cumulative profit found by adding the 
corresponding subproblem’s profit to 
the profit found by P0. Marginal 
contribution per machine column 
shows the extra profit brought by each 
additional sewing machine. #Jobs 
Unscheduled column provides the 
number of jobs left undone at each 
capacity level.     

 It is obvious from the table 
that the marginal profit decreases as 
the capacity level increases, as 
expected. The number of jobs 
unscheduled decreases rapidly for the 
first few added machines, but after that 
it seems that the expansion becomes 
economically infeasible. This result is 
also depicted in Figure 2.  

 

Table 1. Results for the sewing workshop example. 

Problem 
ID 

Objective Function 
Value Cum. OFV 

Marginal Contribution per 
Machine #Jobs Unscheduled 

P0 2086 2086 1043 117 

P1 653 2739 653 91 

P2 1081 3167 428 69 

P3 1435 3521 354 50 

P4 1707 3793 272 33 

P5 1868 3954 161 22 

P6 1976 4062 108 12 

P7 2030 4116 54 7 

P8 2059 4145 29 3 

P9 2082 4168 23 1 

P10 2084 4170 2 0 
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Figure 2. The marginal profit contribution of capacity expansion levels for the example. 
 

 
The analysis and approach presented 
here provides a very useful guide to 
the decision maker. For example, we 
can argue that considering a capacity 
expansion of more than 5 machines 
will not be economical for this 
workshop, considering the results of 
the analysis. But other factors might 
also be included in the decision 
making process, as it was stated in the 
previous section.  

5. RESULTS AND CONCLUSION 

With this study, we intend to break 
new ground in the integration of 
scheduling and capacity expansion 
problems in interval scheduling. The 
applications are not limited to sewing 
workshops but may be applied to a 
great number of situations, such as car 
repair shops, car rental systems, hotel 
reservation systems, etc. The study 
offers an analytical guide for the 
decision maker for taking this 
important decision.   

Future research directions that may be 
worth studying include (but not limited 
to) the following:  

1. More efficient solution approaches 
may be developed in solving the 
incremental operational interval 
scheduling problem. Especially, 
once the solution is known with a 
certain number of machines, how 

can we generate all incremental 
solutions without actually having to 
solve the problem repeatedly? The 
answer to this question may be a 
nice theoretical contribution and 
may be applied to a great number of 
real-life cases.  

2. Making the maintenance plan 
according to the current schedule 
may involve risks of unwanted 
breakdowns. In order to prevent 
such cases, regular maintenance 
should also be dealt with. For this 
purpose, we may ensure time 
limitations on the processing time of 
each sewing machine, in order to fit 
the regular maintenance into the 
schedule. Optimal and approximation 
algorithms may be investigated, as 
those developed in (5, 7). 

3. Identical general-purpose sewing 
machines are assumed in the 
workshop. However, this may not 
be the case due to rapidly changing 
technology. Especially in case of a 
capacity expansion decision, the 
newly-acquired machines may be of 
a different generation. In such a 
case, the speed of the new sewing 
machines will be faster. This 
corresponds to a uniform-machines 
problem, which may be a nice 
generalization of the problem. 

4. In the existence of different types of 
sewing machines, the machines 
may require different setup times. 
Then, the inclusion of setup times in 
the job processing times will not be 
possible in modeling the problem. 
Separately considering the setup 
times will bring an additional 
complexity. 

5. Finally, the selection of the expansion 
level, which is a multi-criteria 
decision problem, is certainly worth 
studying. We have demonstrated 
possible criteria that may be used in 
the selection process, and 
developed a useful and simple tool 
for identifying the marginal profit 
contribution of each machine for the 
decision maker. The inclusion of all 
(and possibly opposing) criteria, 
and systematically coming up with 
the best decision requires extra 
effort. For this purpose, the 
inclusion of a multi-criteria decision 
making method, such as Analytical 
Hierarchy Process (AHP) or Analytic 
Network Process (ANP) may prove 
very useful.      
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