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Abstract
We define the nonlinear Jain operators of max-product type. We studied approximation properties of
these operators.
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1. Introduction

The main topic in the classical approximation theory is approximating a continuous function f : [a, b] → R
with more elementary functions such as polynomials, trigonometric functions, etc.. The well-known Korovkin’s
theorem, which gives a simple proof of Weierstrass theorem, is based on the approximation of functions by linear
and positive operators. The underlying algebraic structure of these mentioned operators is linear over R and
they are also linear operators. In 2006, Bede et.al [4] asked whether they could change the underlying algebraic
structure to more general structures. In this sense they presented nonlinear Shepard-type operators by replacing the
operations sum and product by max and product. They proved Weierstrass-type uniform approximation theorem
and obtained error estimates in terms of the modulus of continuity. Following this paper Bede et. al. [5] defined
and studied pseudo linear approximation operators. Based upon these studies, there appeared an open problem in
the book of S.Gal [10] in which the max-product type Bernstein operators were introduced. Related to this open
problem, a nonlinear modification of the classical Bernstein operators were first studied by Bede and Gal [3] (see
also [2]). The idea behind these studies were also applied to other well-known approximating operators. Several
authors introduced the nonlinear versions of the stated operators and studied order of approximation [3,4,12]. Also
see [6] for the collected papers.

The nonlinear Favard-Szasz-Mirakjan operators of max-product kind is introduced in [2] as (here
∨

means
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maximum)

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k!
f( kn )

∞∨
k=0

(nx)k

k!

whose order of pointwise approximation is obtained as ω1(f ;
√
x/
√
n). In [7], the authors dealed with the same

operator in order to obtain the same order of approximation but by a simpler method. They also presented some
shape preserving properties of the operators.

In 1972, Jain [11] introduced the following operators to generalize classical Szász-Mirakyan operators : for λ > 0
and 0 ≤ β < 1,

P [β]
n (f ;x) =

∞∑
k=0

ωβ (k, nx) f

(
k

n

)
, f ∈ C [0, λ] , n ∈ N

where the basis function is

ωβ (k, x) = x (x+ kβ)
k−1 e

−(x+kβ)

k!
; k = 0, 1, 2, ... ,

and
∞∑
k=0

ωβ (k, x) = 1.

It is easy to see that for β = 0, the operator reduces to the classical Szász-Mirakyan operators. Farcas [9] proved a
Voronovskaja type result for Jain’s operators. Doğru et. al. [8] investigated a modification of the Jain operators
preserving the linear functions. Recently, Özarslan [12] introduced the Stancu type generalization of Jain’s operators
and investigated the weighted approximation properties and Olgun et. al. [13] introduced a generalization of
Jain’s operators based on a function ρ. Also, Bernstein and generalizations of Jain operators were studied by many
authors (see [14]-[21].) The aim of this study is to introduce the nonlinear Jain operators of max-product type and
estimate the rate of pointwise convergence of the operators. The non-truncated Jain operators are defined by

T
(M)
n,β (f ;x) =

∞∨
k=0

Wn,k,β (x) f(
k
n )

∞∨
k=0

Wn,k,β (x)
, n ∈ N (1.1)

where Wn,k,β (x) = (nx+ kβ)k−1
e−(nx+kβ)

k!
and f : [0, λ]→ R+ is considered as a bounded function on [0, λ], λ > 0.

2. Preliminaries
Here, it is emphasized some general notations about the nonlinear operators of max-product kind. Over the set

of positive reals, R+, we deal with the operations
∨

(maximum) and · (product). Then (R+,
∨

, ·) has a semiring
structure and it is called as Max-Product algebra.

Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.

A discrete max-product type approximation operator Ln : CB+(I)→ CB+(I), has a general form

Ln (f) (x) =

n∨
i=0

Kn(x, xi) · f (xi) ,

or

Ln (f) (x) =

∞∨
i=0

Kn(x, xi) · f (xi)

where n ∈ N, f ∈ CB+(I),Kn(·, xi) ∈ CB+(I) and xi ∈ I, for all i = {0, 1, 2, · · · }. These operators are nonlinear,
positive operators and satisfy a a pseudo-linearity condition of the form
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Ln(α · f ∨ β · g)(x) = α · Ln(f)(x) ∨ β · Ln(g)(x),∀α, β ∈ R+, f, g : I → R+.

In order to give some properties of the operators Ln, we present the following auxiliary Lemma.
Lemma 2.1. ([2]) Let I ⊂ R be a bounded or unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},

and Ln : CB+(I)→ CB+(I), n ∈ N be a sequence of operators satisfying the following properties :
(i) (Monotonicity)

f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;
(ii) (Subadditivity)

Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

Remark 2.1. Max-product for Jain operators defined by (4) verify the conditions in Lemma 2.1, (i), (ii). In fact, instead
of (i) it satisfies the stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows Ln(f)(x) ≤ Ln(g)(x).
Furthermore, the Jain operators of max-product type is positive homogenous, that is Ln(λf) = λLn(f) for all

λ ≥ 0.

Corollary 2.2. ([2]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the conditions
(i)-(ii) in Lemma 1 and in addition be a positive homogenous operator. Then for all f ∈ CB+(I),n ∈ N and x ∈ I we
have

|f(x)− Ln(f)(x)| ≤
[
1

δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω(f ; δ) + f(x) · |Ln(e0)(x)− 1| ,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t− x| for all t ∈ I, x ∈ I.

ω(f ; δ) = max
x,y∈I
|x−y|≤δ

|f(x)− f(y)|

is the first modulus of continuity. If I is unbounded then we suppose that there exists Ln(ϕx)(x) ∈ R+

⋃
{+∞}, for

any x ∈ I, n ∈ N.
Corollary 2.3. ([2]) Suppose that in addition to the conditions in Corollary 2.2, the sequence (Ln)n satisfies

Ln(e0) = e0, for all n ∈ N. Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1 +

1

δ
Ln(ϕx)(x)

]
ω(f ; δ).

3. Construction of the Operators and Auxiliary Results

Since T (M)
n,β (f)(0)− f(0) = 0 for all n, throughout the paper we may suppose that x > 0. We need the following

notations and Lemmas for the proof the main results.

For each k, j ∈ {1, 2, ..., } and x ∈
[
aj+β
n , a(j+1)+β

n

]
,j = 0, x ∈

[
0,
a+ β

n

]
=

[
0,
eβ

n

]
, a = eβ − β, 0 ≤ β < 1, let

us denote

Mk,n,j(x) :=
Wn,k,β (x)

∣∣ k
n − x

∣∣
Wn,j,β (x)

,mk,n,j(x) :=
Wn,k,β (x)

Wn,j,β (x)
.

where Wn,k,β is defined as in the operators (1.1). It is clear that if k ≥ j + 1 then

Mk,n,j(x) =
Wn,k,β(x)

(
k
n − x

)
Wn,j,β(x)
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and if k ≤ j then

Mk,n,j(x) =
Wn,k,β(x)

(
x− k

n

)
Wn,j,β(x)

.

Lemma 3.1. Denoting Wn,k,β(x) = (nx+ kβ)k−1
e−(nx+kβ)

k!
, we have

∞∨
k=0

Wn,k,β(x) =Wn,j,β(x), for all x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
,

where a = eβ − β, j = 1, 2, ..., x ∈
[
0, a+βn

]
=
[
0, e

β

n

]
.

Proof. Firstly, we show that for fixed n ∈ N and 0 ≤ k we have

0 ≤Wn,k+1,β(x) ≤Wn,k,β(x) if and only if x ∈
[
0,
a (k + 1) + β

n

]
.

Indeed, writing the the above inequality explicitly, we have

0 ≤ (nx+ (k + 1)β)
k e
−(nx+(k+1)β)

(k + 1)!
≤ (nx+ kβ)

k−1 e
−(nx+kβ)

k!
.

If x = 0, this inequality is true. For x > 0, after simplifications it becomes(
nx+ (k + 1)β

nx+ kβ

)k
≤ eβ (k + 1)

nx+ kβ

(nx+ kβ)

(
nx+ (k + 1)β

nx+ kβ

)k
≤ eβ (k + 1)

(nx+ kβ)

(
1 +

β

nx+ kβ

)k
≤ eβ (k + 1)

nx ≤ 1(
1 + β

nx+kβ

)k eβ (k + 1)− kβ

x ≤ eβ (k + 1)

n
− kβ

n

=
eβ (k + 1)− kβ

n
=

(
eβ − β

)
(k + 1) + β

n

=
a (k + 1) + β

n
,

where a =
(
eβ − β

)
, 0 ≤ β < 1. Then

0 ≤ x ≤ a (k + 1) + β

n
, a = eβ − β.

By taking k = 0, 1, 2, ... in the inequality just proved above, we get

Wn,1,β(x) ≤ Wn,0,β(x), if and only if x ∈
[
0,
a+ β

n

]
,

Wn,2,β(x) ≤ Wn,1,β(x), if and only if x ∈
[
0,

2a+ β

n

]
,

...

Wn,k+1,β(x) ≤ Wn,k,β(x), if and only if x ∈
[
0,
a (k + 1) + β

n

]
.
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From the above inequalities, we obtain,

if x ∈
[
0,
a+ β

n

]
then Wn,k,β(x) ≤Wn,0,β(x), for all k = 0, 1, ...

if x ∈
[
a+ β

n
,
2a+ β

n

]
then Wn,k,β(x) ≤Wn,1,β(x), for all k = 0, 1, ...

if x ∈
[
2a+ β

n
,
3a+ β

n

]
then Wn,k,β(x) ≤Wn,2,β(x), for all k = 0, 1, ...

and proceeding in the same manner,

if x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
then Wn,k,β(x) ≤Wn,j,β(x), for all k = 0, 1, 2, ...

then we have

0 ≤Wn,k+1,β(x) ≤Wn,k,β(x) if and only if x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
.

Lemma 3.2. For all k, j ∈ {1, 2, ..., }, and x ∈
[
aj+β
n , a(j+1)+β

n

]
,j = 0, x ∈

[
0,
a+ β

n

]
=

[
0,
eβ

n

]
, we have

mk,n,j(x) ≤ 1.

Proof. We have two cases: 1) k ≥ j and 2) k < j.

Let k ≥ j . Since the function g(x) =
1

x
is nonincreasing on

[
aj+β
n , a(j+1)+β

n

]
it follows

mk,n,j(x)

mk+1,n,j(x)
=

Wn,k,β (x)

Wn,k+1,β (x)
=

(nx+ kβ)k−1
e−(nx+kβ)

k!

(nx+ (k + 1)β)k
e−(nx+(k+1)β)

(k + 1)!

=
(nx+ kβ)keβ (k + 1)

(nx+ (k + 1)β)k(nx+ kβ)
, x ∈

[
aj + β

n
,
a (j + 1) + β

n

]
≥ 1,

which implies
mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ ...

We now turn to the case k ≤ j

mk,n,j(x)

mk−1,n,j(x)
=

(nx+ kβ)k−1
e−(nx+kβ)

k!

(nx+ (k − 1)β)k−2
e−(nx+(k−1)β)

(k − 1)!

=
(nx+ kβ)k−2

(nx+ (k − 1)β)k−2
, x ∈

[
aj + β

n
,
a (j + 1) + β

n

]
≥ 1,

where
(nx+ kβ)k−2

(nx+ (k − 1)β)k−2
=

(
1 +

β

nx+ (k − 1)β

)k−2
≥ 1 and

(nx+ kβ)

eβ (k − 1)
≥ 1.

which implies
mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ ...

Since mj,n,j(x) = 1, the proof of the lemma is complete.

Lemma 3.3. Let x ∈
[
aj+β
n , a(j+1)+β

n

]
,

(i) If k ≥ (j + 1) is such that

k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj,
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then
Mk,n,j(x) ≥Mk+1,n,j(x)

where a1 = −β2 + 2eβ + 2β − 1, a2 = −2aβ − 2a− aeβ , a3 = −β2 + 2eβ + β − βeβ .
(ii) If k ≤ j is such that

k +
√
βk2 + a4k + a5j − β2 − aβkj ≤ aj,

then
Mk,n,j(x) ≥Mk−1,n,j(x).

where a4 = 2β − β2 + a+ 1, a5 = −2βa.

Proof. (i) We observe that

Mk,n,j(x)

Mk+1,n,j(x)
=

(nx+ kβ)k−1
e−(nx+kβ)

k!

(nx+ (k + 1)β)k
e−(nx+(k+1)β)

(k + 1)!

(
k
n − x

)(
k+1
n − x

)
=

(
1− β

nx+ (k + 1)β

)k−1
eβ(k + 1)

nx+ (k + 1)β

(k − nx)
(k + 1− nx)

≥ (k + 1)

nx+ (k + 1)β

(k − nx)
(k + 1− nx)

(
1− β

nx+ (k + 1)β

)k−1
eβ

≥ (k + 1)

(j + 1)a+ (k + 1)β

(k − (j + 1)a)

(k + 1− ja)
,

x ∈
[
aj+β
n , a(j+1)+β

n

]
. Then, since the condition

k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj,

where a1 = −β2 + 2eβ + 2β − 1, a2 = −2aβ − 2a− aeβ , a3 = −β2 + 2eβ + β − βeβ , we obtain

Mk,n,j(x)

Mk+1,n,j(x)
≥ 1.

(ii) We observe that

Mk,n,j(x)

Mk−1,n,j(x)
=

(nx+ kβ)k−1
e−(nx+kβ)

k!

(nx+ (k − 1)β)k
e−(nx+(k−1)β)

(k − 1)!

(
x− k

n

)(
x− k−1

n

)
=

(
1 +

β

nx+ (k − 1)β

)k
nx+ kβ

eβk

(nx− k)
(nx− k + 1)

≥ ja+ β + kβ

k

ja+ β − k
ja+ β − k + 1

Then, since the condition
k +

√
βk2 + a4k + a5j − β2 − aβkj ≤ aj,

where a4 = 2β − β2 + a+ 1, a5 = −2βa, we obtain

Mk,n,j(x)

Mk−1,n,j(x)
≥ 1,

which proves the lemma.
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4. Approximation Result

For the function f ∈ CB+(I), we obtain the degree of approximation by using the Shisha-Mond Theorem given
in [1],[2].

Theorem 4.1. If f : [0, λ]→ R+ is a bounded and continuous function on [0, λ], λ > a+ 1, a = eβ − β, 0 ≤ β < 1,
then we get the following estimate∣∣∣T (M)

n,β (f)(x)− f(x)
∣∣∣ ≤ 6λω1

(
f,

1√
n

)
, for all n ∈ N, x ∈ [0, λ],

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, λ], |x− y| ≤ δ}.

Proof. Since T (M)
n (e0)(x) = 1 and using the Shisha-Mond Theorem, we have∣∣∣T (M)

n (f)(x)− f(x)
∣∣∣ ≤ (1 + 1

δn
T (M)
n (ϕx) (x)

)
ω1(f, δn)

where (ϕx) (t) = |t− x|. Hence, it is sufficient to estimate the following term

En (x) := T (M)
n (ϕx) (x) =

∞∨
k=0

Wn,k,β (x)
∣∣ k
n − x

∣∣
∞∨
k=0

Wn,k,β (x)

Let x ∈
[
aj+β
n , a(j+1)+β

n

]
and j ∈ {1, 2, ..., } is arbitrarily fixed. By Lemma 3.1 we get

En (x) = max
k=0,1,2,...

{Mk,n,j(x)} , x ∈
[
aj + β

n
,
a (j + 1) + β

n

]
.

For j = 0, we get

Mk,n,0(x) = nx(nx+ kβ)k−1
e−kβ

k!

∣∣∣∣kn − x
∣∣∣∣ , k ≥ 0

If k = 0, then we have

M0,n,0(x) = x =
√
x
√
x ≤
√
x

√
a+ β

n
=

√
eβx

n
≤
√
eβλ

n

If k = 1 then

Mk,n,0(x) = nx(nx+ kβ)k−1
e−kβ

k!

∣∣∣∣kn − x
∣∣∣∣ , x ∈ [0, eβn

]
= nx(nx+ β)0

e−β

1!

∣∣∣∣ 1n − x
∣∣∣∣

≤ xe−β =
√
x
√
xe−β

≤
√
xeβ

n
≤
√
eβλ

n
.

If k ≥ 2 then

Mk,n,0(x) = nx(nx+ kβ)k−1
e−kβ

k!

∣∣∣∣kn − x
∣∣∣∣ , x ∈ [0, eβn

]
≤ x(nx+ kβ)k−1

e−kβ

(k − 1)!

≤ x

≤
√
eβλ

n
.
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So, we obtain an upper estimate for each Mk,n,j(x) where j ∈ {1, 2, ..., } is fixed, x ∈
[
aj+β
n , a(j+1)+β

n

]
and

k = 1, ..., . Actually, we will prove that

Mk,n,j(x) ≤ max

{√
max {a4, a5}+ 2a√

n
,

√
eβλ

n
,

√
max {a1, a2}√

n

}
,

for all x ∈ [0, λ], n ∈ N.
The proof of the inequality (2) will be investigated by the following cases:
1) k ≥ (j + 1) and 2)k ≤ j.
Case 1) Subcase a) Initially, let take

k −
√
βk2 + a1k + a2j + a3 − aβkj < aj,

then we get

Mk,n,j(x) = mk,n,j(x)

(
k

n
− x
)

≤
(
k

n
− x
)
≤
(
k

n
− ja+ β

n

)
≤ k

n
− k

n
+

√
βk2 + a1k + a2j + a3 − aβkj

n

≤
√
βk2 + a1k + a2j + a3 − aβkj

n

≤
√
a1 + a2j

n
≤
√

max {a1, a2}
1√
n
.

Subcase b) Now let k −
√
βk2 + a1k + a2j + a3 − aβkj ≥ aj.

Since the function g(x) = x −
√
βx2 + a1x+ a2j + a3 − aβxj is nondecreasing, it follows that there exists

k ∈ {2, 3, ..., },of maximum value, such that k −
√
βk

2
+ a1k + a2j + a3 − aβkj < aj. Then for k1 = k + a we get

k1 −
√
βk21 + a1k1 + a2j + a3 − aβk1j ≥ aj,

Mk+a,n,j(x) = mk+a,n,j(x)

∣∣∣∣k + a

n
− x
∣∣∣∣

≤

k + a

n
−
k −

√
βk

2
+ a1k + a2j + a3 − aβkj

n


≤

√
max {a1, a2}

1√
n
.

The last above inequality follows from the fact that

k −
√
βk

2
+ a1k + a2j + a3 − aβkj < aj necessarily implies k < 3aj . Also, we have k1 ≥ (j + 1). Indeed, this

is a consequence of the fact that g is nondecreasing and because is easy to see that g (j) < j. By Lemma 3.3, (i) it
follows that Mk+1,n,j(x) ≥Mk+2,n,j(x) ≥ ...

Hence, we get Mk,n,j(x) ≤
√
max {a1, a2} 1√

n
for any k ∈ {k + 1, k + 2, ..., }.

Case 2) Subcase a) Firstly, let k +
√
βk2 + a4k + a5j − β2 − aβkj > aj. Then we get,

Mk,n,j(x) = mk,n,j(x)

(
x− k

n

)
≤ a (j + 1) + β

n
− k

n

≤ k +
√
βk2 + a4k + a5j − β2 − aβkj + β

n
− k

n

≤
√
max {a4, a5}+ β√

n
.
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Subcase b) Suppose now that k +
√
βk2 + a4k + a5j − β2 − aβkj ≤ aj. Let k̃ ∈ {1, 2, ..., } be the minimum value

such that

k̃ +

√
βk̃2 + a4k̃ + a5j − β2 − aβk̃j > aj.

Then k2 = k̃ − a satisfies k2 +
√
βk22 + a4k2 + a5j − β2 − aβk2j ≤ aj and

Mk̃−a,n,j(x) = mk̃−a,n,j(x)

(
x− k̃ − a

n

)

≤ a(j + 1) + β

n
− k̃ − a

n

≤
k̃ +

√
βk̃2 + a4k̃ + a5j − β2 − aβk̃j + a

n
− k̃ − a

n

≤
√
max {a4, a5}+ 2a√

n
.

For the last inequality we used the obvious relationship k2 = k̃ − a,

k2 +
√
βk22 + a4k2 + a5j − β2 − aβk2j ≤ aj

which implies k̃ ≤ (j + 1) and k2 ≤ j .
By Lemma 3.2, (ii) it follows that

Mk̃−a,n,j(x) ≥Mk̃−2a,n,j(x) ≥Mk̃−3a,n,j(x) ≥ ... ≥M0,n,j(x).

We thus obtain Mk,n,j(x) ≤
√
max {a4, a5}+ 2a√

n
for any k ≤ j and x ∈

[
aj+β
n , a(j+1)+β

n

]
.

Collecting all the above estimates we have the proof of case (2). Thus, the proof is completed.

5. Conclusion
In this study, we introduced the nonlinear Jain operators of max-product type. We also estimate the rate of

pointwise convergence of these operators.
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[13] Olgun, A., Taşdelen, F., Erençin, A.: A generalization of Jain’s operators. Appl. Math. Comput. 266, 6-11 (2015).

[14] Mishra, V.N., Sharma, P., Kiliçman, A., Jain, D.: Statistical approximation properties of Stancu type q-Baskakov-
Kantorovich operators. Filomat. 30 (7), 1853–1868 (2016).

[15] Mishra, V.N., Patel, P., Mishra, L.N.: The Integral type Modification of Jain Operators and its Approximation Properties.
Numerical Functional Analysis and Optimization. 39 (12), 1265-1277 (2018).

[16] Mishra, V.N., Sharma, P., Birou, M.: Approximation by Modified Jain-Baskakov Operators. Georgian Mathematical
Journal. 27 (3), 403-412 (2020).

[17] Mishra, V.N., Patel, P.: Some approximation properties of modified Jain-Beta operators. Journal of Calculus of
Variations. Article ID 489249 (2013).

[18] Patel, P., Mishra, V.N.: Jain-Baskakov Operators and its different generalization. Acta Mathematica Vietnamica. 40
(4), 715–733, (2015).

[19] Patel, P., Mishra, V.N.: On Approximation properties of modified Sázas-Mirakyan operators via Jain Operators. Anal.
Theory Appl. 32 (3), 232-241 (2016).
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