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Abstract: LysR-type transcription factor RovM is an important target of Yersinia pseudotuberculosis drug 
discovery and the discovery of antibacterial is considered one of the greatest medical achievements of all 
time. In this research work, a combination of three docking tools with different algorithms was applied in 
Salicylidene acylhydrazides derivatives intended toward gram-negative bacterium Yersinia 
pseudotuberculosis to evaluate their binding interactions. The analysis of the molecular docking results 
obtained from the 3-docking software system succeeded in screening twelve fascinating compounds with 
higher restrictive concentrations having a decent affinity to LysR-type transcription factor RovM 
macromolecule. Then the Lipinski’s and Veber’s rule properties were calculated to spot the drug-likeness 
properties of the investigated candidate compounds. To anticipate the toxicity of the predicted candidate 
chemicals, in-silico toxicity tests were conducted. Furthermore, golden triangle and drug scores were 
performed, the investigated compounds which fall within the golden triangle indicate that these compounds 
would not have clearance problems. 5 of the 12 hits drugs pass the golden triangle screening step. These 
selected drugs undergo a drug score test which only compound 17 passed. To validate the stability, 1 ns 
molecular dynamic simulations were done on the highest-ranking drug score compound 17 / 3onm 
complexes. These findings point to interesting avenues for the development of new compounds that are more 
effective against Yersinia pseudotuberculosis. 
 
Keywords: Yersinia pseudotuberculosis, Salicylidene acylhydrazides, Docking, ADMET, golden triangle, 
and MD simulations 
1. Introduction 
Yersinia pseudotuberculosis (YP) could be a gram-
negative foodborne microorganism that causes a 
spread of enteral and extraintestinal syndromes 
(yersiniosis), together with self-limiting 
inflammation, diarrhea, peritoneum inflammation, 
and response disorders [1]. Once within the viscus, 
the microorganism ought to penetrate through the 
animal tissue cells to succeed in the underlying 
humor tissues [2]. Multidrug-resistant gram-
negative organisms have emerged as a serious 
threat to hospitalized patients and are related to 
mortality rates starting from 30 to 70% [3]. They 
are classes of approved antibiotics drugs to treat or 
prevent certain bacterial infections. However, as a 
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result of side effects, development of resistance, 
and challenges with patient compliance there's an 
unbroken demand for brand spanking new 
generations of antibiotics medicine [4]. 
Ciprofloxacin (webmd.com/drugs/2/drug-
7748/ciprofloxacin-oral/details), a family of 
quinolone and one of the most widely used 
antibiotics has severe side effects such as boxed 
warnings, tendonitis and tendon rupture, nervous-
system effect includes insomnia, restlessness, 
seizure, convulsion, psychosis, serious tears in the 
aorta, hypertension, certain genetic conditions such 
as Marfan Syndrome, and Ehlers-Danlos Syndrome 
[5]. Other medicine area units Ampicillin, 
Chlortetracycline, and Oxytetracycline will harm 
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calcium-rich organs, like teeth and bones [5]. They 
can additionally result in the epithelial duct and 
sensitive allergies. Currently, the increasing 
number of multidrug-resistant microbes is a huge 
burden on the world’s health and economy [6]. 
Serious infections and deaths are caused by the 
resistance of bacteria to antibiotics [7]. The 
emergence of drug-resistant bacterial variants and 
also the facet effects of those compounds (i.e., 
Ciprofloxacin Ampicillin, Chlortetracycline, and 
Oxytetracycline) entail research into new drugs that 
concentrate on completely different stages of the 
bacterium [8]. Transcription factor of the LysR type 
One of the host proteins that could be exploited as 
a target is RovM. Transcription factor of the LysR 
type RovM from Yersinia pseudotuberculosis 
belongs to one of the largest families of prokaryotic 
transcriptional regulators of genes that code for 
proteins with a variety of functions, including 
aromatic compound degradation, amino acid 
biosynthesis, virulence factor synthesis, CO2-
fixation, N2-fixation, antibiotic resistance, cell 
division, quorum sensing, and oxidative stress 
responses [9]. LysR-type transcriptional regulators 
typically consist of ~300 amino acids and bind their 
target promoters as homo-tetramers. Transcription 
factors of the LysR type RovM regulators are a 
subset of the MarR-like family of transcriptional 
regulators that regulate several physiological 
processes in bacterial pathogens, including stress 
adaption and pathogenicity in response to 
environmental and host-associated stress [10]. 
Therefore, due to the essential nature of LysR-type 
transcription, RovM has been an important drug 
target for Yersinia pseudotuberculosis inhibitors 
[9]. Conventional drug findings and the need to 
develop new and more efficient drugs still represent 
an unsatisfied challenge [11]. The production of 
any drug for human use currently involves intensive 
trials and expensive methods, so that it takes about 
10- 15 years on average before it can reach the 
market [12]. Over the past decade, much attention 
has been placed on the study of phytochemicals for 
their antibacterial activity, especially against 
multidrug-resistant Gram-negative and Gram-
positive bacteria [13]. In recent years, computer-
aided drug design (CADD) studies have greatly 
impacted the field of drug development, especially 
as a fast tool to evaluate and screen only molecules 
that are likely to be active, to indicate which of them 

are worth to be synthesized and experimentally 
tested [15]. Present research investigation deals 
with the combination of (1) molecular docking 
simulations; a frequently used method for 
evaluating the complex formation of small ligands 
with large biomolecules [15], (2) ADMET; in silico 
prediction of the ADMET properties has a 
significant impact in the antibiotic drug discovery 
process. Nowadays ADME (absorption, 
distribution, metabolism, and elimination) is 
applied at an early phase of the drug development 
process, to remove molecules with poor ADME 
properties from the drug development pipeline and 
leads to significant savings in research and 
development costs [16]. (3) Golden triangle and 
drug score; is a visualization tool that allows to 
screen out metabolically stable and permeable drug 
candidates [17, 18], lastly (4) Molecular dynamics 
(MD) simulations; are used to predict the stability 
more reliably for the receptor-lead complex. The 
MD simulations enable flexibility for both the lead 
and the receptor, allowing for the induced fit of the 
receptor active region around the inserted lead [19]. 
We expected the outcome from this study could 
provide an insight into a novel antibacterial 
treatment for Y. pseudotuberculosis infection. 
 
2. Computational Method 
2.1 Ligands Selection and Preparation 
The chemical structure and anti-bacterial activity 
(IC50) of 58 salicylidene acylhydrazides 
derivatives were obtained from PubChem accession 
number AID 473049 
(https://pubchem.ncbi.nlm.nih.gov/bioassay/47304
9) (Table S1). The 58 salicylidene acylhydrazides 
derivatives were optimized using the Spartan'14 
v1.1.4 program and the semi-empirical (PM3) 
approach (www.wavefun.com). Because docking 
software accepts .pdb format as an input file, the 
optimized ligands were stored in .pdb format for 
further research. 
 
2.2 Target selection and preparation 
The reported three-dimensional (3D) structure of 
the effector binding domain of LysR-Type 
transcription factor RovM from Y. 
pseudotuberculosis (PDB ID: 3ONM) [20] was 
retrieved from RCSB PDB (3onm). The water 
molecules, as well as co-crystallized ligands, were 
deleted from the protein PDB file. Hydrogen and 
charge were added and save in the .pdb format. 
 
2.3 Docking simulations and ADMET 
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To study the molecular interaction between 
salicylidene acylhydrazides derivatives and effector 
binding domain of LysR-Type transcription factor 
RovM from Y. pseudotuberculosis (PDB ID: 
3ONM) [20], a molecular docking simulation-
based in silico approach was applied. The 
molecular docking simulations were done by three 
powerful docking tools with a different algorithm 
to select the best conformations. Molecular docking 
studies were performed using Molegro virtual 
docker (MVD) [21], iGemDock [22], and the 
AutoDock-vina [23] with PyRx software. The 
prepared ligand and protein files were uploaded in 
“.pdb” format and the parametric quantity was set 
to the default setting. After the completion of 
docking, a ranked list of predicted complexes can 
be downloaded. The docking output results were 
rendered with excel and Discovery Studio 
visualizer programs, respectively. The complexes 
that have a docking score better than the reference 
drug were taken for pharmacokinetic screening. 
The pharmacokinetic properties of the complexes 
screened through docking were calculated using 
Data-Warrior version 5.5.0 of Idorsia 
Pharmaceuticals Ltd – engineering by Thomas 
Sander, to assess the compounds' oral 
bioavailability and drug-likeness. The software 
(OSIRIS) was also utilized to forecast the values of 
the compounds' molecular mutagenic, tumorigenic, 
irritating, and reproductive effective qualities. 
 
2.4 Golden Triangle and Molecular Dynamics 
(MD) Simulations 
After successful ADMET predictions, the selected 
compounds were subjected to the Golden Triangle 
for permeability, bioavailability, and clearance. 
Johnson and co-workers reported that the 
distribution coefficient at pH 7.4 (LogD) and the 
molecular weight (MW), have a crucial effect on 
the permeability, bioavailability, and clearance 
behavior of active compounds [17, 24]. Based on 
this information, the Golden Triangle was 
developed. The Golden Triangle [17, 18] is a 
visualization tool for identifying metabolically 
stable and permeable medication candidates. It was 
developed based on experimental results about the 
permeability and clearance of existing drugs [25]. It 
is characterized by a baseline of calculated clogP = 
−2 to 5 at MW = 200 and a peek at calculated clogP 
= 1 to 2 and MW = 450 [25]. The triangle displays 
more perspective compounds that are metabolically 
unstable as they are located outside it. The 
compound that falls within the Golden Triangle 
were taken for further simulation. The molecular 
dynamics simulations (MDS) were carried out 
using the nanoscale molecular dynamics (NAMD) 
software version 2.13 [26], and the visual molecular 
dynamics (VMD) software version 1.9.3 [27] was 

used to visually display, analyzed, and animate 
trajectories [27]. The CHARMM-GUI web server 
was used for the complex parameterization of the 
lead compound to mimic the physiological 
condition of the complex. To establish charge 
neutrality, the salt (KCl) concentration was fixed to 
0.15M, then the net and counter ions (potassium 
and chloride) were added. The CHARMM36m 
force field was used in the calculations. To optimize 
the complex, several cycles of the steepest descent 
process were run. The system was gradually heated 
to 303.15K before being equilibrated as a canonical 
ensemble (NVT) at that temperature. For 
complexes, the usual CHARMM-GUI equilibration 
approach was used. For the production dynamics, 
one nanosecond (1 ns) unconstrained isothermal 
isobar ensemble (NPT) experiments were carried 
out at 303.15K, utilizing 1 atm and 2 fs time 
increments. 
 
3. Results and discussion 
Authentic prediction of binding affinity to targets 
with inhibitors can give what is desired or needed, 
especially support, or guide for rational drug 
design. The binding mechanism of a compound in 
the active site is best understood by the analysis of 
bonding interactions. Four drugs were selected as 
the control as anti-Yersinia pseudotuberculosis 
namely: Ampicillin, Oxytetracycline, 
Chlortetracycline, and Ceftriaxone (Azithromycin). 
The active site for the receptor was predicted using 
Molegro virtual docker (MVD), which yielded 
various cavities in the receptor, cavity 1: volume = 
34. 816, surface = 101.12; cavity 2: volume = 
20.992, surface = 72.96; cavity 3: volume = 17.408, 
surface = 72.96; cavity 4: volume = 12.288, surface 
= 56.32, and cavity 5: volume = 11.264, surface = 
47.36 and the largest cavity “cavity 1” was 
presumed to be the active site (Fig. 1). The docking 
scores of the 4 standards were displayed in Table 1 
and their interactions with the amino acid residues 
are presented in Fig. 2. 
 
Based on the results, Ceftriaxone (Azithromycin) 
was found to possess the lowest MolDock score (-
176.051) and forms series of interactions with the 
amino acid residues, among which are hydrogen 
bonds were found interacting with Tyr198, Arg136, 
Asp108, Arg238, and Ser137 (Figure 2). All the 
reference drugs except Ampicillin are unable to 
form stability with the protein by unfavorable 
bumps and unfavorable donor-donor interaction 
(Fig. 2). Out of the whole compound library of 58 
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salicylidene acylhydrazides derivatives, 
compounds 25, 31, 35, and 41 showed the strongest 
interaction (Figure 3) towards the receptor with the 
MolDock score of -137.051, -132.013, -143.983, 
and -137,71 (Table 1) compares with the standards 
except Ceftriaxone (Azithromycin). The least 

MolDock score (compound 35 with PubChem-
CID: 136167972) binds effectively with the 
receptor active site by interacting through the 
amino acids including Ser137, Arg136, Pro138, 
Pro195, Ser196, etc. (Figure 3). 

 
 

 
Figure 1. The binding pocket of LysR-Type transcription factor RovM 

 
Table 1. Docking results of the reference drugs using MVD software 

Name MolDock score 
(kcal/mol) 

Rerank score 
(kcal/mol) 

HBond 
(kcal/mol) 

Ampicillin -120.545 -87.452 -7.478 

Oxytetracycline -61.033 85.056 -20.014 

Chlortetracycline -61.279 86.389 -20.002 

Ceftriaxone(Azithromycin) -176.051 -68.607 -9.612 
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Figure 2. Docking interactions of the four reference drugs using Molrgro Virtual Docker. 
 
Table 2. Results for the molecular docking Scores Using MVD and AutoDock-vina with PyRx 

Molegro Virtual Docker AutoDock Vina 
Compounds MolDock Score 

(kcal/mol) 
Rerank Score 

(kcal/mol) 
HBond 

(kcal/mol) 
Ligand Binding Affinity 

(kcal/mol) 
3onm-1 -113.139 -85.521 -8.512 3onm-20 -7.9 
3onm-2 -97.644 -85.013 -9.627 3onm-44 -7.9 
3onm-3 -117.820 -91.477 -4.832 3onm-49 -7.6 
3onm-4 -101.465 -91.156 -6.783 3onm-36 -7.5 
3onm-5 -113.020 -91.924 -7.118 3onm-17 -7.4 
3onm-6 -100.026 -86.294 -9.472 3onm-18 -7.4 
3onm-7 -112.163 -94.877 -6.288 3onm-4 -7.1 
3onm-8 -102.146 -87.422 -6.617 3onm-57 -7.1 
3onm-9 -128.815 -111.029 -6.442 3onm-1 -7 
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3onm-10 -117.022 -87.931 -8.101 3onm-26 -7 
3onm-11 -123.083 -86.298 -6.970 3onm-29 -7 
3onm-12 -108.707 -89.709 -2.500 3onm-21 -6.9 
3onm-13 -115.614 -48.123 -8.655 3onm-32 -6.9 
3onm-14 -116.137 -94.125 -10.014 3onm-39 -6.9 
3onm-15 -130.710 -103.720 -12.163 3onm-42 -6.9 
3onm-16 -112.049 -90.801 -12.952 3onm-54 -6.9 
3onm-17 -99.690 -87.810 -16.942 3onm-22 -6.8 
3onm-18 -112.574 -91.048 -1.666 3onm-30 -6.8 
3onm-19 -123.422 -93.225 -9.444 3onm-37 -6.8 
3onm-20 -113.054 -82.948 -5.286 3onm-5 -6.8 
3onm-21 -107.379 -91.157 -9.355 3onm-51 -6.7 
3onm-22 -107.930 -85.990 -7.882 3onm-53 -6.7 
3onm-23 -118.603 -98.819 -7.508 3onm-6 -6.7 
3onm-24 -115.085 -88.490 -4.054 3onm-11 -6.6 
3onm-25 -137.051 -117.814 -5.834 3onm-23 -6.6 
3onm-26 -114.011 -93.575 -9.068 3onm-25 -6.6 
3onm-27 -122.522 -101.203 -7.278 3onm-28 -6.6 
3onm-28 -114.350 -92.768 -8.305 3onm-34 -6.6 
3onm-29 -127.125 -91.180 -9.485 3onm-43 -6.6 
3onm-30 -119.090 -97.775 -9.928 3onm-56 -6.6 
3onm-31 -132.013 -104.800 -15.295 3onm-15 -6.5 
3onm-32 -117.748 -93.499 -7.882 3onm-3 -6.5 
3onm-33 -103.402 -68.938 -11.244 3onm-40 -6.5 
3onm-34 -118.421 28.210 -2.500 3onm-41 -6.5 
3onm-35 -143.983 -67.464 -6.226 3onm-24 -6.4 
3onm-36 -112.550 -6.473 -4.963 3onm-27 -6.4 
3onm-37 -117.768 -94.858 -10.080 3onm-31 -6.4 
3onm-38 -113.792 -96.986 -7.844 3onm-58 -6.4 
3onm-39 -124.920 -101.885 -4.022 3onm-10 -6.3 
3onm-40 -109.901 -82.258 -9.703 3onm-16 -6.3 
3onm-41 -137.710 -119.990 -8.234 3onm-48 -6.3 
3onm-42 -120.924 -99.738 -10.712 3onm-13 -6.2 
3onm-43 -119.313 -42.618 -6.910 3onm-38 -6.2 
3onm-44 -115.463 -93.567 -6.249 3onm-14 -6.1 
3onm-45 -121.293 -101.498 -8.584 3onm-2 -6.1 
3onm-46 -112.352 -79.709 -7.232 3onm-50 -6.1 
3onm-47 -129.780 -94.593 -9.985 3onm-55 -6.1 
3onm-48 -124.221 -96.941 -10.962 3onm-7 -6.1 
3onm-49 -101.331 -85.736 -10.184 3onm-46 -6 
3onm-50 -112.676 -93.517 -8.249 3onm-9 -6 
3onm-51 -114.827 -83.010 -7.930 3onm-12 -5.9 
3onm-52 -98.3169 -86.222 -9.777 3onm-33 -5.9 
3onm-53 -102.233 -83.405 -7.911 3onm-52 -5.8 
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Figure 3. Binding interaction between compounds 25, 31, 35, and 41 and the active site of the protein 
using Melogro virtual docker. 
 

The whole compound library of 58 salicylidene 
acylhydrazides derivatives with the standards 
undergoes another docking screening with 
iGemDock v2.1 software. The following 
parameters for docking were used: Population size 

= 200; Number of generations = 70; and Number of 
solutions = 3. The findings of iGemDock analysis 
revealed that compound 41 is the topmost in the 
rank with a total energy of -106.975 kcal/mol which 
was shared with van der Waals forces, hydrogen 

3onm-54 -108.752 -94.109 -5.910 3onm-19 -5.7 
3onm-55 -118.876 -94.393 -9.111 3onm-35 -5.7 
3onm-56 ------ ------ ------ 3onm-47 -5.7 
3onm-57 ------ ------ ------ 3onm-45 -5.3 
3onm-58 ------ ------ ------ 3onm-8 -5.3 
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bond, and electrostatic interaction (-60.0817, -
48.1473, and 1.25433 Kcal/mol), respectively, 
followed by compound 49 with the overall total 
energy of -105.987 Kcal/mol which was shared 
with van der Waals and hydrogen bond interaction 
(-71.1538 and -34.8333 Kcal/mol). In the docking 
analysis for compound 49, no electrostatic 
interactions were recorded as shown in Table 3. 
 
From the docking poses, compound 41 formed van 
der Waals, hydrogen bonding and hydrophobic 
interactions with Val134, Arg136, Thr155, Ser137, 
Asp107, Asp108, Ser106, Lys135, Met192, 
Thr154, Leu197, Arg199, Tyr198, Ser196, and 
Arg238 amino acid residues present in C-terminal 
and N-terminal regions of the binding pocket 
played a crucial role in ligand binding (Figure 4). 
Table 4 showed the results of the reference drugs in 

which Chlortetracycline is the topmost in the rank 
with -105.022 kcal/mol which was shared among 
van der Waals (-71.1492 kcal/mol) and hydrogen 
bond (-33.8726 kcal/mol). The binding interactions 
of the reference drugs and compounds 41 and 49 
were analyzed and the results obtained were 
compared. From the docking poses, the reference 
drugs Ampicillin, Oxytetracycline, and Ceftriaxone 
(Figure 5) have unfavorable dumps in their 
interactions which may lead to a side effect of 
unfavorable interactions with the protein. It was 
observed that compounds 41 and 49 acted better 
than the reference drugs. Their interactions show 
that hydrophobic interaction enhances the activity 
of the compounds and helped their biological 
activity than the reference drugs. 
 

 
Table 3. Summary of the molecular docking score using iGemDock software. 

Ligand TotalEnergy 
(kcal/mol) 

VDW HBond 
(kcal/mol) 

Elec AverConPair 

3onm-41-2.pdb -106.975 -60.082 -48.147 1.254 32.250 
3onm-49-0.pdb -105.987 -71.154 -34.833 0 25.304 
3onm-39-2.pdb -102.751 -74.133 -28.618 0 23.923 
3onm-51-0.pdb -102.539 -60.901 -41.638 0 25.296 
3onm-19-0.pdb -100.699 -53.968 -46.731 0 31.471 
3onm-17-2.pdb -100.564 -67.700 -32.864 0 23.044 
3onm-47-0.pdb -99.933 -75.539 -24.393 0 21.560 
3onm-40-2.pdb -99.632 -67.104 -33.445 0.918 24.826 
3onm-18-0.pdb -99.435 -73.529 -25.906 0 23.958 
3onm-42-2.pdb -98.985 -81.786 -16.702 -0.497 23.482 
3onm-45-1.pdb -96.407 -67.528 -28.879 0 24.889 
3onm-56-1.pdb -95.486 -72.508 -22.978 0 27.950 
3onm-35-0.pdb -95.074 -63.803 -31.271 0 28.412 
3onm-21-0.pdb -95.063 -76.647 -16.949 -1.467 23.000 
3onm-22-0.pdb -94.292 -75.071 -19.221 0 24.191 
3onm-6-1.pdb -93.444 -63.128 -30.317 0 24.238 
3onm-1-1.pdb -93.217 -68.710 -24.507 0 21.870 
3onm-10-1.pdb -92.997 -70.320 -22.677 0 24.050 
3onm-44-1.pdb -92.634 -47.925 -40.794 -3.915 14.172 
3onm-14-0.pdb -92.472 -70.359 -22.113 0 26.727 
3onm-52-2.pdb -91.963 -61.878 -30.086 0 34.222 
3onm-34-0.pdb -91.935 -63.765 -28.169 0 23.333 
3onm-13-1.pdb -91.817 -76.460 -15.356 0 22.217 
3onm-55-0.pdb -91.756 -64.416 -27.339 0 23.526 
3onm-16-2.pdb -91.205 -68.379 -22.826 0 24.565 
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3onm-29-1.pdb -91.144 -71.813 -19.332 0 26.348 
3onm-11-2.pdb -91.063 -81.755 -9.3078 0 23.542 
3onm-7-1.pdb -91.008 -69.981 -21.027 0 24.714 
3onm-3-2.pdb -90.820 -67.572 -23.248 0 24.000 
3onm-50-1.pdb -90.493 -63.642 -26.851 0 27.375 
3onm-20-0.pdb -89.543 -66.283 -23.261 0 20.609 
3onm-31-0.pdb -89.271 -78.291 -10.980 0 23.462 
3onm-58-2.pdb -89.168 -73.192 -15.976 0 22.773 
3onm-28-1.pdb -89.054 -73.671 -15.383 0 23.875 
3onm-23-2.pdb -89.054 -60.332 -28.722 0 24.579 
3onm-2-0.pdb -88.401 -68.216 -20.185 0 23.250 
3onm-12-0.pdb -87.369 -62.715 -24.654 0 24.625 
3onm-26-2.pdb -87.112 -76.516 -10.596 0 31.913 
3onm-48-0.pdb -86.970 -64.731 -22.239 0 19.923 
3onm-54-0.pdb -86.553 -61.691 -24.863 0 17.200 
3onm-4-2.pdb -86.401 -67.955 -18.446 0 25.174 
3onm-30-0.pdb -86.171 -65.363 -20.808 0 22.773 
3onm-43-2.pdb -86.064 -45.895 -39.587 -0.581 16.520 
3onm-53-1.pdb -85.742 -73.632 -12.110 0 25.417 
3onm-9-2.pdb -85.557 -66.268 -19.289 0 26.773 
3onm-32-0.pdb -85.519 -54.524 -29.763 -1.232 21.087 
3onm-25-1.pdb -85.046 -60.066 -24.980 0 21.360 
3onm-5-0.pdb -84.337 -62.802 -21.536 0 22.682 
3onm-37-0.pdb -83.978 -69.009 -14.969 0 26.516 
3onm-57-2.pdb -83.499 -70.994 -12.505 0 24.476 
3onm-8-2.pdb -83.314 -58.716 -24.596 0 23.889 
3onm-46-2.pdb -82.949 -66.593 -16.355 0 18.19 
3onm-36-2.pdb -82.848 -59.914 -22.933 0 23.033 
3onm-24-0.pdb -81.667 -58.929 -22.738 0 27.313 
3onm-15-2.pdb -81.190 -64.690 -16.500 0 17.769 
3onm-27-0.pdb -80.910 -58.950 -21.960 0 16.444 
3onm-33-2.pdb -80.633 -51.460 -29.173 0 22.087 
3onm-38-2.pdb -78.629 -65.853 -12.776 0 17.821 

 

a 
b 

Figure 4. Docking interaction (a) compound 41 (b) compound 49 with the protein. 
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Table 4. Results of the reference drugs using iGemDock software 
Ligand TotalEnergy 

(kcal/mol) 
VDW HBond 

(kcal/mol) 
Elec AverConPair 

Ampicillin -82.362 -62.462 -17.235 -2.665 18.25 
Oxytetracycline -90.635 -52.316 -38.320 0 18.061 
Chlortetracycline -105.022 -71.149 -33.873 0 16.353 
Ceftriaxone -91.721 -84.510 -8.7608 1.550 15.5278 

 

 
Ampicillin 

 
Oxytetracycline 

 
Chlortetracycline 

 
Ceftriaxone 

Figure 5. Summary of the docking interactions of the reference drugs with the amino acid residuals.  

 
The structure of the four reference (standard) drugs 
and the 58 salicylidene acylhydrazides derivatives 
were considered for another virtual screening using 
AutoDock Vina with PyRx. The AutoDock Vina 
uses a 3D grid broadly encompassing the active site 
of the protein and allowing free rotation of the 

ligand in the active site. In this case, the center of 
this box is determined by the coordinates X = -24. 
8918, Y = 8.7616, and Z = -6.8212 with size X = 
33.7623, Y = 61.2411, and Z = 46.0013. The box 
covered almost the protein structure and its 
dimension are proportional to the size of the 
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ligands. After the docking simulation, the binding 
affinity of the reference drugs Ampicillin, 
Ceftriaxone, Chlortetracycline, and 
Oxytetracycline was observed: -6.1, -7.0, -6.7, and 
-6.2 kcal/mol, respectively (Table 5). The 
molecular docking interactions of the reference 
drugs with the protein are shown in Figure 6. The 
important residues have direct interaction with the 

inhibitors. The docking results indicate that the best 
score is -7.0 kcal/mol for the protein-ligand 
interaction of “Ceftriaxone" incorporating the sum 
of the van der Waals, conventional-carbon 
hydrogen bond, electrostatic, and hydrophobic 
interactions. Ceftriaxone docked well into the 
active pocket of the protein and represents the most 
stable binding conformation. 

 
Table 5. Results of the reference drugs using AutoDock-vina with PyRx 

Ligand Binding Affinity 
(kcal/mol) 

rmsd/ub rmsd/lb 

Ampicillin -6.1 0 0 
Ceftriaxone -7 0 0 
Chlortetracycline -6.7 0 0 
Oxytetracycline -6.2 0 0 

 

Ampicillin  
Chlortetracycline 

 
Ceftriaxone  

Oxytetracycline 
Figure 6. Interaction of the reference drugs with the protein crystal structure 
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The -C=O group of Ceftriaxona forms four 
hydrogen bonds with Glu252, Thr171, Thr253, and 
Leu259. The -OH group to form one Hydrogen 
bond with Leu250, while -NH group form four 
hydrogen bonds with Thr171, Leu259, and Glu261, 
respectively. To get insight into the 58 salicylidene 
acylhydrazides derivatives basis of the detailed 
interactions between the top four lead compounds 
with the protein, binding affinities, and molecular 
interaction analysis was carried out. Among all the 
docked compounds with the protein, compound 4, 
17, 18, 20, 36, 44, 49, and 57 shows highest binding 
affinity toward the protein more than the reference 
drugs with a score greater than -7.0 kcal/mol. 
Compound 20 and 44 have the highest docking 
score with the protein having a score of -7.9 
kcal/mol, respectively. Compound 20 bound to the 
protein structure has shown two conventional 
hydrogen bonds and one carbon-hydrogen bond 
with Ser137, His161, Ser137 amino acid residues, 
respectively. It showed binding energy (binding 
affinities) of -7.9 kcal/mol. Apart from these 
interactions, compound 20 was further stabilized 
with halogen interaction with Pro195. It also makes 
hydrophobic interactions (Pi-sigma, Amide-Pi 
Stacked, Alkyl, and Pi-alkyl). Compound 44 also 
has a binding affinity of -7.9 kcal/mol and is 
involved in hydrogen bonding with Thr154, 
Thr155, and Ala156. Furthermore, it is stabilized 
with hydrophobic interaction (Alkyl and Pi-alkyl) 
with Met192 and Ala141 and van der Waals 
interactions with Pro138, 135, Ser106, 137,196, 
Leu197, Asp107, 108, Arg136, 238, Tyr198, and 
Lys157, respectively. Compound 49 binds with the 
protein structure with a binding affinity score of -
7.6 kcal/mol and forms four hydrogen bonds, one 
carbon-hydrogen bond, five van der Waals 
interactions, and hydrophobic contacts. Compound 
49 is unable to form stability with the protein by 
unfavorable donor-donor interaction with Arg136, 
Ser137, and Arg238, respectively. Compound 36 
with a binding affinity of -7.5 kcal/mol with the 
protein form one conventional hydrogen bond with 
His161. It also forms halogen interaction with 
Ala141. The compound is also involved in 
hydrophobic interactions with Leu144, Cys267, 
Ala156, Leu197, Val158, Pro195 (Figure 7). 
 
According to the results obtained from the 
molecular docking interactions (1) with Molegro 

Visual Docker, compounds 25, 31, 35, and 41 have 
the least energies interactions with the protein 
crystal structure than the reference drugs except for 
Ceftriaxone (Azithromycin). (2) with iGemDock, 
compounds 41 and 49 have the least total energy 
values than the reference drugs. (3) lastly using 
AutoDock Vina, compound 4, 17, 18, 20, 36, 44, 
49, and 57 shows the best binding energy with the 
protein structure than the reference drugs. 
 
3.1 ADMET Properties 
Lipinski’s rule of 5 [28] and Veber’s rule of 2 [29] 
propose that molecular weight (MW), hydrogen 
bond acceptors (HA), hydrogen bond donors (HD), 
rotatable bond (R-bond), polar surface area (PSA) 
are crucial to influencing the oral bioavailability, 
good absorption or permeation, if   MW < 500 Da, 
The HD < 5 (counting the sum of all NH and OH 
groups), partition coefficient octanol/water cLog P 
< 5, The HA < 10 (counting all N and O atoms). 
The other two Veber’s parameters: Number of 
Rotatable bonds (R-bond) < 10 and Polar surface 
area (PSA) < 140 Å2. The molecular weight (MW) 
of all the selected compounds is less than 450 Da, 
unlike the reference drugs that have more than 450 
Da except Ampicillin with 349.41 Da. Increasing 
MW reduces the compound concentration at the 
surface of the intestinal epithelium, therefore 
reducing absorption. Increasing size also blocks 
passive diffusion through the tightly packed 
aliphatic side chains of the bilayer membrane [30]. 
The 12 selected compounds are likely soluble and 
easily pass-through cell membranes. Compound 35 
and the reference drugs have negative cLogP 
indicates that the compounds are too hydrophilic, 
therefore, it has good aqueous-solubility, better 
gastric tolerance, and efficient elimination through 
the kidneys. Since their clogP is less than zero, the 
drug has difficulty penetrating the lipid membranes. 
The rest selected compounds have a positive cLogP 
value indicates that the compound is too lipophilic 
(Table 6). So, it has a good permeability through the 
biological membrane, a better binding to plasma 
proteins, elimination by metabolism but poor 
solubility, and gastric tolerance [10]. From the 
Table, compound 17, 41, 44, and 49 has their cLogP 
greater than zero and less than three (3) shows that 
it has better oral bioavailability. An analysis of 
drug-like molecules (cLogS > -4) suggests that for 
better absorption and good solubility. Typically, a 
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high solubility goes along with good absorption. 
Therefore, compound 4, 18, 20, 25, 31, 36, 44, and 
57 have their cLogS calculations greater than -4, 
while all the reference drugs are less than -4 shows 
low solubility with bad absorption. Molecules 
showing good absorption or permeation are likely 
to have hydrogen bond donors (HD) not more than 
5 and hydrogen bond acceptors (HA) not more than 
10 to enhance the probability of good intestinal 
permeability. The selected compounds are within 
the required range, while all the reference drugs 
except Ampicillin have their HA and HD in more 
than the required range (Table 6). 
 

The rotatable bond (R-bond) of all the compounds 
is less than 10, show that the compounds are 
flexible and more adaptable for efficient interaction 
with the protein binding pocket. A successful CNS 
drug has its R-bond less than 8 [31]. All the selected 
compounds as Yersinia pseudotuberculosis 
inhibitors have an R-bond less than 8 (Table 6). The 
polar surface area (PSA) is formed by the polar 
atoms of a molecule. Compounds with PSA less 
than 140Å2 show a good correlation with passive 
molecular transport through membranes, and so 
allows estimation of transport properties of drugs. 
 

20

 

36 

 
44

 

49

 
Figure 7. Interaction of the selected compounds with the protein crystal structure 
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Ceftriaxone, Chlortetracycline, and 
Oxytetracycline have very high values of PSA 
results except for Ampicillin, worsening of the 
absorption of a drug. Compounds 41, 44, and 49 
with PSA values between 140 and 155 Å2 belong 
to the compounds with reduced absorption (Table 
6). 
 
3.2 Drug-likeness properties and lipophilicity 
indices 
Since passing Lipinski’s and Veber’s rules is not a 
guarantee that a compound is drug-like, other 

parameters were carried out called the lipophilicity 
indices as shown in Table 7. The values of drug-
likeness, ligand efficiency (LE), Lipophilic ligand 
efficiency (LLE), ligand efficiency lipophilic price 
(LELP), mutagenic, tumorigenic, and reproductive 
effectiveness were compared. The drug-likeness 
may be defined as a complex balance of various 
molecular properties and structural features that 
determine whether a particular molecule is similar 
to the known drugs [32]. 

 
Table 6. Absorption, permeability, and bioavailability properties of the selected compounds 

Compound No. MW (g/mol) cLogP cLogS HA HD TSA (Å2) R-bond PSA (Å2) 
4 310.168 4.782 -4.929 4 2 252.79 4 61.69 
17 316.316 2.271 -2.772 7 5 239.91 5 122.38 
18 362.792 3.692 -4.918 6 4 252.00 3 130.39 
20 326.248 3.806 -4.517 4 2 229.15 4 61.69 
25 405.291 5.093 -5.437 5 2 281.42 5 70.92 
31 399.229 3.858 -4.951 7 2 290.96 6 89.38 
35 237.214 -0.332 -1.824 7 3 182.11 4 114.01 
36 420.473 6.868 -6.523 4 2 317.00 6 61.69 
41 278.223 0.121 -3.151 9 2 214.98 5 140.53 
44 402.406 1.920 -5.6 10 2 284.65 6 153.33 
49 317.256 1.243 -3.293 9 4 229.71 4 147.97 
57 349.183 3.511 -4.277 5 2 234.23 4 70.92 
Ampicillin 349.410 -1.657 -1.565 7 3 238.56 4 138.03 
Ceftriaxona 554.588 -3.011 -2.953 15 4 365.48 8 287.82 
Chlortetracycline 494.882 -1.578 -2.166 11 7 311.79 2 201.85 
Oxytetracycline 460.438 -2.183 -1.43 11 7 296.37 2 201.85 

MW = Molecular weight; HA = hydrogen bond acceptor; HD = hydrogen bond donor; TSA = total surface 
area; PSA = polar surface area 
 

In drug-likeness property, a positive value for the 
chemicals states that the molecule contains 
predominantly fragments that are frequently present 
in commercial drugs [33]. Compounds 20, 25, 36, 
41, 44, and 49 showed negative values for the drug-
likeness properties (i.e., they do not contain 
fragments that are frequently present in market 
drugs). The toxicity risk values were predicted using 
the software Data warrior (OSIRIS) are shown as 
none, low, and high for its mutagenic, tumorigenic, 
irritant, reproductive effective properties. The high 
risks of undesired effects like mutagenicity 
tumorigenic, and reproductive effective properties 
are shown in Table 7. The none value indicates the 
absence of risk alerts that a particular substance 
would be completely free of any toxic effect, the low 
and high values show the level of toxicity [34]. 
Compounds 18, 20, and 35 showed high mutagenic 

toxicity risk, compound 31 shown high tumorigenic 
toxicity risk, while compounds 31 and 35 shows 
high reproductive effective properties, respectively 
(Table 7). 
 
The ligand efficiency (LE) is free binding energy in 
kcal/mol per nonhydrogen atom or heavy atom 
calculated from IC50 [35]. A truly good hit or lead 
compound has LE greater than 0.3 and the results 
show that all the selected compounds have their LE 
greater than 0.3 [11, 36]. This indicates that the 
compounds have a desirable LE potency at the right 
molecular weight. The lipophilic ligand efficiency 
(LLE) is used to identify low potency target 
compounds that are small in size and have low 
lipophilicity, it evaluates how well compounds 
improve potency while asserting low lipophilicity. 
The score ranges from 5 to 7 or more. The results 
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showed that compounds 17, 44, and 49 displayed a 
significantly high value of LLE. Ligand efficiency 
lipophilic price (LELP) becomes a useful function to 
follow during hit-to-lead optimization. The LELP 
could distinguish between marketed drugs over drug 
candidates. The ideal LELP values have been stated 
to be between -10 and 10 for acceptable leads [37]. 
The closer the LELP is to zero in the positive range, 
the better, and the desirable range is between 0 to 
7.5. Compound 17, 41, 44, 49, and 57 have their 
LELP value within the stipulated range and they 
have the chance of success in the Yersinia 

Pseudotuberculosis inhibitors drug development 
process. 
 
These selected compounds were also tested for 
irritants, the nasty function (Nasty F), shape index, 
molecular flexibility, molecular complexity, and the 
electronegative atoms were also computed as shown 
in Table 8. All the selected compounds and the 
reference drugs are free from the irritant, while 
compound number 31 was associated with a high 
risk of irritant. The shape index (Shap-I) works with 
the two-dimensional non-hydrogen atoms and bond 
graph of the molecule. It ranges from 0 to 1. 

 
Table 7. Lipophilicity and toxicity properties of the selected compounds  

Compound No. Drug-likeness LE LLE LELP Mutagenic Tumorigenic R-E 
4 1.0753 0.5009 3.6162 9.546 None None None 
17 3.1799 0.4634 5.4983 4.9011 None None None 
18 5.5897 0.4427 4.053 8.339 High None None 
20 -2.7696 0.4592 3.894 8.2858 High None None 
25 -0.7374 0.4172 2.5091 12.209 None None None 
31 4.3397 0.3962 3.6507 9.7375 None High High 
35 2.1895 0.6017 7.7879 -0.552 High None High 
36 -6.1147 0.3404 0.5757 20.177 None None None 
41 -8.0604 0.5067 7.2667 0.2378 None None None 
44 -0.4717 0.3480 5.4361 5.5182 None None None 
49 -07802 0.4360 6.0669 2.8506 None None None 
57 2.5245 0.4732 3.733 7.4193 None None None 
Ampicillin 9.3648 -------- ------ ------- None None None 
Ceftriaxona 16.694 ------- ------ ------ None None None 
Chlortetracycline 5.2162 ------- -------- ------ None None None 
Oxytetracycline 5.1656 ------ -------- ------ None None None 

LE = ligand efficiency; LLE = lipophilic ligand efficiency; LELP = ligand efficiency lipophilic price; R-E = 
reproductive effective 
 
The value of 1 represents perfect chains and the 
smaller the value the more rings and bridges in the 
compounds. All the compounds are closed to 
linearity (straight-chain) with a shape index greater 
than 0.5 except compound compounds 36 and 44. 
The molecular flexibility (Mol Fle) of a ligand has a 
substantial influence on the affinity and specificity 
when binding to a protein. Molecular flexibility 
relates to the ease by which the molecule transverse 
the membrane [38]. The molecular flexibility ranges 
from 0 (rigid) to 1 (completely flexible). All the 
selected compounds are a bit rigid since their 
molecular flexibility is less than 0.5. Reduced 
molecular flexibility (measured by the number of 
rotatable bonds) and low polar surface areas are 
found to be important predictors of good oral 
bioavailability [39]. The molecular complexity also 

plays important role in molecular properties 
predictions. The reference drugs have their 
molecular complexity value higher than the selected 
compounds; this suggests that the selected 
compounds can easily be reproduced or synthesized. 
 
Globularity values play an important part in 
molecular property prediction. The globularity of a 
compound is a value that describes how well the 
molecule's 3D shape resembles a sphere. From Table 
9, the number of heavy atoms (non-hydrogen atoms) 
of the reference drugs is higher than the selected 
drugs except Ampicillin with 24. So, the ligand 
efficiency decreases with the increase of the number 
of heavy atoms. Decrease of heavy atoms increases 
the lipophilicity (ligand efficiency) which leads to 
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low aqueous solubility and difficulties in penetrating 
the lipid bilayers of cell membranes [11, 18, 40]. 
 
The non-carbon/hydrogen atoms (non-C/H) are all 
greater than one. A lower carbon to heteroatom 
balance may be required to achieve acceptable 
aqueous solubility and lipophilicity for uptake and 
movement in mammals [41]. Globularity using 
single value decomposition of 3D-atom coordinate 
(SVD) values ranges from close to 1.0 for spherical 
molecules to 0.0 for perfectly flat or linear 

molecules. The SVD values reference drugs and 
some of the selected compounds are less than 0.5; 
which suggested that they are flat or linear in shape 
except compounds 25, 44, and 49 that have their 
SVD values greater than 0.5 (Table 9). The 
globularity from molecular volume and surface 
(GMVS) values ranges from close to 1.0 for 
spherical molecules to about 0.6 for linear with 
irregular shapes. All the compounds are non-
spherical with compound 44 with a greater irregular 
shape. 

 
Table 8. Comparison of the molecular shape of the selected compounds with the standards 

Compound 
No. 

Irritant Nasty F. Shap-I Mol Fle Mol Com Electro
. 

4 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.6087 0.3767 0.6863 4 
17 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.6957 0.4675 0.6392 7 
18 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.5833 0.3585 0.7938 8 
20 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.5652 0.4483 0.7090 8 
25 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.56 0.4006 0.7590 6 
31 High Acyl-hydrazone; imine/hydrazone of aldehyde 0.5384 0.3707 0.7787 9 
35 None Acyl-hydrazone; imine/hydrazone of 

aldehyde; Limit! Oxal-diamide 
0.7059 0.3182 0.6007 7 

36 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.4356 0.4355 0.7982 7 
41 None Aromatic nitro; Acyl-hydrazone; 

imine/hydrazone of aldehyde 
0.6 0.3489 0.7426 9 

44 None Aromatic nitro; Acyl-hydrazone; 
imine/hydrazone of aldehyde 

0.4828 0.4400 0.8364 10 

49 None Aromatic nitro; Acyl-hydrazone; 
imine/hydrazone of aldehyde 

0.5652 0.3873 0.7618 9 

57 None Acyl-hydrazone; imine/hydrazone of aldehyde 0.6191 0.3563 0.6886 6 
Ampicillin None ---------------- 0.5417 0.3818 0.8929 8 
Ceftriaxon
e 

None Acyl-hydrazone; imine/hydrazone of 
aldehyde; Limit! Oxal-diamide 

0.5278 0.3882 0.9593 18 

Chlortetrac
ycline 

None Twice activated DB 0.3529 0.3261 1.1057 12 

Oxytetracy
cline 

None Twice activated DB 0.3636 0.3283 1.0879 11 

Nasty-F = nasty function; Shap-I = shape index; Mol Fle = molecular flexibility; Mol Com = molecular 
complexity; Electro = electronegativity. 

 
Table 9. Globularity and Size evaluation for the selected compounds and standard drugs 

Compound No. Non-H Atom Non-C/H SVD GMVS V-Surf. VDW-Vol. SP3 
4 23 4 0.4816 0.7288 326.96 345.79 6 
17 23 7 0.2789 0.7068 310 305.26 6 
18 24 8 0.3605 0.7161 313.71 316.54 3 
20 23 8 0.3509 0.7178 286.26 276.90 2 
25 25 6 0.6305 0.7301 344.01 374.15 7 
31 26 9 0.3195 0.6701 363.72 357.69 7 
35 17 7 0.1278 0.7388 237.78 218.88 3 
36 30 7 0.3504 0.6727 403.64 421.04 10 
41 20 9 0.2701 0.7178 266.89 249.28 5 
44 29 10 0.6908 0.83163 296.24 363.52 14 
49 23 9 0.6095 0.7299 287.37 285.57 4 
57 2 6 0.2832 0.6983 299.81 284.77 3 
Ampicillin 24 8 0.2640 0.7519 313.98 340.99 10 
Ceftriaxona 36 18 0.2812 0.6429 451.43 464.78 10 
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Chlortetracycline 34 12 0.388 0.7416 366.68 421.52 16 
Oxytetracycline 33 11 0.4653 0.7558 351.19 406.49 16 

 
Other properties calculated are the solvent excluded 
surface area (Van der Waals surface) using VMD-
radii and 1.4A probe (V-Surf), the molecular volume 
inside solvent exclude surfacing using VMD-radii, 
and 1.4A probe (VMD-Vol) as shown in Table 9. 
3.3 Golden Triangle and Drug Score test 
As indicated in Fig. (8), around 42 percent of the 
examined chemicals lie within the golden triangle, 
indicating that they will not have clearance issues, 
while 52 percent fall outside the golden triangle [12, 
42]. Out of the 12 candidate drugs, compound 17, 
35, 41, 44, and 49 passes the golden triangle 
screening. These selected drugs undergo a drug 

score test. The drug score combines all other 
predictions into one total [32]. The drug score is 
used to assess the drug candidate's potential [43]. 
The chemical has a better possibility of becoming a 
drug candidate when the drug score is higher. The 
drug score values such as 1.0, 0.8, 0.6 are associated 
with no risk, medium risk, and high risk, 
respectively. Compounds 17, 35, 41, 44, and 49 drug 
score are 0.87, 0.14, 0.46, 0.38, and 0.45, 
respectively. This shows that compound 17 
possesses the value of medium risk and may be used 
as a drug molecule. 

 

 
Figure 8. Golden triangle plot of molecular weight (MW) vs calculated LogP 

 
3.4 Molecular Dynamics Simulations 
Finally, compounds 17 with approved drug-likeness 
(Table 7) and drug score undergo 1 ns molecular 
dynamics simulations from the docked complexes 
(Fig. 9), since docking was not considered 
conclusive because in vivo binding of the inhibitor 
to a protein is a dynamic process. 
The comparison between the docked conformation 
and 1 ns MD simulated stable conformation of 
compound 17 is shown in Figs. 9 and 10. The 
conformations of the docked and the simulated were 
well aligned with slight differences. The root means 
square deviation (RMSD), kinetic, total, and 
potential energy was monitored during the 
simulations to ensure the stability of the simulated 
system, and plots are shown in Fig. 11. By 
comparing docking complex (Fig. 9) and the 1 ns 

MD simulations complex (Fig. 10), compound 17 
retained the hydrogen bonds with Ser137, Ser106, 
Leu197, electrostatic interaction with Asp108, and 
the van der Waals interaction with Pro195, 
respectively. The docking complex and the MD 
simulation complex form an equal number of 
hydrogen bonds. Furthermore, compound 17 formed 
six additional van der Waals interactions and one 
additional hydrophobic interaction during the 1 ns 
MD simulations. The binding interaction pattern 
during MD simulation was almost consistent with 
the docking results. The simulation result reveals 
that the RMSD tends to be steady and wavered 
approximately at 1.1 Å (Fig. 11a). The kinetic, total, 
and potential energy as a function of time was 
assessed to check the complexes during the 1ns 
molecular dynamic simulations (Fig. 11b-d). The 
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average kinetic, total and potential energy of the 
complexes was set at about 32,752.47, -175963.42 
and -143210.95 Kcal/mol at a temperature of 301.99 
K, respectively. The shape of the curve shows that 

the kinetic, total and potential energy of the systems 
is stable, no abnormal fluctuation was noticed during 
the whole simulation.

 

 
 

Figure 9. Interaction of compound 17 with the protein crystal structure before MDs simulations. 
 

  
Figure. 10. Interaction of compound 17 with the protein crystal structure after molecular dynamics simulations 
 
The results obtained in this study are 
promising and could aid in the development 
of new anti-Y. pseudotuberculosis drugs. It 
would be interesting to test the inhibitory 
activity of the predicted salicylidene 

acylhydrazides derivatives against the 
effector binding domain of the LysR-Type 
transcription factor RovM from Y. 
pseudotuberculosis.



Turkish Comp Theo Chem (TC&TC), 6(1), (2022), 9-31 

Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa 

 

27 
 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200

RM
SD

 ()

Time (ns)

32200

32400

32600

32800

33000

33200

33400

33600

33800

34000

0 100000 200000 300000 400000 500000 600000

Ki
ne

tic
 E

ne
rg

y 
(K

ca
l/m

ol
)

Time (ns)

-145000

-144000

-143000

-142000

-141000

-140000

-139000

-138000
0 100000 200000 300000 400000 500000 600000

To
ta

l E
ne

rg
y 

(K
ca

l/m
ol

)

Time (ns)



Turkish Comp Theo Chem (TC&TC), 6(1), (2022), 9-31 

Emmanuel Israel Edache, Adamu Uzairu, Paul Andrew Mamza, Gideon Adamu Shallangwa 

 

28 
 

 
Figure 11. The plot of (a) RMSD, (b) kinetic energy, (c) total energy, and (d) potential energy 
per time (ns) of the protein-ligand complex. 
 

4. Conclusions 
Drug targets derived from infections' specific 
pathways are of particular relevance in the 
development of medications to combat the 
bacterium Y. pseudotuberculosis. This is a lethal 
infection brought about by microorganisms of the 
class mycobacterium which influences people. 
Because of the unavailability of preventive 
vaccines this disease is becoming endemic in many 
countries. The computational mechanisms have 
improved the identification of vaccines by reverse 
vaccinology. To find the best-screened compounds, 
we performed molecular docking simulations from 
three separate software packages (MVD, 
iGemDock, and AutoDock-vina), ADMET, golden 
triangle visualizer, drug scores, and molecular 
dynamics simulations. Computational toxicity and 
drug-likeness tests also showed good results. The 
analysis of the golden triangle showed that 
compounds 17, 35, 41, 44, and 49 wouldn't have 
clearance and cytomembrane permeableness issues 
except for all the references medication, 
compounds four, 18, 20, 25, 31, 36, and 57, 
respectively. Based on all the simulations that have 
been done, compounds 17 and 44 were the potential 
candidate to inhibit Y. pseudotuberculosis. We 
conclude these compounds are also potential 
ligands to be developed as a drug. Therefore, in 
vitro and in vivo tests are mandatory to establish 
these facts 
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