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Abstract. This paper deals with the behaviors of solutions for linear nonho-

mogeneous delay differential equations. In this study, a periodic solution, an
asymptotic result and a useful exponential estimate of the solutions are estab-

lished. Our results are obtained by the use of real roots of the corresponding
characteristic equation.

1. Introduction and Preliminaries

The delay differential equation is considered as:

x′(t) = a(t)x(t) +
∑
i∈I

bi(t)x(t− τi) + f(t), t ≥ 0, (1.1)

x(t) = ϕ(t) , −τ ≤ t ≤ 0. (1.2)

where I is the initial segment of natural numbers, a and bi for i ∈ I the continuous
real-valued functions on the interval [0,∞), f is a continuous real-valued function
on the interval [0,∞), and τi for i ∈ I positive real numbers with τi1 ̸= τi2 for
i1, i2 ∈ I such that i1 ̸= i2. Suppose that the functions bi for i ∈ I are not
identically zero on [0,∞) and also the coefficients a and bi for i ∈ I are the periodic
functions with a common period T > 0 where τi = miT for positive integers mi for
i ∈ I. τ is positive number such that

τ = max
i∈I

τi.

ϕ is continuous real-valued given the initial function on the interval [−τ, 0].
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In the case where the function f is identically zero on the interval [0,∞), the
delay differential equation (1.1) reduces to

x′(t) = a(t)x(t) +
∑
i∈I

bi(t)x(t− τi), t ≥ 0. (1.3)

As far as the applications’ point of view is concerned, our literature review
comprehensively offers the behaviors based on the solutions of delay differential
equations [1-6]. As it concers the applications point view, first order linear delay
differential equations appear as models in various problems in science and tecnology.
For example, in [7], first order linear delay differential equations have been used for
description of different economic processes. For the basic theory of delay differential
equations with periodic coefficients, the reader is referred to the books by Farkas
[8].

Our aim in this article is to obtain periodic solutions of the given equation, and
to present some new results on asymptotic behavior for linear delay differential
equations with periodic coefficients. Our results are motivated by those in two
excellent papers by Philos [9] and Farkas [11]. The very recent results given by
Philos [9] (and also [10]) for periodic first order linear (homogeneous) delay differ-
ential equations can be obtained from the results of the present paper. Also, the
results given here contain essentially ones obtained by Farkas [11] for the particular
case of first order linear nonhomogeneous one constant delay differential equations.
Our results are derived by the use of a real root (with an appropriate property)
of the corresponding (in a sense) characteristic equation. A combination of several
methods [6, 9-11] are referred for the used techniques.

The function x(t) is described as a solution of the initial value problem (1.1)-(1.3)
on [−τ,∞). This paper uses the notation

A =
1

T

∫ T

0

a(t)dt, and Bi =
1

T

∫ T

0

bi(t)dt for i ∈ I.

Furthermore, we associate the following equation with the differential equation (1.3)

λ = A+
∑
i∈I

Bie
−λτi , (1.4)

specified as the characteristic equation of (1.3). There were given sufficient condi-
tions to obtain a unique real root of characteristic equation (1.4) in Philos [9].

In what follows, the T -periodic extensions are denoted by ã and b̃i for i ∈ I for
the coefficients a and bi for i ∈ I respectively on the interval [−τ,∞). In order
to construct a suitable mapping for the asymptotic criterion of the solutions, we
should reach a finding as follows. Suppose that λ0 is a real root of (1.4). We can
now write

hλ0(t) = ã(t) +
∑
i∈I

b̃i(t)e
−λ0τi for t ≥ −τ. (1.5)

Next, we will establish some equalities needed below. For each index i ∈ I, we
can use the assumption that the functions b̃i are T -periodic and that τi = miT to
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obtain for t ≥ 0∫ t

t−τi

b̃i(u)du =

∫ τi

0

bi(u)du =

[
1

τi

∫ τi

0

bi(u)du

]
τi =

[
1

T

∫ T

0

bi(u)du

]
τi = Biτi.

(1.6)
In a similar manner, one can verify that∫ t

t−τi

|b̃i(u)|du = |Bi|τi for every t ≥ 0 and all i ∈ I. (1.7)

Our aim in this paper is to study the periodic solutions of equation (1.1) when f
is also T -periodic. We will show that, under certain conditions, equation (1.1) has
periodic solutions. In the following discussion, without specific mention, we always
assume that f is also T -periodic.

2. Periodic Solutions

In this section, we establish conditions under which equation (1.1) has a periodic
solution. Consider, first, the homogeneous equation (1.3) and the equation without
delay

x′(t) = a(t)x(t). (2.1)

The general solution of (2.1) is

x(t) = c exp

{∫ t

0

a(s)ds

}
where c is a constant. To find a solution of (1.3), we apply the variation of constants
formula. Assume that

x(t) = C(t) exp

{∫ t

0

ã(s)ds

}
(2.2)

where

ã(t) =

{
a(t) , t ≥ 0,

a(t+ τ) , −τ ≤ t ≤ 0,

is a solution of (1.3). Substituting this into (1.3) yields the condition

C ′(t) =
∑
i∈I

bi(t)C(t− τi)exp

{
−
∫ 0

−τi

ã(s)ds

}
(2.3)

for all t ≥ 0 on C(t). We define

g(t) =
∑
i∈I

b̃i(t),

where

b̃i(t) =

{
bi(t) , t ≥ 0,

bi(t+ τ) , −τ ≤ t ≤ 0.

Assume that (2.3) has a solution of the form

C(t) = exp

{
µ

∫ t

0

g(s)ds

}
. (2.4)

Then, by using (2.4) in (2.3) for t ≥ 0 we obtain

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−µ

∫ t

t−τi

g(s)ds

}
exp

{
−
∫ 0

−τi

ã(s)ds

}
.
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Since the functions bi(t) are T -periodic, from the last equation

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−µ

∫ 0

−τi

g(s)ds

}
exp

{
−
∫ 0

−τi

ã(s)ds

}
or

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−
∫ τi

0

(a(s) + µg(s)) ds

}
. (2.5)

Next, for each index i ∈ I, we can use the assumption that the functions a and bi
are T -periodic and that τi = miT to obtain for t ≥ 0∫ τi

0

(a(s) + µg(s)) ds =

[
1

τi

∫ τi

0

(a(s) + µg(s)) ds

]
τi =

[
1

T

∫ T

0

(a(s) + µg(s)) ds

]
τi

=

{[
1

T

∫ T

0

a(s)ds

]
+ µ

∑
i∈I

[
1

T

∫ T

0

bi(s)

]}
τi

=

(
A+ µ

∑
i∈I

Bi

)
τi.

Thus, from (2.5) we get

µ
∑
i∈I

bi(t) =
∑
i∈I

bi(t)exp

{
−

(
A+ µ

∑
i∈I

Bi

)
τi

}
. (2.6)

If we assume that
∑

i∈I bi(t) ̸= 0 for t ≥ −τ and A+µ
∑

i∈I Bi = 0 hold with
µ = 1, (2.6) establishes

C(t) = exp

{∫ t

0

∑
i∈I

b̃i(s)ds

}
is a solution of (2.3). Hence, from (2.2)

x(t) = k exp

{∫ t

0

(
ã(s) +

∑
i∈I

b̃i(s)

)
ds

}
, (2.7)

where k is a constant, is a solution of equation (1.3). Also, since A+
∑

i∈I Bi = 0,
it is easy to see that ∫ σ

0

(
a(s) +

∑
i∈I

bi(s)

)
ds = 0,

where σ = mini∈I τi. Then, (2.7) is a σ-periodic solution of equation (1.3).
Now, consider the original nonhomogeneous equation (1.1). The variation of

constants formula is applied again. Assume that (1.1) has a solution of the form

xp(t) = K(t) exp

{∫ t

0

(
ã(s) +

∑
i∈I

b̃i(s)

)
ds

}
. (2.8)

Using A+
∑

i∈I Bi = 0, substituting this into (1.1) yields the condition

K ′(t) +
∑
i∈I

bi(t) (K(t)−K(t− τi)) = f(t)exp

{∫ t

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
.
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The equation (2.8) is a periodic solution of (1.1) if and only if K(t) is periodic.
But, this means that K(t)−K(t− τi) = 0, and so the differential equation for K is

K ′(t) = f(t)exp

{∫ t

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
.

It follows that

K(t) =

∫ t

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du.

By noting that this function is the integral of a σ-periodic function, we see that it
is a σ-periodic function if and only if∫ σ

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du = 0.

Substituting this into (2.8), we have the following result.

Theorem 2.1. Assume that∑
i∈I

bi(t) ̸= 0 for t ≥ −τ,

A+
∑
i∈I

Bi = 0

where A = 1
T

∫ T

0
a(t)dt, Bi =

1
T

∫ T

0
bi(t)dt, and suppose that∫ σ

0

f(u)exp

{∫ u

0

−

(
a(s) +

∑
i∈I

bi(s)

)
ds

}
du = 0,

where σ = mini∈I τi. Then, for each c ∈ R,

x(t) = c exp

{∫ t

0

[
a(s+ τ) +

∑
i∈I

bi(s+ τ)

]
ds

}
+ xp(t) for t ≥ −τ,

where

xp(t) =exp

{∫ t

0

[
a(s+ τ) +

∑
i∈I

bi(s+ τ)

]
ds

}

×

{∫ t

0

f(u)exp

[∫ u

0

−

(
a(s+ τ) +

∑
i∈I

bi(s+ τ)

)
ds

]
du

}
is a σ-periodic solution of equation (1.1).

Example 2.2. Consider

x′(t) = −2x(t)+(1−sint)x(t−2π)+(1+cost)x(t−4π)+sint−cost, t ≥ 0. (2.9)

Since A = 1
2π

∫ 2π

0
(−2)dt = −2, B1 = 1

2π

∫ 2π

0
(1 − sint)dt = 1 and B2 =

1
2π

∫ 2π

0
(1 + cost)dt = 1, we have A+B1 +B2 = 0. Also∫ 2π

0

(sinu− cosu)exp

{∫ u

0

(sins− coss) ds

}
du = 0.
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Therefore, the conditions of Theorem 2.1 are satisfied. Then, for each c ∈ R,

x(t) = c exp

{∫ t

0

[coss− sins] ds

}
+ xp(t) for t ≥ −4π,

where

xp(t) = exp

{∫ t

0

[coss− sins] ds

}{∫ t

0

(sinu− cosu)exp

[∫ u

0

− (coss− sins) ds

]
du

}
or

x(t) = (c− 1) exp {sint+ cost− 1}+ 1 for t ≥ −4π

is 2π-periodic solution of equation (2.9).

3. An asymptotic result and estimation of solutions

We give a fundamental asymptotic criterion as a theorem to solve the problem
(1.1)-(1.2).

Theorem 3.1. Assume that λ0 be a real root of the characteristic equation (1.4)
and that the root λ0 satisfies

µ(λ0) =
∑
i∈I

|Bi|τie−λ0τi +

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du < 1, (3.1)

where hλ0
is defined as in (1.5). Then, for any ϕ ∈ C([−τ, 0],R), the solution x of

(1.1)-(1.2) satisfies

lim
t→∞

{
x(t) exp

[
−
∫ t

0

hλ0
(u)du

]}
=

L(λ0;ϕ)

1 + β(λ0)
(3.2)

where

L(λ0;ϕ) =ϕ(0) +
∑
i∈I

e−λ0τi

∫ 0

−τi

b̃i(s)ϕ(s) exp

[
−
∫ s

0

hλ0(u)du

]
ds

+

∫ ∞

0

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du

(3.3)

and

β(λ0) =
∑
i∈I

Biτie
−λ0τi . (3.4)

Note: It is guaranteed by the property (2.1) that 0 < 1 + β(λ0) < 2 and∫∞
0

f(u) exp

[
−
∫ u

0
hλ0(s)ds

]
is finite.

Proof. By (3.1), we have |β(λ0)| ≤ µ(λ0) < 1. So, this yields that 0 < 1+β(λ0) < 2
and

−1 <
∫∞
0

f(u) exp

[
−
∫ u

0
hλ0

(s)ds

]
du < 1.

Let us define

y(t) = x(t) exp

[
−
∫ t

0

hλ0
(u)du

]
for t ≥ −τ. (3.5)
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Then, we obtain for every t ≥ 0

y′(t) =
(
a(t)− hλ0(t)

)
y(t) +

∑
i∈I

bi(t)e
−λ0τiy(t− τi) + f(t) exp

[
−
∫ t

0

hλ0(u)du

]
.

Thus, using (1.5), the fact that x satisfies (1.1) for all t ≥ 0 is equivalent to

y′(t) = −
∑
i∈I

bi(t)e
−λ0τi

[
y(t)− y(t− τi)

]
+ f(t) exp

[
−
∫ t

0

hλ0
(u)du

]
. (3.6)

Furthermore, the initial condition (1.2) is equivalent to

y(t) = ϕ(t) exp

[
−
∫ t

0

hλ0(u)du

]
, t ∈ [−τ, 0]. (3.7)

When equation (3.6) is integrated from 0 to t, by taking into account the fact that

the functions b̃i for each index i ∈ I are T -periodic and that the delays τi, i ∈ I
are multiples of T , we can verify that (3.6) is equivalent to

y(t) = L(λ0;ϕ)−
∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)y(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du.

(3.8)

Now, for t ≥ −τ we define

z(t) = y(t)− L(λ0;ϕ)

1 + β(λ0)
.

Hence, from the equation (3.8) it is reduced to the equation as below

z(t) = −
∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du for t ≥ 0.

(3.9)

Moreover, the initial condition (3.7) can be equivalently

z(t) = ϕ(t) exp

[
−
∫ t

0

hλ0(u)du

]
− L(λ0;ϕ)

1 + β(λ0)
. (3.10)

Using y and z, we should prove the equality (3.2), i.e.

lim
t→∞

z(t) = 0. (3.11)

Put

W (λ0;ϕ) = max

{
1 , max

t∈[−τ,0]

∣∣∣∣ϕ(t) exp [− ∫ t

0

hλ0
(u)du

]
− L(λ0;ϕ)

1 + β(λ0)

∣∣∣∣} .

Thus, by (3.10) we obtain

|z(t)| ≤ W (λ0;ϕ) for − τ ≤ t ≤ 0. (3.12)

Now, the following inequality will be proved

|z(t)| ≤ W (λ0;ϕ) for t ≥ −τ. (3.13)

To this end, let us consider an arbitrary number ϵ > 0. We claim that

|z(t)| < W (λ0;ϕ) + ϵ for t ≥ −τ. (3.14)
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Otherwise, because of (3.13), there exists a point t∗ > 0 such that

|z(t)| < W (λ0;ϕ) + ϵ for t ∈ [−τ, t∗) and |z(t∗)| = W (λ0;ϕ) + ϵ.

Then, by using (3.1) and (1.7), from (3.9) we obtain

W (λ0;ϕ) + ϵ = |z(t∗)|

=

∣∣∣∣∣−∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0(s)ds

]
du

∣∣∣∣∣
≤
∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

|b̃i(s)||z(s)|ds+
∫ ∞

t

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

≤

{∑
i∈I

e−λ0τi

∫ t∗

t∗−τi

|b̃i(s)|ds+
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

}
×W (λ0;ϕ) + ϵ

≤ µ(λ0)(W (λ0;ϕ) + ϵ) < W (λ0;ϕ) + ϵ.

This is a contradiction and so (3.14) holds true. Since (3.14) is satisfied for all
ϵ > 0, (3.13) is always fulfilled. Next, in view of (1.7), (3.1) and (3.13), from (3.9)
we get for every t ≥ 0

|z(t)| =

∣∣∣∣∣−∑
i∈I

e−λ0τi

∫ t

t−τi

b̃i(s)z(s)ds−
∫ ∞

t

f(u) exp

[
−
∫ u

0

hλ0
(s)ds

]
du

∣∣∣∣∣
≤
∑
i∈I

e−λ0τi

∫ t

t−τi

|b̃i(s)||z(s)|ds+
∫ ∞

t

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du

≤

{∑
i∈I

e−λ0τi |Bi|τi +
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0(s)ds

]
du

}
W (λ0;ϕ)

≤ µ(λ0)W (λ0;ϕ).

In other words, we have

|z(t)| ≤ µ(λ0)W (λ0;ϕ) for t ≥ 0. (3.15)

By (3.1), (3.13) and (3.15), using an easy induction, that z satisfies

|z(t)| ≤ [µ(λ0)]
n
W (λ0;ϕ) for t ≥ nτ − τ (n = 0, 1, · · · ). (3.16)

Due to (2.1) , we get limn→∞ [µ(λ0)]
n
= 0. Thus, from (3.16) we get

lim
t→∞

z(t) = lim
t→∞

{
x(t) exp

[
−
∫ t

0

hλ0(u)du

]
− L(λ0;ϕ)

1 + β(λ0)

}
= 0

i.e. (3.2) satisfies. Theorem 3.1 has been already proven. □

Corollary 3.2. Assume that

a(t) +
∑
i∈I

bi(t) = 0 for t ∈ [0,∞) (3.17)

and ∑
i∈I

|Bi|τi +
∫ ∞

0

|f(u)|du < 1. (3.18)
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Thus, the solution x of (1.1)-(1.2) satisfies for any ϕ ∈ ([−τ, 0],R),

lim
t→∞

x(t) =
ϕ(0) +

∑
i∈I

∫ 0

−τi
b̃i(s)ϕ(s)ds+

∫∞
0

f(u)du

1 +
∑

i∈I Biτi
.

Note: It is guaranteed by (3.18) that 2 > 1 +
∑

i∈I Biτi > 0.

Proof. It immediately follows from (3.17) that A+
∑

i∈I Bi = 0 and hence λ0 = 0 is
a real root of (1.4). By using again (3.18), we see that, for λ0 = 0, we have hλ0 = 0
on the interval [−τ,∞). Moreover, (3.18) facilitates the verification of which the
root λ0 = 0 of (1.4) has the property (2.1). Therefore this can be applied Theorem
3.1. □

Theorem 3.3. Let λ0 be a real root of the characteristic equation (1.4) with the
property (3.1), and let hλ0

(t) and β(λ0) are specified by (1.5) and (3.4), respectively.
Set

N(λ0) =
(1 + µ(λ0))

2

1 + β(λ0)
+ µ(λ0). (3.19)

Then, for any ϕ ∈ C([−τ, 0],R), the solution x of (1.1)-(1.2) satisfies

|x(t)| ≤ N(λ0)R(λ0;ϕ) exp

[ ∫ t

0

hλ0(u)du

]
, for all t ≥ 0, (3.20)

where

R(λ0;ϕ) = max

{
1 , max

−τ≤t≤0
|ϕ(t)| , max

−τ≤t≤0

[
|ϕ(t)| exp

[
−
∫ t

0

hλ0
(u)du

]}
.

(3.21)

Note: It is guaranteed by the property (2.1) that 0 < 1 + β(λ0) < 2.

Proof. Suppose that x is the solution of (1.1)-(1.2) and y, z are defined as above,
i.e. for t ≥ −τ

y(t) = x(t) exp

[
−
∫ t

0

hλ0
(u)du

]
and z(t) = y(t)− L(λ0;ϕ)

1 + β(λ0)
,

where L(λ0;ϕ) is defined as in (3.3). Therefore, we specify W (λ0;ϕ) as in the proof
of Theorem 3.1. Hence, as in Theorem 3.1, it can be also proved that z satisfies
inequality (3.15), and thus for t ≥ 0 we get

|y(t)| ≤ µ(λ0)W (λ0;ϕ) +
|L(λ0;ϕ)|
1 + β(λ0)

. (3.22)
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Using (3.1) and (3.21), from (3.3) we obtain

|L(λ0;ϕ)| ≤ |ϕ(0)|+
∑
i∈I

e−λ0τi

∫ 0

−τi

|b̃i(s)||ϕ(s)| exp
[
−
∫ s

0

hλ0(u)du

]
ds

+

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

≤

(
1 +

∑
i∈I

e−λ0τi

∫ 0

−τi

|b̃i(s)|ds+
∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

)
×R(λ0;ϕ)

=

(
1 +

∑
i∈I

|B(i)|τie−λ0τi +

∫ ∞

0

|f(u)| exp
[
−
∫ u

0

hλ0
(s)ds

]
du

)
×R(λ0;ϕ)

” = (1 + µ(λ0))R(λ0;ϕ).

Furthermore, using the definition of W (λ0;ϕ) we have

W (λ0;ϕ) ≤ max

{
1 , R(λ0;ϕ) +

|L(λ0;ϕ)|
1 + β(λ0)

}
= R(λ0;ϕ) +

|L(λ0;ϕ)|
1 + β(λ0)

≤ R(λ0;ϕ) +
(1 + µ(λ0))R(λ0;ϕ)

1 + β(λ0)
=

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
R(λ0;ϕ).

So, using (3.19) and (3.21), by (3.22) we reach for t ≥ 0

|y(t)| ≤ µ(λ0)

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
R(λ0;ϕ) +

(1 + µ(λ0))R(λ0;ϕ)

1 + β(λ0)

=

{
µ(λ0)

(
1 +

(1 + µ(λ0))

1 + β(λ0)

)
+

(1 + µ(λ0))

1 + β(λ0)

}
R(λ0;ϕ)

= N(λ0)R(λ0;ϕ).

Last of all, using the definition of y we get

|x(t)| ≤ N(λ0)R(λ0;ϕ) exp

[ ∫ t

0

hλ0
(u)du

]
, for all t ≥ 0.

Therefore, this completes the proof of the theorem.
□

Example 3.4. In the following example, we will apply Theorem 3.1 and Theo-
rem 3.3. For simplicity of example we consider the problem as follows:

x′(t) =

(
1

3
+ sin 2πt

)
x(t)−

(
1

3
+ sin 2πt

)
x(t− 1)− e−t

3
, t ≥ 0, (3.23)

x(t) = 1 , −1 ≤ t ≤ 0 (3.24)

where 1
3 + sin 2πt and − 1

3 − sin 2πt with period T = 1. The characteristic
equation of the homogeneous equation of (3.23) is from (1.4)

λ =
1

3
− 1

3
e−λ. (3.25)

We have λ1 ≈ −1.9 and λ2 = 0 are real roots of characteristic equation (3.25). Let

λ0 ≈ −1.9. Then, the first term in (3.1) e1.9

3 ≈ 2.23. Therefore, Theorem 3.1 and
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Theorem 3.3 cannot be applied to equation (3.23). But, let λ0 = 0. We check the
condition for Theorem 3.1 as follows: Since hλ0(t) = 0, from (3.1) we obtained
easily

µ(λ0) = µ(0) =
1

3
+

∫ ∞

0

e−u

3
du =

1

3
+

1

3
=

2

3
< 1.

Therefore, (3.1) is satisfied. Then, from (3.2) and (3.20), the solution x of (3.23)
and (3.24) satisfies

lim
t→∞

x(t) =
1−

∫ 0

−1

(
1
3 + sin 2πs

)
ds−

∫∞
0

e−t

3 du

1− 1
3

=
3

2

and

|x(t)| ≤

(
(1 + 2/3)

2

1− 1
3

+
2

3

)
=

29

6
, for all t ≥ 0.

4. The Special Case of Linear Nonhomogeneous Delay Differential
Equations with Constant Coefficients

In this section, we will consider the special case of first order linear nonhomo-
geneous delay differential equations with constant coefficients and constant delays.
The linear autonomous delay differential equation is a special version of the delay
differential equation (1.1)

x′(t) =ax(t) +
∑
i∈I

bix(t− τi) + f(t), t ≥ 0, (4.1)

where a, bi for i ∈ I are the real constants, and τi for i ∈ I the positive real numbers
with τi1 ̸= τi2 for i1, i2 with i1 ̸= i2 and f is a continuous real-valued function on
the interval [0,∞). Let τ be defined by τ = maxi∈I τi. and the initial function be
given as in (1.2). The characteristic equation of the homogeneous equation of (4.1)
is

λ = a+
∑
i∈I

bie
−λτi . (4.2)

There were given sufficient conditions to obtain a unique real root of characteristic
equation (4.2) in Philos [2, Chapter 5]. The constant coefficients a and bi of (4.1)
can be considered as T -periodic functions, for each real number T > 0. Moreover,
as it concerns the autonomous delay differential equation (4.1), the hypothesis that
there exists positive integers mi for i ∈ I such that τi = miT holds by itself. After
these observations, it is not difficult to apply the main results of this paper, i.e.,
Theorem 3.1, Corollary 3.2 and Theorem 3.3, to the special case of the autonomous
linear nonhomogeneous delay differential equation (4.1). Because of equation (4.1)
is a constant coefficient equation, we needn’t to prove below Theorem 4.1 and
Theorem 4.3.

Theorem 4.1. Suppose that λ0 be a real root of (4.2) with

µ(λ0) =
∑
i∈I

|bi|τie−λ0τi +

∫ ∞

0

|f(u)| e−λ0udu < 1. (4.3)
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Thus the solution x of the system (4.1) and (1.2) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;ϕ)

1 +
∑

i∈I biτie
−λ0τi

,

where

L(λ0;ϕ) = ϕ(0) +
∑
i∈I

bie
−λ0τi

∫ 0

−τi

ϕ(s)e−λ0sds+

∫ ∞

0

f(u)e−λ0udu.

Note: It is guaranteed by the property (4.3) that 0 < 1 +
∑

i∈I biτie
−λ0τi < 2.

Application of the Theorem 4.1 with λ0 = 0 leads to the following corollary.

Corollary 4.2. Assume that

a+
∑
i∈I

bi = 0 and
∑
i∈I

|bi|τi +
∫ ∞

0

f(u)du < 1. (4.4)

The solution x of the system (4.1) and (1.3) satisfies

lim
t→∞

x(t) =
ϕ(0) +

∑
i∈I bi

∫ 0

−τi
ϕ(s)ds+

∫∞
0

f(u)du

1 +
∑

i∈I biτi
.

Theorem 4.3. Assume that Theorem 4.1 is satisfied and Let λ0 be a real root of
(4.2) satisfying (4.3) and set

R(λ0;ϕ) = max

{
1 , max

−τ≤t≤0
|ϕ(t)| , max

−τ≤t≤0

[
e−λ0t|ϕ(t)|

]}
.

Thus the solution x of the system (4.1) and (1.3) satisfies

|x(t)| ≤ N(λ0)R(λ0;ϕ)e
λ0t for t ≥ 0,

where

N(λ0) =
(1 + µ(λ0))

2

1 +
∑

i∈I biτie
−λ0τi

+ µ(λ0).

5. Conclusions

In this study, firstly, we have obtained sufficient conditions for (1.1) to have peri-
odic solutions. Later, we have proved that there is a basic asymptotic criterion for
the solutions of the initial value problem (1.1)-(1.2). Finally, using this asymptotic
criterion, we obtained a useful exponential boundary for solutions of (1.1)-(1.2).
These results were obtained using a suitable real root for the characteristic equa-
tion. Namely that, this real root played an important role in establishing the results
of the article. We have also presented the application in the special case of constant
coefficients of the results obtained. We also gave two examples.
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