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A B S T R A C T  

Nanotechnology plays an important role opportunity in several industries, 

biotechnology, medicine, and environments by creating new opportunities. These roles may 

be developed for recyclability, to prevent environmental pollution and performance of 

countless products. For example, in terms of environmental protection, nanotechnology has 

every possible method. The most influential members of the environment are insects in 

terms of species numbers-varieties. For this reason, in terms of the sustainability of these 

areas, it is important to analyze insects in more detail, especially in freshwater. If these 

details are obtained, it can only be feasible with nano-scale research that current and 

evolving technology. The purpose of this review is to investigate to take lead in the 

formation of ideas that will enable the discovery of new features about correlations between 

aquatic insects and nanotechnology. It is expected that this review will enable us to explore 

the latest ecological data and will lead us to new methodological approaches on nano-scale 

for aquatic insects.  

 

1. Introduction 

Over the long history of human evolution, various 

insects (hexapods) have adapted to the unique habitats and 

conditions created by humans in and around the household. 

This group of organisms has also successfully adapted to 

their natural habitats. The adaptation was accomplished 

through the ability of hexapods associated to utilize food 

resources and harborages with humans [1]. In all 

ecosystems, biotic concussion is expected gradually to 

increase worldwide due to human activities [2]. These 

adaptations have taken place in an ecosystem balance. 

However, human activities negatively affect all terrestrial 

and aquatic ecosystems [3]. 

Freshwater is an essential resource for life [4] in aquatic 

ecosystems. These areas support approximately 10% of all 

species in the World [5]. Especially macroinvertebrates 

constitute an important part of the biotic parts in 

freshwaters. Hexapods cover the majority of 

macroinvertebrate communities [6]. Hexapods, without its 

means to collapse food production [7], have some 

exemplary living beings in analyzing the structure and 

function of the freshwater ecosystem due to their high 

abundance, huge biomass, and rapid colonization of 

freshwater habitats [8]. In addition, they are responsible for 

much of the transfer of organic matter [9] in freshwaters. 

Some insects are commonly used as indicators of 

ecological conditions to describe recent habitat 

transformation [10]. Therefore, freshwater ecosystems have 

been studied to better understand their current and future 

importance [11] through new methodological and 

technological studies. The first of these new technologies is 

nanotechnology. Nanotechnology includes running 

manipulation of materials at atomic/molecular level in the 

range of 1-100 nm. Objects in this level display 
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incomparable and distinct physical, chemical, or biological 

characters over their mass form. The 21st era may be 

concerned as a new centenary of nanotechnology [12].   

In this study, information is given about widely use of 

aquatic insects in nanotechnology. Our results are believed 

as an important gain in ecological and nano-scale 

dimensions. In terms of all these, evaluating using, 

purposing, and opportunities of aquatic hexapods in 

nanotechnology are the subject of this review. The review 

examines aquatic insects in wetlands, which have not yet 

been totally discovered in nanotechnology. It is expected 

that important data will form basis for some scientific 

studies. It is believed that anatomical structure, 

physiological properties and adaptive abilities of these 

insects will shed light on some unexplored new discoveries 

in nanobiotechnology.  

2. Main body and discussion 

Our current era can be easily regarded as a new era of 

nanotechnology in research and development with its 

potential applications ranging from electronics to material 

science. This field enables to development of novel 

nanoscale-based manufacturing processes (Figure 1), 

nanostructured materials, and nanoelectronics. 

Nanomaterials have definite physical, chemical, or 

biological properties over their massive form (Figure 2). 

Nano-scale opportunities open a fresh corridor in the area 

of innovative product development and are considered to 

the uplift the economy and development of the country 

significantly in near future [13,14].   

 

 
Figure 1. Images on nano-scale under SEM [15]. 

Enzyme-imitation catalytic nanoparticles, more 

commonly known as NanoZymes [16], so using enzyme 

mimicking on aquatic hexapods is possible to preventing 

invasive organisms and pollution in terms of bio-indicator. 

Nanotechnology intervenes in these circumstances by all 

means. In visual research, a new hybrid 

apposition/superposition lens system borrows much of its 

design inspiration from the compound lens structure found 

in hexapods such as the dragonfly [17]. Nanoscale fibrillary 

building on hexapod pods and geckos are the principal 

components, which endow them with such extraordinary 

adhesive wall walking properties. Fibrillary structures take 

on a hairy appearance that varies in size and surface density 

between species. The weight of animals has ordered the 

evolutionary path of adhesive design, supplying smaller 

hexapods with large adhesive structures, and geckos with 

fine nanometer-scale hairs [18].   

 

 
Figure 2. Various nano sizes [19].  

Examples of particles levels, nanoparticles have been 

used for a very long time.  For example, carbon black is the 

most well-known example of a nanoparticulate material that 

has been produced in quantity for decades. In old Indian 

medical practice, the therapeutic effects of gold and silver 

were known and put to use [20]. Nanoparticles have 

captivated big attention for biomedical applications 

including disease diagnosis and treatment [21]. These 

particles own prominent physical, biological and chemical 

properties associated with their atomic strength [22]. 

Goswami et al. experiment was purposed at pedigree and 

testing of lipophilic entomotoxic silica nanoparticle (SNP) 

in tropical climates and value addition for urban and 

intensive agriculture and poultry industries [20]. In 

summary, the experiment is not a hexapod infestation, 

which is found in the SNP treated stored rice even after 2 

months, so SNP can also be used as an excellent seed-

protecting agent. Hexapod control and nanoparticles should 

be accelerated toward the introduction of faster and eco-

friendly pesticides in next near days [23]. Nano-scale 

(biological) control applications in environments will 

change public awareness and increase its implements in the 

future. 

Ecosystems differ in their dynamics [24] and animal 

influence on the ecosystem dynamics remains widespread, 

especially hexapod herbivory has a substantial impact on 

some environment dynamics [25]. Aquatic 

macroinvertebrates act important roles in many ecological 

processes in their living area [26].  For example, aquatic 

hexapods (Figure 3) can build up inland waters [27]. 

Coleoptera order comprises some 250,000-known species, 

many of which are able to exploit human-made, are now 

important pests. Pest species are known from a wide range 

of commodities, including dried fish, skins, woolen articles, 

museum specimens, and cereal grains [28]. It is very 

important to conduct nano-scale research on this family, 

which is important especially in aquatic areas with its 

prevalence and known annoyances.  

 



26 NanoEra 1(1) 24-29  

 

 

 

 
Figure 3. An aquatic hexapod [29]. 

Coleoptera, which is expressed as "hexapods" or "hard-

winged", is the hexapod group represented by the most 

species on earth. Percentages 40 of existing hexapods are in 

this order [30]. Some of these living creatures undergo 

holometabolic metamorphosis and their life phases are egg-

larva-pupa and adult [31,32]. Studies on the biology of 

Dytiscidae family hexapods have been researched. These 

hexapods provide necessary oxygen by creating air spaces 

as hunting [33–37]. This is important for nanoscale studies.  

Helophoridae, which has a wide distribution area, are 

represented with 200 species (approx.) in the world [38–53]. 

Hexapods of the Hydrophilidae family; these members have 

nutritional value for fish and waterfowl, found in lakes, 

small puddles, and shallow parts of fast-flowing water 

[45,54–57]. Elmidae family has 1497 species in 147 genera 

worldwide. They have also been reported that there are five 

fossil records belonging to two genera [58]. They prefer to 

live on rapid-flow Rivers and are sensitive to the various 

pollutants [59,60]. Adults and larvae feed on diatoms, 

rotten algae detritus, and plant residues [61]. Therefore, it is 

known that they were clean-water [60,62]. Doubtlessly, it is 

nanotechnologically inevitable that this expansion will 

bring many scientific and technological opportunities. 

Heteroceridae family live in the muddy or sandy parts of 

the aquatic habitats where galleries they have opened in soil 

[63–66]. If these galleries are examined at the nanoscale, it 

is likely that there will be unexpected discoveries. 

In aquatic ecosystems, some mycelium contains a 

hydrophilic segment. These micelles have low resolution, 

low-level features. Therefore, Micelles pharmaceutical 

products. It is inexpensive to manufacture and can be used 

widely. More allows small sizes to roam alongside [19]. 

This is a risk to the environment. The mechanisms of the 

aquatic hexapods feeding on these micelles to dissolve the 

toxic substances in the micelles can be explored on a non-

scale. Otherwise, there are several communities were 

associated with these aquatic areas. Firstly, extremophiles 

organisms are described that are accommodated to grow 

selectively at or near the extreme ranges of environmental 

variables [67]. Nanoscale characters in the life of 

extremophiles are the subject of research. Else, another 

aquatic area, microbial communities may be given a second 

example from other communities.  Microbial communities 

play pivotal roles in biogeochemical processes [68]. 

Precursory research included modeling enthusiastic 

behavior of using prokaryotic channel proteins and to date, 

the first ion channels purified have been sodium and 

potassium channel [69,70] from Escherichia coli. 

Once more, heavy metal deposition is a pervasive 

environmental problem because heavy metals are non-

biodegradable and have the potential to accumulate in 

macro-organisms. Most of these metals are drastically toxic 

even at low concentrations depending on the solubility of 

heavy metal compounds in the aquatic areas [71]. Some 

heavy metals such as Cadmium, Copper, Lead, and Zinc are 

essential for the growth and survival of the organisms [72]. 

Many studies have been carried out due to the problems 

caused by heavy metals, the environment, and human 

health. There are bacteria that bind heavy metals in the gut 

microbiota of some aquatic hexapods [73], in particular, it 

has great value in the nano-scale prevention of 

environmental pollution. As it is thought that heavy metals 

are effortlessly aggregated in edible parts of leafy 

vegetables, as compared to grain or fruit crops [74], as 

Exiguobacterium. Exiguobacterium bacteria are below 

growth, Gram-positive, facultative anaerobes. Matching of 

expansion of Exiguobacterium strains isolated from cold 

and hot environments indicated that all could grow within a 

temperature range of 20–37 °C. Nevertheless, the least 

possible temperature permissive of growth appeared to vary 

noticeably [75]. Three Exiguobacterium sp. defined, it has 

attracted the attention of researchers as an important 

resource for developing environmentally friendly biological 

alternatives, because of its ability to survive in changing 

environmental conditions and to tolerate heavy metal stress 

including arsenic. Nano-scale manipulation is understood 

how important of agricultural and environmental.     

If we talk about pesticide use by utilizing the 

technology of nano-scale, accession for leading of hexapod 

pest has become the need of our current. As to be 

envisioned in the implementation of nanotechnology in 

agriculture, it can be suggested that the use of 

nanomaterials will result in the development of efficient 

and potential approaches toward the management of 

hexapod pests [76]. 

Divergently, since 1950 annually plastic demand has 

risen at defensible rates [77], with growing trouble of waste 

disposal and high cost of pure substrates in 

polyhydroxyalkanoates (PHA) production. It has caused to 

future need of upgrading waste streams from different 

industries into the role of feedstock for the production of 

PHA [78]. In previous studies, bacterial species were 

discovered; these bacteria effectively degrade plastic from 

hexapod guts [79]. Also, Exiguobacterium spp. has the 

potential to degrade synthetic products such as plastics. 

[77,80]. 

Magnetic research has indicated that hexapods have 

ferromagnetic resonance, which is temperature-dependent. 

Magnetic material is present in the head, thorax, and 

abdomen of some hexapods. Magnetic nanoparticles in the 

social hexapods act as geomagnetic sensors [81]. It is aware 

of the behavior of a great variety of higher animals is 

influenced by changes in the local magnetic field within 

their environment. If we give more interesting examples, it 

has been displayed that honeybees (Apis mellifera 

Linnaeus) use geomagnetic field information for orientation, 

homing, and foraging [82]. 

Intercalary, in forestry industries, nanotechnology is in 

its fresh stage. For this reason, it has countless studies 

opportunities for innovations like the development of 

intelligent paper/wood-based products along with in-built 
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sensors, manufacturing pulp, paper, and wood/fiber-based 

products, building functional lignocellulosic surfaces, nano 

dimensional building blocks of higher strength and lighter 

weight [83]. The cardboard sector has been evolved with 

use of microfibers and clay fillers that substantially 

improves their performances. These features make 

lignocellulose an outstanding material for forest-based 

research. Nanotechnology has the potential to produce 

valuable wood-based materials such as engineered wood 

and fiber-based materials that can effectively replace non-

renewable materials used in the manufacturing of plastic, 

metallic or ceramic products. Thereby, fulfilling social 

demands and improving forest health as well [12].  

Nonetheless, chitosan is not toxic, a bio-harmonious 

polymer that has found a number of applications in drug 

delivery [84], use of chitosan in nanotechnology is 

prevalent [85]. Chitosan is an amino polysaccharide and 

exoskeleton of some animals as hexapods. This organic 

object is not toxic. The biocompatible polymer has found a 

number of applications in drug delivery [86]. Chitosan can 

bind to DNA and take part in gene transfer (Figure 4).  

 

  
Figure 4. Chitosan–DNA complexes [87].  

Additionally, chitin-like substances are obtained from 

aquatic hexapods [88].  

Finally, these data in industry and technology, which 

have been published, constitute the main idea of our review.  

3. Conclusions 

Hexapods, the most populated group in the living world, 

has been attracted attention with their various 

characteristics by researchers. When we regard many more 

unexplored nanoscale characters of aquatic hexapods in 

their life forms, it is believed that many features of 

nanotechnological significance are still unsolved. Many 

undetermined hidden nanoscale properties of these 

creatures are likely to be used in agriculture, industry, 

medicine, defense, medicine, and even astronomy (on the 

extremophile aspect). In the next few years, we expect that 

it will be realized with more research to be done by 

nanotechnology. 
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