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Abstract 

In the postmenopausal period, women undergo 

physical and morphological changes that may result in 

insufficiency and deterioration in physiological functions. 

It is accepted that oxidative stress is involved in the 

etiology of postmenopausal changes. It is known that the 

decrease in ovarian hormones, especially 17β-estradiol 

(17-β) after menopause induces apoptosis and oxidative 

stress in many tissues. It is well known that 17-β has an 

antioxidant role in non-menopausal women. Recently, we 

observed that the treatments of 17-β, raloxifene (RAL), 

and tamoxifen (TAM) diminished apoptotic factors, 

oxidative stress, and mitochondrial membrane 

depolarization in the brain and dorsal root ganglia of 

ovariectomized rats. There is no enough information 

about the effects of triple therapy [17-β, and selective 

estrogen receptor modulators (TAM and RAL)] effects on 

liver and kidney tissues. We aimed to investigate the 

effects of 17-β, TAM, and RAL on apoptosis, cell 

viability (MTT), and oxidative stress in the kidney and 

liver of bilateral ovariectomized (OV) rats. 

Forty female rats used in the experiment, and they 

were divided into five groups as control, OV, OV+17-β, 
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OV+TAM, and OV+RAL. 17-β, TAM, and RAL were 

subcutaneously given to three groups (OV+17-β, 

OV+TAM, and OV+RAL) for 14 days after ovariectomy. 

While kidney and liver cells lipid peroxidation 

levels were high in the OV group, they were low in the 

OV+17-β, OV+TAM, and OV+RAL groups. The 

treatments of 17-β, TAM, and RAL in the groups of 

OV+17-β, OV+TAM, and OV+RAL increased the 

glutathione peroxidase (GSH Px) activity and glutathione 

(GSH) levels in the cells of kidney and liver. In addition, 

the MTT level of kidney and liver cells was low in the 

OV group and higher in the OV+17-β, OV+TAM, and 

OV+RAL groups. The treatments of OV+17-β, 

OV+TAM, and OV+RAL decreased the apoptosis and 

ROS levels in kidney and liver cells.  

In conclusion, we observed that 17-β, TAM, and 

RAL administrations were beneficial on cell viability 

(MTT), apoptosis, and ROS levels in the kidney and liver 

cells of OV rats by modulating antioxidant systems. 

 

Keywords: 17β-estradiol; Raloxifene; Tamoxifen; 

Apoptosis; ROS. 

 

Introduction 

Menopause is defined as a natural life process that 

occurs with the permanent cessation of menstruation in 

which women undergo physical and morphological 

changes (Thompson et al. 2019). It is well known that 

these changes are related to the decrease in the ovarian 

hormone, especially 17-β estradiol (17-β) (Nazıroğlu et al. 

2004; Yazğan et al. 2016). 17-β has been shown to have a 

comprehensive organ protective role as well as anti-

inflammatory and antioxidant effects (Brady, 2015; 

Yazğan et al. 2016; Yazğan and Nazıroğlu, 2017; Ltaif et 

al. 2020). It is known that the decrease in ovarian 

hormones after menopause induces apoptosis and 

oxidative stress in many body tissues (Dilek et al. 2010; 

Lamas et al. 2015). Mitochondria have important roles in 

cell metabolism, cell viability (MTT), apoptosis, and 

reactive oxygen species (ROS) homeostasis (Shukla et al. 

2009; Ltaif et al. 2020). The treatment of 17-β has been 

shown to regulate the structure and function of 

mitochondria, particularly in tissues that have a high 

energy demand such as liver and kidney (Konyalioglu et 

al. 2007; Shukla et al. 2009). Estrogen deprivation 

following menopause causes damage to glomerular, 

tubular, or vascular kidney tissues due to an increase in 

the ROS generation.  

Ovariectomy procedure in experimental animals is 

an important model to investigate the effects of estradiol 

deficiency in menopause (Konyalioglu et al. 2007; 

Yazğan and Nazıroğlu, 2017). Removal of the ovaries 

increases oxidative stress with high ROS production, 

which leads to pathological changes in kidney and liver 

tissues (Konyalioglu et al. 2007; Ltaif et al. 2020). It was 

demonstrated that the postmenopausal women have 

higher serum concentrations of oxidative markers of lipid 

peroxidation and oxidized GSH (Doshi and Agarwal, 

2013). ROS cause injury to cells and intracellular 

membranes resulting in lipid peroxidation and may lead 

to cellular destruction and subsequently, cell death in 

many tissues (Halliwell, 2006). Various antioxidant 

defense systems are available to clear ROS in body 

tissues including kidney and liver tissues. Glutathione 

peroxidase (GSH Px) is responsible for the reduction of 

hydro and organic peroxides in the presence of reduced 

glutathione (GSH). GSH is the most abundant thiol 

antioxidant in mammalian many cells and maintains thiol 

redox balance in cells (Schweizer et al. 2004; Nazıroğlu, 

2009). Therefore, the antioxidant levels can be evaluated 

indirectly by measuring various antioxidants, including 

GSH Px and GSH. 

Tamoxifen (TAM) and raloxifene (RAL) are non-

steroidal selective estrogen receptor modulators 

(SERMs), and are used in the treatment of estrogen-

dependent breast cancers and the preservation of bone 

tissue (Jordan, 2003; Shukla et al. 2009; Yazğan et al. 

2016). SERMs act as estrogen antagonists in some 

tissues, such as the breast and uterus tissues, while acting 

as estrogen agonists in tissues such as bone and brain 

tissues (Jordan, 2003; Doshi and Agarwal, 2013; Yazğan 

and Nazıroğlu, 2017). Previous studies have shown that 

RAL can reduce lipid peroxidation and oxidative stress in 

the rat brain, and protects glucose-deficient astrocytes 

from oxidative injury (Konyalioglu et al. 2007; Yazğan 

and Nazıroğlu, 2017). The results of several studies 

indicated that the treatments of TAM and RAL acted 

neuroprotective effects on the central nervous system and 

also show pharmacological effects similar to that of 17-β 

in both postmenopausal women and OV rats (Yaffe et al. 

2001; Moreira et al. 2005; Moreira et al. 2007; Yazğan et 

al. 2016; Yazğan and Nazıroğlu, 2017). Some compounds 

exhibiting antioxidant activity reduce the potential 

damage caused by oxidation by buffering endogenously 
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or exogenously produced free radicals. It has been 

reported that free radical production and apoptotic 

pathways are regulated by the treatments of 17-β, TAM, 

and RAL (Yang et al. 2004; Moreira et al. 2005; 

Konyalioglu et al. 2007; Moreira et al. 2007; Moreira et 

al. 2011; Yazğan and Nazıroğlu, 2017). Numerous studies 

have shown that estrogen is a powerful antioxidant 

(Kumar et al. 2011; Fidarov et al. 2015; Yazğan and 

Nazıroğlu, 2017; Gendy et al. 2019; Ltaif et al. 2020; El-; 

Xu et al. 2020). Recent studies documented that RAL has 

antioxidant properties in vitro (Arteaga et al. 2003; Mann 

et al. 2007). Lately, we observed 17- β, TAM, and RAL 

may reduce apoptotic factors (including caspase 3 and 9), 

mitochondrial membrane depolarization, and oxidative 

stress (Yazğan et al. 2016; Yazğan and Nazıroğlu, 2017). 

However, there are limited animal studies, showing the 

antioxidant properties of TAM and RAL.  

The benefits effect of 17-β, TAM, and RAL on 

oxidative stress, MTT, apoptosis in the brain, neurons, 

and many other tissues are well known (Moreira et al. 

2005; Konyalioglu et al. 2007; Moreira et al. 2007; 

Yazğan and Nazıroğlu, 2017).  

However, their effects on lipid peroxidation, 

apoptosis, ROS, and antioxidants such as GSH and GSH 

Px in the kidney and liver cells have not been clarified 

yet, and there is no enough information about the effects 

of triple therapy [17-β, TAM, and RAL] effects on liver 

and kidney tissues. Therefore, we aimed to evaluate the 

effects of 17-β, TAM, and RAL on antioxidants, MTT, 

oxidative stress, and apoptosis status in kidney and liver 

tissue using a bilateral ovariectomy animal model. 

 

Material and Method 

Experimental Animals 

Forty female Wistar albino rats (weighing 170 ± 10 

g and aged 8–12 weeks) were used in the present study. 

All of the rats were housed under standard conditions of 

temperature (22 ± 2°C) and light (12 hours of daylight/12 

hours of darkness). Animals were housed in individual 

plastic cages with bedding. The experimental protocol of 

the study was approved by the Ethical Committee of the 

Medical Faculty of Suleyman Demirel University (SDU).  

Experimental Groups 

The rats were randomly divided into five groups with 

eight rats per group as follows: 

 Control (CON) group: A placebo (0.1 ml dimethyl 

sulfoxide [DMSO]+0.9 ml physiological saline [0.9 

NaCl w/v]) was subcutaneously administrated to rats 

of the group for 14 days.  

 Ovariectomize (OV) group: After inducing OV, 

DMSO (0.1 ml) was intraperitoneally (IP) 

supplemented for 14 days (Dilek et al. 2010). 

 Ovariectomize+17β-estradiol (OV+17-β) group: 

Animals in the group received intraperitonal 17-β (80 

µg/kg/day) for 14 consecutive days after OV treatment 

(Kramer and Bellinger, 2013). 

 Ovariectomize+Raloxifene (OV+RAL) group:  

Animals in the group received intraperitonal RAL (1 

mg/kg/day) for 14 consecutive days after OV treatment 

(Huang et al. 2007). 

 Ovariectomize+Tamoxifen (OV+TAM) group:  

Animals in the group received intraperitonal TAM (1 

mg/kg/day) for 14 consecutive days after OV treatment 

(Yazğan et al. 2016). 

 

MDA levels determinations in kidney and liver cells 

MDA levels in the hemolyzed kidney and liver cells 

homogenate were measured with the thiobarbituricacid 

reaction by the method of Placer et al. (1966). The values 

of MDA in the kidney and liver cells samples were 

expressed as μmol/g protein. The protein contents in the 

hemolyzed kidney and liver cells homogenate were 

measured by method of Lowry et al. (1951) with bovine 

serum albumin as the standard. 

 

Reduced glutathione (GSH) and glutathione 

peroxidase (GSH Px) levels determinations in kidney 

and liver cells 

The GSH contents of the kidney and liver cells were 

measured at 412 nm using the method of Sedlak and 

Lindsay (1968). GSH Px activities of kidney and liver 

cells were measured spectrophotometrically at 37 °C and 

412 nm according to the Lawrence and Burk method 

(1976). GSH Px activity and GSH level in the kidney and 

liver cells samples were expressed as μmol/g protein. 

 

Cell viability (MTT) levels determinations in kidney 

and liver cells  

Viability assays were performed by measuring 

mitochondrial reductase activity with MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] 

(Sigma-Aldrich, Istanbul, Turkey) as described in 

previous studies (Yazğan and Nazıroğlu, 2017). 
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Absorbance in a microplate reader (Infinite pro200; Tecan 

Inc, Groedig, Austria) was read at 550 nm. The data are 

presented as percentage (%) increase over the 

pretreatment level. 

 

Intracellular ROS production levels determinations in 

kidney and liver cells 

Rhodamine 123 (Rh 123) is a cell-permeant, and 

green-fluorescent dye that is readily sequestered by active 

mitochondria without cytotoxic effects. Once getting in 

the cell, DHR 123 becomes fluorescent upon oxidation to 

(Rh 123, fluorescence being proportional to ROS 

generation. The kidney and liver cells were incubated 

with 20 m DHR 123 at at 37 °C for 25 min (Espino et al. 

2010). Then, the neurons were then washed in PBS. The 

fluorescence intensity of Rh123 was measured in an 

automatic microplate reader (Infinite pro200; Tecan 

Austria). Excitation was set at 488 nm and emission at 

543 nm. 

 

Apoptosis activities levels determinations in kidney 

and liver cells 

The apoptosis assay was performed using a 

commercial kit according to the instructions provided by 

Biocolor Ltd. (Northern Ireland) and elsewhere (Yazğan 

and Nazıroğlu, 2017).  When the membrane of apoptotic 

cell loses its asymmetry, the APOPercentage dye is 

actively transported into cells, staining apoptotic cells red, 

thus allowing detection of apoptosis by 

spectrophotometer. Substrate cleavage was measured with 

the microplate reader (Infinite pro200) with excitation 

wavelength of 360 nm and emission at 460 nm. 

  

Statistical analysis 

All results are expressed as means ± standard 

deviation (SD). Data were analyzed using the SPSS 

statistical program (version 17.0, software, SPSS. 

Chicago, IL, USA). The presence of statistical 

significance in the groups was evaluated with one-way 

ANOVA and Tukey HSD post hoc test. The level of 

significance was accepted as p<0.05 in all statistical 

comparisons. 

 

Results 

MDA results in kidney and liver cells 

The mean MDA (lipid peroxidation) values in liver 

and kidney cells of five groups are shown in Figure 1A 

and Figure 2A, respectively. The results showed that the 

MDA levels in the liver and kidney were significantly 

(p < 0.05) higher in the OV group than in the CON group. 

The 17-β, TAM, and RAL administrations caused 

decreases in MDA levels of the liver and kidney (p < 

0.05) relative to the OV group.  

 

GSH and GSH Px results in kidney and liver cells 

The mean GSH levels and GSH Px activities in the 

liver and kidney cells of the five groups are shown in 

Figures 1B, 1C, 2B, and 2C. The GSH concertation and 

GSH Px activities in the liver and kidney cells of the OV 

group were significantly lower (p < 0.05) than in the CON 

group. The liver and kidney cells GSH and GSH Px 

concentrations were increased by the treatments of 17-β, 

TAM, and RAL treatments (p < 0.05). 

 

 

 

 

Figure 1. The effects of 17-, RAL, and TAM on liver cells 

MDA, GSH, and GSH Px level in ovariectomized rats (n=8 and 

mean ± SD). (ap≤ 0.05 vs CON group. bp≤ 0.05 vs OV group). 
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Figure 2. The effects of 17-, RAL, and TAM on kidney cells 

MDA, GSH, and GSH Px level in ovariectomized rats (n=8 and 

mean ± SD). (ap≤ 0.05 vs CON group. bp≤ 0.05 vs OV group). 

 

17-, RAL, and TAM treatment modulated 

ovariectomized induced cell viability (MTT), 

apoptosis, and ROS values in the kidney and liver cells 

We investigated the protective effects of 17-, RAL, 

and TAM on MTT, apoptosis, and ROS levels in the 

kidney and liver cells (Figure 3). The MTT levels 

(Figure 3A) in the kidney and liver were markedly 

(p<0.05) lower in the OV groups than in the CON group. 

The kidney and liver cells MTT levels were increased by 

17-β, TAM, and RAL treatments. The apoptosis and ROS 

levels (Figures 3B and 3C) in the kidney and liver were 

markedly (p<0.05) higher in the OV groups than in the 

CON group. The kidney and liver cells apoptosis and 

ROS levels were decreased by the treatments of 17-β, 

TAM, and RAL treatments.   

 

 

 

Figure 3. The effects of 17-, RAL, and TAM on liver and 

kidney cells MTT, apoptosis,, and ROS level in ovariectomized 

rats (n=8 and mean ± SD). (ap≤ 0.05 vs CON group. bp≤ 0.05 vs 

OV group. cp≤ 0.05 vs OV +17- β group). 

 

Discussion 

17-β is a considerable hormone in the maintenance 

of the functions of the many tissues, including the liver 

and kidney tissues (Brady, 2015; El-Gendy et al. 2019; 

Ltaif et al. 2020; Xu et al. 2020). It is possible that the 

abrupt reduction in 17-β levels by OV can trigger 

complex functional and structural disturbances with 

consequent changes in this tissues (Kumar et al. 2011; Xu 

et al. 2020). Pathological changes in these tissues can be 

explained by the increase in oxidative stress parameters, 

and decrease in antioxidant levels as a result of the 

diminution in estradiol due to ovariectomy (Konyalioglu 

et al. 2007; Yazğan and Nazıroğlu, 2017; El-Gendy et al. 

2019). It is also known that 17-β reduction activates 

apoptotic pathways (Mann et al. 2007; Yazğan and 
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Nazıroğlu, 2017; Xu et al. 2020). TAM and RAL are non-

steroidal SERMs (Mann et al. 2007). It has been reported 

that apoptotic pathways and free radical production are 

regulated by TAM and RAL (Mann et al. 2007; 

Konyalioglu et al. 2007; Moreira et al. 2011; Schubert et 

al. 2016). Although the effects of 17-β, TAM, and RAL 

on lipid peroxidation, oxidative stress, and antioxidants 

have been investigated in various tissues, their effects in 

the kidney and liver are still not fully understood. For this 

purpose, we evaluated the effects of 17-β, TAM, and 

RAL on oxidative stress, antioxidants, and apoptosis 

status in kidney and liver tissue using a bilateral 

ovariectomy animal model. 

We found that apoptosis, ROS, and lipid 

peroxidation (MDA) levels in the liver and kidney cells, 

were increased by OV induction. However, cell viability 

(MTT), GSH Px, and GSH activity were decreased by the 

induction of OV. For this reason, OV-induced estrogen 

deficiencies were characterized by increased oxidative 

stress and ROS along with decreased antioxidant levels. 

17-, RAL, and TAM applications decreased lipid 

peroxidation, apoptosis, and ROS levels in liver and 

kidney tissues; however, GSH, GSH Px activity, and cell 

viability levels were increased by the treatments. In this 

way, we have shown that 17-, RAL, and TAM 

treatments modulated the balance of antioxidants in rats 

by down-regulating the levels of oxidative stress while 

up-regulating the GSH redox system.  

Our results showing increased lipid peroxidation, 

apoptosis, and ROS levels, although the liver and kidney 

tissues GSH Px, GSH, and cell viability decreased in the 

OV rats were consistent with the findings in the literature 

(Arteaga et al. 2003; Konyalioglu et al. 2007; Nishi et al. 

2013; Ltaif et al. 2020). El-Gendy et al. (2019) explained 

the effects of ovariectomy with an increase in the 

oxidative stress parameter (MDA), and a decrease in 

antioxidant levels. In a similar study, when rats in 

ovariectomized groups were compared with rats in non-

ovariectomized groups, it was reported that MDA levels 

in brain, heart, and liver tissues increased (Konyalioglu et 

al. 2007). 

The antioxidant enzyme system inherent in the 

cellular defense system is the most important defense 

mechanism against ROS. GSH and GSH Px act as 

antioxidants, and have a preventive effect against the 

extensive production of ROS by OV induction 

(Konyalioglu et al. 2007; El-Gendy et al. 2019). In the 

current study, GSH and GSH Px activity values were 

increased in the liver and kidney of 17-, RAL, and TAM 

treated rats by inhibiting oxidative stress. Similarly, 

Moreira et al. (2005) reported that oxidative stress levels 

in the brains of TAM treated rats were reduced by 

supporting antioxidant thiol groups and GSH levels as 

well as the inhibition of mitochondrial permeability 

transition pores. Recently, we reported lipid peroxidation 

values in the erythrocytes and brain tissues were 

decreased by 17-, RAL, and TAM administrations; 

however, GSH and GSH Px values in the brain tissues 

were increased by the treatments. Thus, we have shown 

that 17-, RAL, and TAM treatments modulated the 

balance of oxidants and antioxidants in rats by 

downregulating the levels of oxidative stress while 

upregulating the GSH redox system (Yazğan et al. 2016; 

Yazğan and Nazıroğlu, 2017). 

 Numerous studies have shown that 17- is a 

powerful antioxidant (Kumar et al. 2011; Fidarov et al. 

2015; El-Gendy et al. 2019). In the present study, a 

significant decrease was observed in the oxidative 

parameters of the 17--treated groups. These results were 

in agreement with the observations made by Kumar et al. 

(2011) and Azarkish et al. (2013). Recent studies have 

documented that RAL has antioxidant properties in vitro 

and in animal studies (Arteaga et al. 2003; Konyalioglu et 

al. 2007; Nishi et al. 2013; Yazğan and Nazıroğlu, 2017). 

Our results were in agreement with previous reports 

showing that RAL significantly reduced MDA levels and 

significantly increased GSH levels in liver and kidney 

tissues. However, while there are limited animal studies 

showing TAM to be an antioxidant (Moreira et al. 2005; 

Zhang et al. 2007; Yazğan et al. 2016; Yazğan and 

Nazıroğlu, 2017), there also are reports demonstrating it 

to be oxidant and cytotoxic (Parves et al. 2006; 

Nazarewicz et al. 2007; Gong et al. 2018). In this study, 

we found that TAM has a therapeutic effect on OV-

induced oxidative stress, similar to our previous studies. 

The current study provides a mechanistic 

underpinning for the antioxidant actions of 17-, RAL, 

and TAM, and by demonstrating that it reduces lipid 

peroxidation production in the liver and kidney, reduces 

cell death due to excessive ROS production after OV 

induction. Mann et al. (2007) and Schubert et al. (2016) 

were reported the SERMs treatment led to a significant 

reduction in apoptosis (Zhang et al. 2007). These results 
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are in agreement with our study. We also proved in our 

previous study that while levels in the brain, 

hippocampus, and peripheral pain sensory neurons PARP 

were increased, pro-apoptotic pro-caspase 3 and 9 

activities were decreased by the induction of OV (Yazğan 

et al. 2016; Yazğan and Nazıroğlu, 2017). 

In conclusion, the current results support the idea 

that the protective roles of 17-, RAL and TAM are 

primarily due to their antioxidant-like actions. Lipid 

peroxidation, apoptosis and ROS levels in liver and 

kidney were decreased by 17-, RAL and TAM 

administrations, however, GSH, GSH Px activity and cell 

viability levels were increased by the treatments. 

Therefore, 17-, RAL and TAM can reduce lipid 

peroxidation, apoptosis and ROS levels in the liver and 

kidney of rats with OV by virtue of their inherent 

antioxidant properties. The antioxidant effects of 17-, 

RAL and TAM on the liver and kidney might be induced 

by increases in the GSH redox system. The results of this 

study suggested that TAM and RAL treatment and 

estradiol replacement therapy improved antioxidant 

enzyme activity and apoptosis in the kidney and liver 

tissues of OV rats. Therefore, RAL and TAM treatments 

may have a beneficial effect in chemotherapeutic adjuvant 

effects as well as their preventing oxidant complications. 
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