Approximation Properties of The Nonlinear Jain Operators

Sevilay Kırcı Serenbay, Özge Dalmanoğlu and Ecem Acar*

Abstract

We define the nonlinear Jain operators of max-product type. We studied approximation properties of these operators.

Keywords: Nonlinear max-product operators; max-product Jain operators; degree of approximation.
AMS Subject Classification (2020): Primary: 41A30 ; Secondary: 41A25; 41A29.
*Corresponding author

1. Introduction

The main topic in the classical approximation theory is approximating a continuous function $f:[a, b] \rightarrow R$ with more elementary functions such as polynomials, trigonometric functions, etc.. The well-known Korovkin's theorem, which gives a simple proof of Weierstrass theorem, is based on the approximation of functions by linear and positive operators. The underlying algebraic structure of these mentioned operators is linear over R and they are also linear operators. In 2006, Bede et.al [4] asked whether they could change the underlying algebraic structure to more general structures. In this sense they presented nonlinear Shepard-type operators by replacing the operations sum and product by max and product. They proved Weierstrass-type uniform approximation theorem and obtained error estimates in terms of the modulus of continuity. Following this paper Bede et. al. [5] defined and studied pseudo linear approximation operators. Based upon these studies, there appeared an open problem in the book of S.Gal [10] in which the max-product type Bernstein operators were introduced. Related to this open problem, a nonlinear modification of the classical Bernstein operators were first studied by Bede and Gal [3] (see also [2]). The idea behind these studies were also applied to other well-known approximating operators. Several authors introduced the nonlinear versions of the stated operators and studied order of approximation [3,4,12]. Also see [6] for the collected papers.

The nonlinear Favard-Szasz-Mirakjan operators of max-product kind is introduced in [2] as (here \bigvee means
maximum)

$$
F_{n}^{(M)}(f)(x)=\frac{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!}}
$$

whose order of pointwise approximation is obtained as $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$. In [7], the authors dealed with the same operator in order to obtain the same order of approximation but by a simpler method. They also presented some shape preserving properties of the operators.

In 1972, Jain [11] introduced the following operators to generalize classical Szász-Mirakyan operators : for $\lambda>0$ and $0 \leq \beta<1$,

$$
P_{n}^{[\beta]}(f ; x)=\sum_{k=0}^{\infty} \omega_{\beta}(k, n x) f\left(\frac{k}{n}\right), f \in C[0, \lambda], n \in \mathbb{N}
$$

where the basis function is

$$
\omega_{\beta}(k, x)=x(x+k \beta)^{k-1} \frac{e^{-(x+k \beta)}}{k!} ; k=0,1,2, \ldots,
$$

and

$$
\sum_{k=0}^{\infty} \omega_{\beta}(k, x)=1 .
$$

It is easy to see that for $\beta=0$, the operator reduces to the classical Szász-Mirakyan operators. Farcas [9] proved a Voronovskaja type result for Jain's operators. Doğru et. al. [8] investigated a modification of the Jain operators preserving the linear functions. Recently, Özarslan [12] introduced the Stancu type generalization of Jain's operators and investigated the weighted approximation properties and Olgun et. al. [13] introduced a generalization of Jain's operators based on a function ρ. Also, Bernstein and generalizations of Jain operators were studied by many authors (see [14]-[21].) The aim of this study is to introduce the nonlinear Jain operators of max-product type and estimate the rate of pointwise convergence of the operators. The non-truncated Jain operators are defined by

$$
\begin{equation*}
T_{n, \beta}^{(M)}(f ; x)=\frac{\bigvee_{k=0}^{\infty} W_{n, k, \beta}(x) f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{\infty} W_{n, k, \beta}(x)}, n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where $W_{n, k, \beta}(x)=(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}$ and $f:[0, \lambda] \rightarrow \mathbb{R}_{+}$is considered as a bounded function on $[0, \lambda], \lambda>0$.

2. Preliminaries

Here, it is emphasized some general notations about the nonlinear operators of max-product kind. Over the set of positive reals, \mathbb{R}_{+}, we deal with the operations \bigvee (maximum) and $\cdot\left(\right.$ product). Then $\left(\mathbb{R}_{+}, V, \cdot\right)$ has a semiring structure and it is called as Max-Product algebra.

Let $I \subset \mathbb{R}$ be a bounded or unbounded interval, and

$$
C B_{+}(I)=\left\{f: I \rightarrow \mathbb{R}_{+} ; f \text { continuous and bounded on } I\right\} .
$$

A discrete max-product type approximation operator $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I)$, has a general form

$$
L_{n}(f)(x)=\bigvee_{i=0}^{n} K_{n}\left(x, x_{i}\right) \cdot f\left(x_{i}\right)
$$

or

$$
L_{n}(f)(x)=\bigvee_{i=0}^{\infty} K_{n}\left(x, x_{i}\right) \cdot f\left(x_{i}\right)
$$

where $n \in \mathbb{N}, f \in C B_{+}(I), K_{n}\left(\cdot, x_{i}\right) \in C B_{+}(I)$ and $x_{i} \in I$, for all $i=\{0,1,2, \cdots\}$. These operators are nonlinear, positive operators and satisfy a a pseudo-linearity condition of the form

$$
L_{n}(\alpha \cdot f \vee \beta \cdot g)(x)=\alpha \cdot L_{n}(f)(x) \vee \beta \cdot L_{n}(g)(x), \forall \alpha, \beta \in \mathbb{R}_{+}, f, g: I \rightarrow \mathbb{R}_{+}
$$

In order to give some properties of the operators L_{n}, we present the following auxiliary Lemma.
Lemma 2.1. ([2]) Let $I \subset \mathbb{R}$ be a bounded or unbounded interval,

$$
C B_{+}(I)=\left\{f: I \rightarrow \mathbb{R}_{+} ; f \text { continuous and bounded on } I\right\}
$$

and $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I), n \in \mathbb{N}$ be a sequence of operators satisfying the following properties :
(i) (Monotonicity)
$f, g \in C B_{+}(I)$ satisfy $f \leq g$ then $L_{n}(f) \leq L_{n}(g)$ for all $n \in \mathbb{N} ;$
(ii) (Subadditivity)

$$
L_{n}(f+g) \leq L_{n}(f)+L_{n}(g) \text { for all } f, g \in C B_{+}(I)
$$

Then for all $f, g \in C B_{+}(I), n \in \mathbb{N}$ and $x \in I$ we have

$$
\left|L_{n}(f)(x)-L_{n}(g)(x)\right| \leq L_{n}(|f-g|)(x)
$$

Remark 2.1. Max-product for Jain operators defined by (4) verify the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it satisfies the stronger condition

$$
L_{n}(f \vee g)(x)=L_{n}(f)(x) \vee L_{n}(g)(x), f, g \in C B_{+}(I)
$$

Indeed, taking in the above equality $f \leq g, f, g \in C B_{+}(I)$, it easily follows $L_{n}(f)(x) \leq L_{n}(g)(x)$.
Furthermore, the Jain operators of max-product type is positive homogenous, that is $L_{n}(\lambda f)=\lambda L_{n}(f)$ for all $\lambda \geq 0$.

Corollary 2.2. ([2]) Let $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I), n \in \mathbb{N}$ be a sequence of operators satisfying the conditions (i)-(ii) in Lemma 1 and in addition be a positive homogenous operator. Then for all $f \in C B_{+}(I), n \in \mathbb{N}$ and $x \in I$ we have

$$
\left|f(x)-L_{n}(f)(x)\right| \leq\left[\frac{1}{\delta} L_{n}\left(\varphi_{x}\right)(x)+L_{n}\left(e_{0}\right)(x)\right] \omega(f ; \delta)+f(x) \cdot\left|L_{n}\left(e_{0}\right)(x)-1\right|
$$

where $\delta>0, e_{0}(t)=1$ for all $t \in I, \varphi_{x}(t)=|t-x|$ for all $t \in I, x \in I$.

$$
\omega(f ; \delta)=\max _{\substack{x, y \in I \\|x-y| \leq \delta}}|f(x)-f(y)|
$$

is the first modulus of continuity. If I is unbounded then we suppose that there exists $L_{n}\left(\varphi_{x}\right)(x) \in \mathbb{R}_{+} \bigcup\{+\infty\}$, for any $x \in I, n \in \mathbb{N}$.

Corollary 2.3. ([2]) Suppose that in addition to the conditions in Corollary 2.2, the sequence $\left(L_{n}\right)_{n}$ satisfies $L_{n}\left(e_{0}\right)=e_{0}$, for all $n \in \mathbb{N}$. Then for all $f \in C B_{+}(I), n \in \mathbb{N}$ and $x \in I$ we have

$$
\left|f(x)-L_{n}(f)(x)\right| \leq\left[1+\frac{1}{\delta} L_{n}\left(\varphi_{x}\right)(x)\right] \omega(f ; \delta)
$$

3. Construction of the Operators and Auxiliary Results

Since $T_{n, \beta}^{(M)}(f)(0)-f(0)=0$ for all n, throughout the paper we may suppose that $x>0$. We need the following notations and Lemmas for the proof the main results.

For each $k, j \in\{1,2, \ldots$,$\} and x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right], j=0, x \in\left[0, \frac{a+\beta}{n}\right]=\left[0, \frac{e^{\beta}}{n}\right], a=e^{\beta}-\beta, 0 \leq \beta<1$, let us denote

$$
M_{k, n, j}(x):=\frac{W_{n, k, \beta}(x)\left|\frac{k}{n}-x\right|}{W_{n, j, \beta}(x)}, m_{k, n, j}(x):=\frac{W_{n, k, \beta}(x)}{W_{n, j, \beta}(x)} .
$$

where $W_{n, k, \beta}$ is defined as in the operators (1.1). It is clear that if $k \geq j+1$ then

$$
M_{k, n, j}(x)=\frac{W_{n, k, \beta}(x)\left(\frac{k}{n}-x\right)}{W_{n, j, \beta}(x)}
$$

and if $k \leq j$ then

$$
M_{k, n, j}(x)=\frac{W_{n, k, \beta}(x)\left(x-\frac{k}{n}\right)}{W_{n, j, \beta}(x)} .
$$

Lemma 3.1. Denoting $W_{n, k, \beta}(x)=(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}$, we have

$$
\bigvee_{k=0}^{\infty} W_{n, k, \beta}(x)=W_{n, j, \beta}(x), \text { for all } x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right],
$$

where $a=e^{\beta}-\beta, j=1,2, \ldots, x \in\left[0, \frac{a+\beta}{n}\right]=\left[0, \frac{e^{\beta}}{n}\right]$.
Proof. Firstly, we show that for fixed $n \in \mathbb{N}$ and $0 \leq k$ we have

$$
0 \leq W_{n, k+1, \beta}(x) \leq W_{n, k, \beta}(x) \text { if and only if } x \in\left[0, \frac{a(k+1)+\beta}{n}\right] .
$$

Indeed, writing the the above inequality explicitly, we have

$$
0 \leq(n x+(k+1) \beta)^{k} \frac{e^{-(n x+(k+1) \beta)}}{(k+1)!} \leq(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!} .
$$

If $x=0$, this inequality is true. For $x>0$, after simplifications it becomes

$$
\begin{aligned}
\left(\frac{n x+(k+1) \beta}{n x+k \beta}\right)^{k} & \leq \frac{e^{\beta}(k+1)}{n x+k \beta} \\
(n x+k \beta)\left(\frac{n x+(k+1) \beta}{n x+k \beta}\right)^{k} & \leq e^{\beta}(k+1) \\
(n x+k \beta)\left(1+\frac{\beta}{n x+k \beta}\right)^{k} & \leq e^{\beta}(k+1) \\
n x & \leq \frac{1}{\left(1+\frac{\beta}{n x+k \beta}\right)^{k}} e^{\beta}(k+1)-k \beta \\
x & \leq \frac{e^{\beta}(k+1)}{n}-\frac{k \beta}{n} \\
& =\frac{e^{\beta}(k+1)-k \beta}{n}=\frac{\left(e^{\beta}-\beta\right)(k+1)+\beta}{n} \\
& =\frac{a(k+1)+\beta}{n},
\end{aligned}
$$

where $a=\left(e^{\beta}-\beta\right), 0 \leq \beta<1$. Then

$$
0 \leq x \leq \frac{a(k+1)+\beta}{n}, a=e^{\beta}-\beta .
$$

By taking $k=0,1,2, \ldots$ in the inequality just proved above, we get

$$
\begin{aligned}
W_{n, 1, \beta}(x) \leq & W_{n, 0, \beta}(x), \text { if and only if } x \in\left[0, \frac{a+\beta}{n}\right], \\
W_{n, 2, \beta}(x) \leq & W_{n, 1, \beta}(x), \text { if and only if } x \in\left[0, \frac{2 a+\beta}{n}\right], \\
& \vdots \\
W_{n, k+1, \beta}(x) \leq & W_{n, k, \beta}(x), \text { if and only if } x \in\left[0, \frac{a(k+1)+\beta}{n}\right] .
\end{aligned}
$$

From the above inequalities, we obtain,

$$
\begin{aligned}
& \text { if } x \in\left[0, \frac{a+\beta}{n}\right] \text { then } W_{n, k, \beta}(x) \leq W_{n, 0, \beta}(x), \text { for all } k=0,1, \ldots \\
& \text { if } x \in\left[\frac{a+\beta}{n}, \frac{2 a+\beta}{n}\right] \text { then } W_{n, k, \beta}(x) \leq W_{n, 1, \beta}(x), \text { for all } k=0,1, \ldots \\
& \text { if } x \in\left[\frac{2 a+\beta}{n}, \frac{3 a+\beta}{n}\right] \text { then } W_{n, k, \beta}(x) \leq W_{n, 2, \beta}(x), \text { for all } k=0,1, \ldots
\end{aligned}
$$

and proceeding in the same manner,

$$
\text { if } x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right] \text { then } W_{n, k, \beta}(x) \leq W_{n, j, \beta}(x) \text {, for all } k=0,1,2, \ldots
$$

then we have

$$
0 \leq W_{n, k+1, \beta}(x) \leq W_{n, k, \beta}(x) \text { if and only if } x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]
$$

Lemma 3.2. For all $k, j \in\{1,2, \ldots$,$\} , and x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right], j=0, x \in\left[0, \frac{a+\beta}{n}\right]=\left[0, \frac{e^{\beta}}{n}\right]$, we have

$$
m_{k, n, j}(x) \leq 1
$$

Proof. We have two cases: 1) $k \geq j$ and 2) $k<j$.
Let $k \geq j$. Since the function $g(x)=\frac{1}{x}$ is nonincreasing on $\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$ it follows

$$
\begin{aligned}
\frac{m_{k, n, j}(x)}{m_{k+1, n, j}(x)} & =\frac{W_{n, k, \beta}(x)}{W_{n, k+1, \beta}(x)}=\frac{(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}}{(n x+(k+1) \beta)^{k} \frac{e^{-(n x+(k+1) \beta)}}{(k+1)!}} \\
& =\frac{(n x+k \beta)^{k} e^{\beta}(k+1)}{(n x+(k+1) \beta)^{k}(n x+k \beta)}, x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right] \\
& \geq 1,
\end{aligned}
$$

which implies

$$
m_{j, n, j}(x) \geq m_{j+1, n, j}(x) \geq m_{j+2, n, j}(x) \geq \ldots
$$

We now turn to the case $k \leq j$

$$
\begin{aligned}
\frac{m_{k, n, j}(x)}{m_{k-1, n, j}(x)} & =\frac{(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}}{(n x+(k-1) \beta)^{k-2} \frac{e^{-(n x+(k-1) \beta)}}{(k-1)!}} \\
& =\frac{(n x+k \beta)^{k-2}}{(n x+(k-1) \beta)^{k-2}}, x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right] \\
& \geq 1
\end{aligned}
$$

$$
\text { where } \frac{(n x+k \beta)^{k-2}}{(n x+(k-1) \beta)^{k-2}}=\left(1+\frac{\beta}{n x+(k-1) \beta}\right)^{k-2} \geq 1 \text { and } \frac{(n x+k \beta)}{e^{\beta}(k-1)} \geq 1
$$

which implies

$$
m_{j, n, j}(x) \geq m_{j-1, n, j}(x) \geq m_{j-2, n, j}(x) \geq \ldots
$$

Since $m_{j, n, j}(x)=1$, the proof of the lemma is complete.
Lemma 3.3. Let $x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$,
(i) If $k \geq(j+1)$ is such that

$$
k-\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j} \geq a j
$$

then

$$
M_{k, n, j}(x) \geq M_{k+1, n, j}(x)
$$

where $a_{1}=-\beta^{2}+2 e^{\beta}+2 \beta-1, a_{2}=-2 a \beta-2 a-a e^{\beta}, a_{3}=-\beta^{2}+2 e^{\beta}+\beta-\beta e^{\beta}$.
(ii) If $k \leq j$ is such that

$$
k+\sqrt{\beta k^{2}+a_{4} k+a_{5} j-\beta^{2}-a \beta k j} \leq a j
$$

then

$$
M_{k, n, j}(x) \geq M_{k-1, n, j}(x)
$$

where $a_{4}=2 \beta-\beta^{2}+a+1, a_{5}=-2 \beta a$.
Proof. (i) We observe that

$$
\begin{aligned}
\frac{M_{k, n, j}(x)}{M_{k+1, n, j}(x)} & =\frac{(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}}{(n x+(k+1) \beta)^{k} \frac{e^{-(n x+(k+1) \beta)}}{(k+1)!}} \frac{\left(\frac{k}{n}-x\right)}{\left(\frac{k+1}{n}-x\right)} \\
& =\left(1-\frac{\beta}{n x+(k+1) \beta}\right)^{k-1} \frac{e^{\beta}(k+1)}{n x+(k+1) \beta} \frac{(k-n x)}{(k+1-n x)} \\
& \geq \frac{(k+1)}{n x+(k+1) \beta} \frac{(k-n x)}{(k+1-n x)}\left(1-\frac{\beta}{n x+(k+1) \beta}\right)^{k-1} e^{\beta} \\
& \geq \frac{(k+1)}{(j+1) a+(k+1) \beta} \frac{(k-(j+1) a)}{(k+1-j a)},
\end{aligned}
$$

$x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$. Then, since the condition

$$
k-\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j} \geq a j
$$

where $a_{1}=-\beta^{2}+2 e^{\beta}+2 \beta-1, a_{2}=-2 a \beta-2 a-a e^{\beta}, a_{3}=-\beta^{2}+2 e^{\beta}+\beta-\beta e^{\beta}$, we obtain

$$
\frac{M_{k, n, j}(x)}{M_{k+1, n, j}(x)} \geq 1
$$

(ii) We observe that

$$
\begin{aligned}
\frac{M_{k, n, j}(x)}{M_{k-1, n, j}(x)} & =\frac{(n x+k \beta)^{k-1} \frac{e^{-(n x+k \beta)}}{k!}}{(n x+(k-1) \beta)^{k} \frac{e^{-(n x+(k-1) \beta)}}{(k-1)!}} \frac{\left(x-\frac{k}{n}\right)}{\left(x-\frac{k-1}{n}\right)} \\
& =\left(1+\frac{\beta}{n x+(k-1) \beta}\right)^{k} \frac{n x+k \beta}{e^{\beta} k} \frac{(n x-k)}{(n x-k+1)} \\
& \geq \frac{j a+\beta+k \beta}{k} \frac{j a+\beta-k}{j a+\beta-k+1}
\end{aligned}
$$

Then, since the condition

$$
k+\sqrt{\beta k^{2}+a_{4} k+a_{5} j-\beta^{2}-a \beta k j} \leq a j,
$$

where $a_{4}=2 \beta-\beta^{2}+a+1, a_{5}=-2 \beta a$, we obtain

$$
\frac{M_{k, n, j}(x)}{M_{k-1, n, j}(x)} \geq 1
$$

which proves the lemma.

4. Approximation Result

For the function $f \in C B_{+}(I)$, we obtain the degree of approximation by using the Shisha-Mond Theorem given in [1],[2].

Theorem 4.1. If $f:[0, \lambda] \rightarrow \mathbb{R}_{+}$is a bounded and continuous function on $[0, \lambda], \lambda>a+1, a=e^{\beta}-\beta, 0 \leq \beta<1$, then we get the following estimate

$$
\left|T_{n, \beta}^{(M)}(f)(x)-f(x)\right| \leq 6 \lambda \omega_{1}\left(f, \frac{1}{\sqrt{n}}\right), \text { for all } n \in \mathbb{N}, x \in[0, \lambda]
$$

where

$$
\omega_{1}(f, \delta)=\sup \{|f(x)-f(y)| ; x, y \in[0, \lambda],|x-y| \leq \delta\}
$$

Proof. Since $T_{n}^{(M)}\left(e_{0}\right)(x)=1$ and using the Shisha-Mond Theorem, we have

$$
\left|T_{n}^{(M)}(f)(x)-f(x)\right| \leq\left(1+\frac{1}{\delta_{n}} T_{n}^{(M)}\left(\varphi_{x}\right)(x)\right) \omega_{1}\left(f, \delta_{n}\right)
$$

where $\left(\varphi_{x}\right)(t)=|t-x|$. Hence, it is sufficient to estimate the following term

$$
E_{n}(x):=T_{n}^{(M)}\left(\varphi_{x}\right)(x)=\frac{\bigvee_{k=0}^{\infty} W_{n, k, \beta}(x)\left|\frac{k}{n}-x\right|}{\bigvee_{k=0}^{\infty} W_{n, k, \beta}(x)}
$$

Let $x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$ and $j \in\{1,2, \ldots$,$\} is arbitrarily fixed. By Lemma 3.1 we get$

$$
E_{n}(x)=\max _{k=0,1,2, \ldots}\left\{M_{k, n, j}(x)\right\}, x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]
$$

For $j=0$, we get

$$
M_{k, n, 0}(x)=n x(n x+k \beta)^{k-1} \frac{e^{-k \beta}}{k!}\left|\frac{k}{n}-x\right|, k \geq 0
$$

If $k=0$, then we have

$$
M_{0, n, 0}(x)=x=\sqrt{x} \sqrt{x} \leq \sqrt{x} \sqrt{\frac{a+\beta}{n}}=\sqrt{\frac{e^{\beta} x}{n}} \leq \sqrt{\frac{e^{\beta} \lambda}{n}}
$$

If $k=1$ then

$$
\begin{aligned}
M_{k, n, 0}(x) & =n x(n x+k \beta)^{k-1} \frac{e^{-k \beta}}{k!}\left|\frac{k}{n}-x\right|, x \in\left[0, \frac{e^{\beta}}{n}\right] \\
& =n x(n x+\beta)^{0} \frac{e^{-\beta}}{1!}\left|\frac{1}{n}-x\right| \\
& \leq x e^{-\beta}=\sqrt{x} \sqrt{x} e^{-\beta} \\
& \leq \sqrt{\frac{x e^{\beta}}{n}} \leq \sqrt{\frac{e^{\beta} \lambda}{n}}
\end{aligned}
$$

If $k \geq 2$ then

$$
\begin{aligned}
M_{k, n, 0}(x) & =n x(n x+k \beta)^{k-1} \frac{e^{-k \beta}}{k!}\left|\frac{k}{n}-x\right|, x \in\left[0, \frac{e^{\beta}}{n}\right] \\
& \leq x(n x+k \beta)^{k-1} \frac{e^{-k \beta}}{(k-1)!} \\
& \leq x \\
& \leq \sqrt{\frac{e^{\beta} \lambda}{n}}
\end{aligned}
$$

So, we obtain an upper estimate for each $M_{k, n, j}(x)$ where $j \in\{1,2, \ldots$,$\} is fixed, x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$ and $k=1, \ldots$, Actually, we will prove that

$$
M_{k, n, j}(x) \leq \max \left\{\frac{\sqrt{\max \left\{a_{4}, a_{5}\right\}}+2 a}{\sqrt{n}}, \sqrt{\frac{e^{\beta} \lambda}{n}}, \frac{\sqrt{\max \left\{a_{1}, a_{2}\right\}}}{\sqrt{n}}\right\}
$$

for all $x \in[0, \lambda], n \in \mathbb{N}$.
The proof of the inequality (2) will be investigated by the following cases:

1) $k \geq(j+1)$ and 2$) k \leq j$.

Case 1) Subcase a) Initially, let take

$$
k-\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j}<a j
$$

then we get

$$
\begin{aligned}
M_{k, n, j}(x) & =m_{k, n, j}(x)\left(\frac{k}{n}-x\right) \\
& \leq\left(\frac{k}{n}-x\right) \leq\left(\frac{k}{n}-\frac{j a+\beta}{n}\right) \\
& \leq \frac{k}{n}-\frac{k}{n}+\frac{\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j}}{n} \\
& \leq \frac{\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j}}{n} \\
& \leq \frac{\sqrt{a_{1}+a_{2} j}}{n} \leq \sqrt{\max \left\{a_{1}, a_{2}\right\}} \frac{1}{\sqrt{n}}
\end{aligned}
$$

Subcase b) Now let $k-\sqrt{\beta k^{2}+a_{1} k+a_{2} j+a_{3}-a \beta k j} \geq a j$.
Since the function $g(x)=x-\sqrt{\beta x^{2}+a_{1} x+a_{2} j+a_{3}-a \beta x j}$ is nondecreasing, it follows that there exists $\bar{k} \in\{2,3, \ldots$,$\} ,of maximum value, such that \bar{k}-\sqrt{\beta \bar{k}^{2}+a_{1} \bar{k}+a_{2} j+a_{3}-a \beta \bar{k} j}<a j$. Then for $k_{1}=\bar{k}+a$ we get $k_{1}-\sqrt{\beta k_{1}^{2}+a_{1} k_{1}+a_{2} j+a_{3}-a \beta k_{1} j} \geq a j$,

$$
\begin{aligned}
M_{\bar{k}+a, n, j}(x) & =m_{\bar{k}+a, n, j}(x)\left|\frac{\bar{k}+a}{n}-x\right| \\
& \leq\left(\frac{\bar{k}+a}{n}-\frac{\bar{k}-\sqrt{\beta \bar{k}^{2}+a_{1} \bar{k}+a_{2} j+a_{3}-a \beta \bar{k} j}}{n}\right) \\
& \leq \sqrt{\max \left\{a_{1}, a_{2}\right\}} \frac{1}{\sqrt{n}}
\end{aligned}
$$

The last above inequality follows from the fact that
$\bar{k}-\sqrt{\beta \bar{k}^{2}+a_{1} \bar{k}+a_{2} j+a_{3}-a \beta \bar{k} j}<a j$ necessarily implies $k<3 a j$. Also, we have $k_{1} \geq(j+1)$. Indeed, this is a consequence of the fact that g is nondecreasing and because is easy to see that $g(j)<j$. By Lemma 3.3, (i) it follows that $M_{\bar{k}+1, n, j}(x) \geq M_{\bar{k}+2, n, j}(x) \geq \ldots$

Hence, we get $M_{k, n, j}(x) \leq \sqrt{\max \left\{a_{1}, a_{2}\right\}} \frac{1}{\sqrt{n}}$ for any $\bar{k} \in\{\bar{k}+1, \bar{k}+2, \ldots$,$\} .$
Case 2) Subcase a) Firstly, let $k+\sqrt{\beta k^{2}+a_{4} k+a_{5} j-\beta^{2}-a \beta k j}>a j$. Then we get,

$$
\begin{aligned}
M_{k, n, j}(x) & =m_{k, n, j}(x)\left(x-\frac{k}{n}\right) \\
& \leq \frac{a(j+1)+\beta}{n}-\frac{k}{n} \\
& \leq \frac{k+\sqrt{\beta k^{2}+a_{4} k+a_{5} j-\beta^{2}-a \beta k j}+\beta}{n}-\frac{k}{n} \\
& \leq \frac{\sqrt{\max \left\{a_{4}, a_{5}\right\}}+\beta}{\sqrt{n}}
\end{aligned}
$$

Subcase b) Suppose now that $k+\sqrt{\beta k^{2}+a_{4} k+a_{5} j-\beta^{2}-a \beta k j} \leq a j$. Let $\widetilde{k} \in\{1,2, \ldots$,$\} be the minimum value$ such that

$$
\widetilde{k}+\sqrt{\beta \widetilde{k}^{2}+a_{4} \widetilde{k}+a_{5} j-\beta^{2}-a \beta \widetilde{k} j}>a j
$$

Then $k_{2}=\widetilde{k}-a$ satisfies $k_{2}+\sqrt{\beta k_{2}^{2}+a_{4} k_{2}+a_{5} j-\beta^{2}-a \beta k_{2} j} \leq a j$ and

$$
\begin{aligned}
M_{\widetilde{k}-a, n, j}(x) & =m_{\widetilde{k}-a, n, j}(x)\left(x-\frac{\widetilde{k}-a}{n}\right) \\
& \leq \frac{a(j+1)+\beta}{n}-\frac{\widetilde{k}-a}{n} \\
& \leq \frac{\widetilde{k}+\sqrt{\beta \widetilde{k}^{2}+a_{4} \widetilde{k}+a_{5} j-\beta^{2}-a \beta \widetilde{k} j}+a}{n}-\frac{\widetilde{k}-a}{n} \\
& \leq \frac{\sqrt{\max \left\{a_{4}, a_{5}\right\}}+2 a}{\sqrt{n}}
\end{aligned}
$$

For the last inequality we used the obvious relationship $k_{2}=\widetilde{k}-a$,

$$
k_{2}+\sqrt{\beta k_{2}^{2}+a_{4} k_{2}+a_{5} j-\beta^{2}-a \beta k_{2} j} \leq a j
$$

which implies $\widetilde{k} \leq(j+1)$ and $k_{2} \leq j$.
By Lemma 3.2, (ii) it follows that

$$
M_{\widetilde{k}-a, n, j}(x) \geq M_{\widetilde{k}-2 a, n, j}(x) \geq M_{\widetilde{k}-3 a, n, j}(x) \geq \ldots \geq M_{0, n, j}(x)
$$

We thus obtain $M_{k, n, j}(x) \leq \frac{\sqrt{\max \left\{a_{4}, a_{5}\right\}}+2 a}{\sqrt{n}}$ for any $k \leq j$ and $x \in\left[\frac{a j+\beta}{n}, \frac{a(j+1)+\beta}{n}\right]$.
Collecting all the above estimates we have the proof of case (2). Thus, the proof is completed.

5. Conclusion

In this study, we introduced the nonlinear Jain operators of max-product type. We also estimate the rate of pointwise convergence of these operators.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the Bernstein operator of max-product kind. Intern. J. Math. and Math. Sci. 26 pages (2009). doi:10.1155/2009/590589
[2] Bede, B., Gal, S. G.: Approximation by nonlinear Bernstein and Favard-Szasz- Mirakjan operators of max-product kind. Journal of Concrete and Applicable Mathematics. 8 (2), 193-207 (2010).
[3] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the nonlinear Meyer-Konig and Zeller operator of max-product kind. Numerical Functional Analysis and Optimization. 31 (3), 232-253 (2010).
[4] Bede, B., Nobuhara, H., Fodor, J., Hirota, K.: Max-product Shepard approximation operators. Journal of Advanced Computational Intelligence and Intelligent Informatics. 10, 494-497 (2006).
[5] Bede, B., Nobuhara, H., Dankova, M., Di Nola, A.: Approximation by pseudo-linear operators. Fuzzy Sets and Systems. 159, 804-820 (2008).
[6] Bede, B., Coroianu, L., Gal, S. G.: Approximation by Max-Product Type Operators. Springer International Publishing. Switzerland (2016).
[7] Bede, B., Coroianu, L., Gal, S. G.: Approximation and shape preserving properties of the nonlinear Favard-SzaszMirakjan operator of max-product kind. Filomat. 24 (3), 55-72 (2010).
[8] Doğru, O., Mohapatra, R. N., Örkcü, M.: Approximation properties of generalized Jain operators. Filomat. 30 (9), 2359-2366 (2016).
[9] Farcas A.: An Asymptotic Formula for Jain operators. Stud. Univ. Babeş-Bolyai Math. 57, 511-517 (2012).
[10] Gal, S. G.: Shape-Preserving Approximation by Real and Complex Polynomials. Birkhauser. Boston-Basel-Berlin (2008).
[11] Jain, Gopi C.: Approximation of functions by a new class of linear operators. Journal of the Australian Mathematical Society. 13 (3) , 271-276 (1972).
[12] Özarslan, M.A.: Approximation properties of Jain-Stancu operators. Filomat. 30, 1081-1088 (2016).
[13] Olgun, A., Taşdelen, F., Erençin, A.: A generalization of Jain's operators. Appl. Math. Comput. 266, 6-11 (2015).
[14] Mishra, V.N., Sharma, P., Kiliçman, A., Jain, D.: Statistical approximation properties of Stancu type q-BaskakovKantorovich operators. Filomat. 30 (7), 1853-1868 (2016).
[15] Mishra, V.N., Patel, P., Mishra, L.N.: The Integral type Modification of Jain Operators and its Approximation Properties. Numerical Functional Analysis and Optimization. 39 (12), 1265-1277 (2018).
[16] Mishra, V.N., Sharma, P., Birou, M.: Approximation by Modified Jain-Baskakov Operators. Georgian Mathematical Journal. 27 (3), 403-412 (2020).
[17] Mishra, V.N., Patel, P.: Some approximation properties of modified Jain-Beta operators. Journal of Calculus of Variations. Article ID 489249 (2013).
[18] Patel, P., Mishra, V.N.: Jain-Baskakov Operators and its different generalization. Acta Mathematica Vietnamica. 40 (4), 715-733, (2015).
[19] Patel, P., Mishra, V.N.: On Approximation properties of modified Sázas-Mirakyan operators via Jain Operators. Anal. Theory Appl. 32 (3), 232-241 (2016).
[20] Çiçek, H., İzgi, A., Ayhan, M. : GBS Operators of Bivariate Durrmeyer Operators on Simplex. Communications in Advanced Mathematical Sciences. Jan. 2021. https:/ /dx.doi.org/10.33434/cams. 932416
[21] Çiçek, H., İzgi, A.: The q-Chlodowsky and q-Szasz-Durrmeyer Hybrid Operators on Weighted Spaces. Journal of Mathematics. (2020). https:/ /doi.org/10.1155/2020/8682598.

Affiliations

SEvilay KIRCI SERENBAY
Address: Harran University, Dept. of Mathematics, Şanlıurfa, Turkey.
E-MAIL: sevilaykirci@gmail.com
ORCID ID:0000-0001-5819-9997

Özge DALMANOĞLU
Address: Başkent University, Dept. of Mathematics Education, Ankara, Turkey.
E-MAIL: ozgedalmanoglu@gmail.com
ORCID ID:0000-0002-0322-7265

ECEM ACAR
Address: Harran University, Dept. of Mathematics, Şanlıurfa, Turkey.
E-MAIL: karakusecem@harran.edu.tr
ORCID ID:0000-0002-2517-5849

