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Abstract
The source of the primeness texture is a skeleton that generalizes traditional prime rings. In this context,
our primary aim in this study is to describe the source of Γ-primeness in Γ-rings not included in the
literature. This work’s purpose is to generalize the concept of the source of primeness to a Γ-ring. In this
study, the characteristics provided by the defined concept are also discussed, and the results achieved are
exemplified.
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1. Introduction
The structure of the Γ-ring was first proposed by Nobusawa in 1964 as a generalization of the ring [1]. The author

determined the notion of the Γ-ring under certain conditions and obtained some significant results. Afterward,
Barnes [2], inspired by Nabusawa, introduced and analyzed some concepts for Γ-rings. Many studies have extended
important results on the structure of rings to Γ-rings [3–8].

Prime and semiprime ideals contribute extremely to important results in ring theory. Some properties of prime
and semiprime ideals are studied in ring theory and generalized to Γ-rings. Recently, Aydın et al. [9] and Camcı
[11] suggested the concept of the source of semiprimeness for a ring and described three ring types that were
not previously included in the literature. Next, Arslan and Düzkaya [10] generalized the set of the source of
semiprimeness defined for a ring to the Γ-ring and inquired about the properties of the set. Motivated by the set of
the source of semiprimeness, Yeşil and Camcı [12] characterized the concept of the source of primeness for a ring.
The authors regarded the relation between a ring’s idempotent, nilpotent, and zero divisor elements and the set of
the source of primeness and described new ring types.

This study set one’s sights on generalizing the set of the source of primeness of a ring to the Γ-ring. Moreover, in
this paper, the characteristics of the concept of the source of Γ-primeness of a Γ-ring and the different results created
by idempotent, strongly nilpotent, nilpotent, and zero divisor elements in the set of the source of Γ-primeness are
mentioned. The relationship between the source of semiprimeness and the source of Γ-primeness in the Γ-ring was
also observed.
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2. Preliminaries
In this section, basic definitions previously lay one’s laid in the literature are presented [1, 2, 8, 10, 13–16].

Definition 2.1. LetR and Γ be two additive abelian groups. If there exists a mapping (a, γ, b)→ aγb ofR×Γ×R→ R
satisfies the following conditions:

1. aγb ∈ R

2. (a+ b)γc = aγc+ bγc, aγ(b+ c) = aγb+ aγc, and a(β + γ)b = aβb+ aγb

3. (aγb)βc = aγ(bβc) = aγbβc

for all a, b, c ∈ R and β, γ ∈ Γ, then R is called a Γ-ring.

Definition 2.2. Let A be an additive subgroup of a Γ-ring R. If aγb ∈ A, for all a, b ∈ A and γ ∈ Γ, then A is called a
Γ-subring of R.

Equivalently; if AΓA ⊆ A, then A is called a Γ-subring of R.

Definition 2.3. Let A be an additive subgroup of a Γ-ring R. If rγa ∈ A (left ideal), aγr ∈ A(right ideal), for all
r ∈ R, γ ∈ Γ, and a ∈ A, then A is called a Γ-ideal of R.

Equivalently; if AΓR ⊆ A and RΓA ⊆ A, then A is called a Γ-ideal of R.

Definition 2.4. Let P be a proper Γ-ideal of R. If AΓB ⊆ P implies that A ⊆ P or B ⊆ P , for Γ-ideals A and B of
R, then P is called a prime Γ-ideal of R.

Definition 2.5. For a, b ∈ R, if aΓRΓb = (0) implies that a = 0 or b = 0, then R is called a prime Γ-ring.

Definition 2.6. Let R be a Γ-ring and e ∈ R. If γ ∈ Γ exists such that eγe = e, then the element e ∈ R is called an
idempotent element.

Definition 2.7. Let R be a Γ-ring. R is called a Boolean Γ-ring if mγm = m, for all m ∈ R and γ ∈ Γ.

Definition 2.8. An element x of a Γ-ring R is called nilpotent element if for some γ ∈ Γ, there exists a positive
integer n such that (xγ)nx = 0.

Definition 2.9. An element x of a Γ-ring R is called strongly nilpotent if there exist a positive integer n such that
(xΓ)nx = 0.

Definition 2.10. If there exist 1 ∈ R and γ ∈ Γ such that 1γr = rγ1 = r, for all r ∈ R, then R is called a Γ-ring with
unit.

Definition 2.11. An element 0 6= a ∈ R is called a zero divisor if there exists b 6= 0 such that aγb = bγa = 0.

Definition 2.12. Let R and S be Γ1-ring and Γ2-ring respectively. An ordered (φ, ψ) is called a Γ-homomorphism if
the following conditions are satisfied:

1. φ : R→ S is a group homomorphism

2. ψ : Γ1 → Γ2 is a group homomorphism

3. φ(xγy) = φ(x)ψ(γ)φ(y)

for all x, y ∈ R and γ ∈ Γ.

Remark 2.1. Let R and S be Γ1-ring and Γ2-ring respectively. The product R× S is a Γ1 ×Γ2-ring with the following
operation:

(a, b) + (c, d) = (a+ c, b+ d)

(α, δ) + (β, γ) = (α+ β, δ + γ)

(a, b)(β, γ)(c, d) = (aβc, bγd)

for all (a, b), (c, d) ∈ R× S and (β, γ), (α, δ) ∈ Γ1 × Γ2.

Definition 2.13. Let A be a subset of a Γ-ring R. The source of semiprimeness of A is defined as SR(A) = {b ∈ R :
bΓAΓb = (0)}. When A = R, SR is adopting instead of SR(R).
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3. Results
In this section, the concept of the source of Γ-primeness is characterized for the Γ-ring. To understand the

concept better, the basic characteristics of the set are first inspected. Furthermore, the relationship between a ring
with unit, zero divisor, idempotent, and nilpotent elements, and the set of the source of Γ-primeness is discoursed.

Definition 3.1. Let A be a non-empty subset of the Γ-ring R and a ∈ R. The set described as

{b ∈ R : aΓAΓb = (0)}

is denoted by Sa
RΓ

(A). The intersection of sets Sa
RΓ

(A) is demonstrated by PRΓ(A), and PRΓ(A) is called the source
of Γ-primeness of A in R. When A = R, the Sa

RΓ
notation will be operated instead of Sa

RΓ
(R). Therefore, the source

of Γ-primeness of the R is
PRΓ

=
⋂
a∈R

Sa
RΓ

The primary and necessary features are stated below to comprehend the concept of Γ-primeness’s source.

1. Let R be a Γ-ring. PRΓ
(A) =

⋂
a∈R S

a
RΓ

(A) 6= ∅ because of aΓAΓ0 = (0), for all a ∈ R.

2. S0
RΓ

(A) = R.

3. Let A be a Γ-subring of R. If x ∈ Sa
AΓ

, then x ∈ A and aΓAΓx = (0). Since A ⊆ R, x ∈ Sa
RΓ

(A). Therefore,
Sa
AΓ
⊆ Sa

RΓ
(A).

Remark 3.1. Let K = {b ∈ R : aΓAΓb = (0), ∀a ∈ R}, for a non-empty subset A of a Γ-ring R. If x ∈ PRΓ(A), then
aΓAΓx = (0), for all a ∈ R. Hence, PRΓ(A) ⊆ K. Similarly, K ⊆ PRΓ(A). In line with this explanation, the source of
Γ-primeness of A in R is expressed as

PRΓ
(A) = {b ∈ R : RΓAΓb = (0)}

Proposition 3.1. Let A and B be two non-empty subsets of a Γ-ring R. Then,

P(R×R)Γ(A×B) = PRΓ
(A)× PRΓ

(B)

Proof. Let (x, y) ∈ P(R×R)Γ(A×B). Then, (R×R)(Γ× Γ)(A×B)(Γ× Γ)(x, y) = (0, 0). Thus, (RΓAΓx,RΓBΓy) =
(0, 0). From here, RΓAΓx = (0) and RΓBΓy = (0). This means that x ∈ PRΓ(A) and y ∈ PRΓ(B). Hence,
(x, y) ∈ PRΓ(A)× PRΓ(B). The converse is similar. Therefore, P(R×R)Γ(A×B) = PRΓ(A)× PRΓ(B).

Example 3.1. Let R = Z4 and S = Z6 be Z4-ring and Z6-ring respectively, and A = {0, 2} ⊆ R and B = {0, 3} ⊆ S.
Then, R× S is a Z4 × Z6-ring and A×B ⊆ R× S.

P(R×S)Z4×Z6
(A×B) = {(c, d) ∈ R× S : (R× S)(Z4 × Z6)(A×B)(Z4 × Z6)(c, d) = (0, 0)}.

(c, d) ∈ P(R×S)Z4×Z6
(A×B) ⇒ (R× S)(Z4 × Z6)(A×B)(Z4 × Z6)(c, d) = (0, 0)

⇒ (RZ4AZ4c, SZ6BZ6d) = (0, 0)

⇒ RZ4AZ4c = (0) and SZ6BZ6d = (0)

⇒ c ∈ {0, 2} and d ∈ {0, 2}

Therefore,
P(R×S)Z4×Z6

(A×B) = {(0, 0), (0, 2), (2, 0), (2, 2)}

Let (a, b) ∈ PRZ4
(A) × PSZ6

(B). Then, RZ4AZ4a = (0) and SZ6BZ6b = (0). From here, a ∈ {0, 2} and b ∈
{0, 2}. Thus,

PRZ4
(A)× PSZ6

(B) = {(0, 0), (0, 2), (2, 0), (2, 2)}

Proposition 3.2. Let R be a Γ-ring with unit. Then, PRΓ
⊆ {x ∈ R : xΓx = (0)}.
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Proof. Let M = {x ∈ R : xΓx = (0)}. If x ∈ PRΓ
, then RΓRΓx = (0). Since R is a Γ-ring with unit, (0) = xΓ1Γx =

xΓx. Hence, x ∈M .

Proposition 3.3. Let A and B be two non-empty subsets of a Γ-ring R. Then, the following holds.

1. If A ⊆ B, then PRΓ
(B) ⊆ PRΓ

(A). In particular, PRΓ
⊆ PRΓ

(A) is provided.

2. If A is a Γ-subring of R, then A ∩ PRΓ(A) ⊆ PAΓ .

Proof. 1. Let A ⊆ B. If x ∈ PRΓ
(B), then RΓBΓx = (0). Since A ⊆ B, RΓAΓx = (0). Therefore, x ∈ PRΓ

(A).

2. Let x ∈ A ∩ PΓ
R(A). Since x ∈ A and RΓAΓx = (0), x ∈ PAΓ .

Proposition 3.4. Let A be a nonempty subset of a Γ-ring R. Then, PRΓ
(A) ⊂ SR(A).

Proof. If x ∈ PRΓ(A), then RΓAΓx = (0). Thus, xΓAΓx = (0). Hence, x ∈ SR(A).

Lemma 3.1. Let R be a Γ-ring and ∅ 6= I ⊆ R. Then,

1. Sa
RΓ

(I) is a right Γ-ideal of R.

2. If I is a right Γ-ideal, then Sa
RΓ

(I) is a Γ-ideal of R. In addition, Sa
RΓ

is a Γ-ideal of R.

Proof. 1. If x, y ∈ Sa
RΓ

(I), then aΓIΓx = (0) and aΓIΓy = (0), for all a ∈ R. Thus, xΓR ⊆ Sa
RΓ

(I) and
x− y ∈ Sa

RΓ
(I) because of

aΓIΓ(x− y) = aΓIΓx− aΓIΓy = (0)

and
aΓIΓ(xΓR) = (aΓIΓx)ΓR = 0ΓR = (0)

Accordingly, Sa
RΓ

(I) is a right Γ-ideal of R.

2. From 3.1, Sa
RΓ

(I) is a right Γ-ideal of R. In addition

aΓIΓ(RΓx) = (aΓIΓR)Γx ⊆ aΓIΓx = (0).

Thus, RΓx ⊆ Sa
RΓ

(I). Consequently, Sa
RΓ

(I) is a Γ-ideal of R. Moreover, since R is its ideal, Sa
RΓ

is a Γ-ideal of
R.

Theorem 3.1. Let R be a Γ-ring and ∅ 6= I ⊆ R. Then,

1. PRΓ
(I) is a right Γ-ideal of R.

2. If I is a right Γ-ideal of Γ-ring R, then PRΓ(I) is a Γ-ideal of R. Specially, PRΓ is a Γ-ideal of R.

Proof. 1. If x, y ∈ PRΓ
(I) =

⋂
a∈R S

a
RΓ

(I), then x, y ∈ Sa
RΓ

(I), for all a ∈ R. From Lemma 3.1, Sa
RΓ

(I) is a right
Γ-ideal of R. As a result, xΓR ⊆

⋂
a∈R S

a
RΓ

(I) = PRΓ
(I) and x − y ∈ Sa

RΓ
(I) = PRΓ

(I), for all x ∈ Sa
RΓ

(I).
Therefore, PRΓ

(I) is a right Γ-ideal of R.

2. From 1, PRΓ
(I) is a right Γ-ideal of R. Moreover, if I is a right Γ-ideal, then by Lemma 3.1, Sa

RΓ
(I) is a Γ-ideal

of R. Thence, RΓx ⊆
⋂

a∈R S
a
RΓ

(I) = PΓ
R(I), for all x ∈ Sa

RΓ
(I). Therefore, PΓ

R(I) is Γ-ideal of R. Furthermore,
since R is its ideal, PΓ

R is a Γ-ideal of R.

Example 3.2. Let R = M2×2(R) =

{(
a x
b y

)
: a, b, x, y ∈ R

}
and Γ = M2×2(Z) =

{(
k 0
0 h

)
: k, h ∈ R

}
. Then, R

is a Γ-ring according to the addition and multiplication operations in matrices. Let I =

{(
0 t
0 t

)
: t ∈ R

}
. Here,

I is a subset of R but is not a right or left Γ-ideal. Hence, when the set PRΓ
(I) is observed, it is concluded that

PRΓ
(I) =

{(
e f
0 0

)
: e, f ∈ R

}
. Evidently, PRΓ

(I) is a right Γ- ideal but not a left Γ-ideal of R.
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Theorem 3.2. Let R be a Γ-ring. The following are provided.

1. If R is a prime Γ-ring, then PRΓ
= {0}.

2. The source of Γ-primeness PRΓ is contained by every prime Γ-ideal of the R.

Proof. 1. Let R be a prime Γ-ring and x ∈ PRΓ
=
⋂

a∈R S
a
RΓ

. Then, bΓRΓx = (0), for all 0 6= b ∈ R. From the
hypothesis, x = 0. Therefore, PRΓ = {0}.

2. Let I be a prime Γ-ideal of R and x ∈ PRΓ
. Then, RΓRΓx = (0) ⊆ I . Since I is a prime Γ-ideal, R ⊆ I or x ∈ I .

Accordingly, PRΓ
⊆ I.

Example 3.3. Let R = M1×2(R) =
{(
a a

)
: a ∈ R

}
and Γ = M2×1(Z) =

{(
k
0

)
: k ∈ Z

}
. Then, R is a Γ-ring. It is

straightforward to verify that R is a prime Γ-ring. Further, it can be examined that PRΓ =
{(

0 0
)}

.

The following example can be donated to signalize that the reverse does not work.

Example 3.4. Let R = Z4 and Γ = Z. Then, R is a Γ-ring. Precisely, PRΓ = {0}. However, since xΓRΓy = 0, for
x = y = 2, R is not a prime Γ-ring.

Proposition 3.5. Let R be a Γ-ring. The followings are satisfied.

1. If R is a Boolean Γ-ring, then PRΓ = {0}.

2. If a ∈ PRΓ
, then a is a zero divisor element of R.

3. If R is a Γ-ring with unit, then PRΓ = {0}.

Proof. 1. If x ∈ PRΓ
, then RΓRΓx = (0). Thus, (0) = xΓxΓx = x. Hence, PRΓ

= {0}.

2. If 0 6= a ∈ PRΓ
, then RΓRΓa = (0). Thus, aΓaΓa = (0). If it is stated that this equality is aΓ(aΓa) = (0) or

(aΓa)Γa = (0), then aΓa = (0) or aΓa 6= (0) since a 6= 0. If aΓa = (0), then a is a zero divisor element. If
aΓa 6= (0), a is a zero divisor element because of aΓ(aΓa) = (0).

3. If a ∈ PRΓ , then RΓRΓa = (0). Thus, (0) = 1Γ1Γa = a. Consequently, PRΓ = {0}.

As a result of the above proposition, the following corollary is acquired.

Corollary 3.1. Let R be a Γ-ring. Then,

1. There is no idempotent element other than zero in PRΓ .

2. If x ∈ PRΓ
, then x is a strongly nilpotent element of R.

3. Every element in PRΓ is a nilpotent element.

Proof. 1. Let x ∈ PRΓ be an idempotent element. Then,RΓRΓx = (0). Thus, xΓxΓx = 0. Since x is an idempotent
element, x = 0.

2. If x ∈ PRΓ
, then RΓRΓx = (0). Therefore, (0) = xΓxΓx = (xΓ)2x.

3. Since every strongly nilpotent element is nilpotent, every element of PRΓ is a nilpotent.

Theorem 3.3. Let R and S be Γ1-ring and Γ2-ring, respectively. If ordered pair (f, ψ) is a Γ-homomorphism, then f(PRΓ
) ⊆

Pf(R)Γ . If f is an injective, then f(PRΓ
) = Pf(R)Γ .
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Proof. Since (f, ψ) is a Γ-ring homomorphism, f(R) is a ψ(Γ1)-ring with multiplication

f(a)ψ(γ)f(b) = f(aγb).

Let x ∈ f(PRΓ
). Then, there exists a ∈ PRΓ

such that x = f(a). Since a ∈ PRΓ
, RΓRΓa = (0). From here,

(0) = f(RΓRΓa) = f(R)ψ(Γ)f(R)ψ(Γ)f(a)

Thence, x = f(a) ∈ Pf(R)Γ .
Let f be an injective function and a ∈ Pf(R)Γ . Then, f(R)ψ(Γ)f(R)ψ(Γ)a = (0). Since

f(RΓRΓx) = f(R)ψ(Γ)f(R)ψ(Γ)a = (0)

RΓRΓx = (0) is obtained. This means x ∈ PRΓ
. Accordingly, a = f(x) ∈ f(PRΓ

).
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