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Abstract
In this work, we introduce some possible ordered hyperspace topologies on families of subsets constructed
in the setting of a Čech closure operator.

Keywords: Hyperspace; closure; preorder.

AMS Subject Classification (2010): 54A05; 54B20; 54D10; 54F05.

*Corresponding author

1. Introduction
Generalizations of topological spaces are frequently used in many branches of mathematics and computer

science. Some of these generalizations are obtained by omitting some axioms of Kuratowski closure. Closure
operators which are grounded, extensive and additive were first studied by E. Čech [6]. Čech closure operators
have numerous applications, for example they were used for solving problems related to digital image processing
in [12]. Slapal [12] showed that more general structures can be suitable to study topological properties of digital
images. The relation between Čech closure space and structural configuration of proteins were studied in [13]. The
interested reader may find more details in [1], [3], [6], [11], [16], [24].

There are several topologies defined on closed subsets of a topological space or a metric space. Such topologies
are called hyperspace topologies. Subbasic open sets for a hyperspace topology are the closed sets which hit a
particular set or the closed sets which miss a particular set. One of the well-studied hit-and-miss hyperspace
topologies is the well known Vietoris Topology [7]. The setting of such topologies give rise to modifications by
using closure operators. In [17], hyperspaces of Čech closure spaces were introduced and in [3] the authors starts
with a Čech closure space and defines a modification of the Vietoris topology.

We face up order and ordered structures in daily life and they have many applications, especially, in computer
science and social sciences. The cooperation between topology and order was studied by Leopolda Nachbin [14]
in the 1950’s and he developed the theory of topological ordered space which is a triple (X, τ,�), where (X, τ)
is a topological space endowed with a preorder “�”. The fundemental properties of the theory of the ordered
topological spaces can be found in [5], [20, 22]. Topological ordered spaces have important applications in dynamical
systems [4], computer science [9], game theory [19] and microeconomics [2]. A preorder “�”on a topological space
(X, τ) is said to have a continuous multi-utility representation if there exists a set F of continuous isotone functions

f : (X, τ,�)→ (R, τu,≤)

(τu denotes the natural topology and “≤”denotes usual order on R) such that, for any two points x, y ∈ X

x � y ⇔ f(x) ≤ f(y) for all f ∈ F
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[18]. Looking for the topological conditions for the utility representation is crucial for economists and utility
representation is an important application of topological ordered spaces. Therefore, Čech closure ordered spaces
which are more general structures then topological ordered spaces can also find applications in economics, game
theory and computer sciences.

The concept of an ordered Hyperspace was introduced in [23] and relations between an ordered topological
space and its ordered hyperspace was investigated in [25]. According to [25], if (X, τ,�) is an ordered topological
space and D(X) denote the set of all closed, decreasing subsets of X , then, the sets

B(G;G1, ..., Gn) = {F ∈ D(X) : F ⊆ G and F ∩Gi 6= ∅ for all i=1,2,...,n }

,where G is an open decreasing and G1, G2, ..., Gn are open increasing subsets of X , form an open base of D(X)
and (D(X), τ,�) is an ordered topological space.

In the setting of an ordered Čech closure space (X, c,�), we construct hyperspace topologies of subsets of X by
using both Čech closure and the underlying order. Motivated by [3] and [25], we introduce the ordered Čech based
Vietoris topology and investigate some of its properties.

2. Preliminaries
A partially ordered set (poset) is a set X with a binary relation “�” which is reflexive, antisymmetric and

transitive. If the relation is only reflexive and transitive then it is called preorder. In a preordered set (X,�), a subset
A of X is called decreasing if a ∈ A, b ∈ X and b � a implies b ∈ A and called increasing if a ∈ A, b ∈ X and a � b
implies b ∈ A. The smallest decreasing set containing A is denoted by ↓ A and the smallest increasing set containing
A is denoted by ↑ A. If A is a decreasing (increasing) set, then, the complement of A which will be denoted by Ac is
an increasing (decreasing) set.

An ordered topological space is a nonempty set X endowed with a topology τ and a partial order which will
be denoted by (X, τ,�) . If we endow X with a Čech closure operator c, which reduces the idempotency property
when compared with a topological closure operator, and a preorder “�”, then (X, c,�) is called an ordered Čech
closure space. If the preorder on X is the discrete order defined as

a � b⇔ a = b,

then every ordered Čech closure space is an ordinary Čech closure space. An ordered Čech closure space (X, c,�)
is called

(i) upper T1-ordered if for each pair of elements a � b in X , there exists a decreasing neighbourhood U of b such
that a /∈ U

(ii) lower T1-ordered if for each pair of elements a � b in X, there exists an increasing neighbourhood U of a
such that b /∈ U.

(iii) T2-ordered if for each a, b ∈ X such that a � b, there exists an increasing neighbourhood U of a and a
decreasing neighbourhood V of b such that U ∩ V = ∅.

(iv) lower regular ordered if for each decreasing set A ⊆ X and each element x /∈ c(A) there exist disjoint
neighbourhoods U of x and V of A such that U is increasing and V is decreasing.

(v) upper regular ordered if for each increasing set A ⊆ X and each x /∈ c(A) there exist disjoint neighbourhoods
U of x and V of A such that U is decreasing and V is increasing.

(vi) regular ordered if both (iv) and (v) are satisfied.
An open set in a hyperspace X is a family of closed subsets of the underlying topological (τ) or metric structure

(τd) on X . As usual we will denote the nonempty closed subsets of X by CL (X). Most of the hyperspace topologies
on closed subsets of a Hausdorff space X are usually defined by subbases consisting of members in the following
sense:

A+ := {B ∈ CL (X) | B ⊂ A} and A− := {B ∈ CL (X) | A ∩B 6= ∅}

for an arbitrary subset A in X. The Vietoris topology τV is defined as the topology having as a subbase of all sets of
the form V − where V ∈ τ and all sets of the form W+ where W ∈ τ (see, [8]). In [3], the authors starts with a Čech
closure space and defines a modification of the Vietoris topology as follows: if

H = {c(A) | A ⊆ X}\{∅},
J = {intc(A) | A ⊆ X}
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and for an arbitrary A ⊆ X

A+ = {H ∈ H | H ⊆ A} and A− = {H ∈ H | H ∩A 6= ∅} ,

then, for an arbitrary n ∈ N and G,G1, ..., Gn ∈ J satisfying that Gi ⊆ G for i ∈ {1, 2, ..., n}, the collections

G+ ∩ (
n
∩
i=1
G−i ) = 〈G;G1, ..., Gn〉

= {H ∈ H | H ⊆ G, (∀i)(1 ≤ i ≤ n) : H ∩Gi 6= ∅}

forms the basis elements of the Vietoris topology onH.

3. On Ordered Čech Based Hyperspace Topologies

In the setting of an ordered Čech closure space (X, c,�) , we shall construct a hypertopology on

H↓ = {c(A) | A ⊂ X,A =↓ A}\{∅}

by using the following families of subsets of X;

J + = {intc(A) | A ⊂ X,A =↑ A}
J− = {intc(A) | A ⊂ X,A =↓ A}

For all G ∈ J−, n ∈ N and G1, ..., Gn ∈ J + satisfying that Gi ⊆ G for i ∈ {1, 2, ..., n}, let

〈G;G1, ..., Gn〉 = G+ ∩ (
n
∩
i=1
G−i )

= {H ∈ H↓ | H ⊆ G, (∀i) (1 ≤ i ≤ n) : H ∩Gi 6= ∅},

then the collection;
S = {〈G;G1, ..., Gn〉} G∈J−

G1,...,Gn∈J+

forms a base for a topology on H↓. This hypertopology is called ordered Čech based Vietoris topology and
denoted byW↓. In addition, with the ordinary inclusion relation “⊆” on subsets of X,

(
H↓,W↓,⊆

)
is an ordered

hypertopological space. Similarly, one may define a coarser topologyW onH↓ by replacing J + and J− with the
family of the open decreasing sets and open increasing sets of (X, c,�), respectively.

Dually, if we defineH↑ = {c(A) | A ⊂ X,A =↑ A}\ {∅}, then the collection

S ′ = {〈G;G1, ..., Gn〉} G∈J+

G1,...,Gn∈J−

also forms a base for a topologyW↑ onH↑. Hence
(
H↑,W↑,⊆

)
is an ordered hypertopological space.

Most of our investigation will be considered for down case, but also one may obtain similar versions of our
results for up case.

Example 3.1. Consider N endowed with the usual order ≤ and the closure operator c defined by

c(A) = A ∪ {y ∈ N : ∃x ∈ A and x ≤ y}

forA ⊆ X . Then, increasing and decreasing sets are {∅,N}∪{{n, n+1, ...} : n ∈ N} and {∅,N}∪{{0, 1, ..., n} : n ∈ N},
respectively. Therefore, we obtainH↓ = {N},

J + = {∅,N} and J− = {∅,N} ∪ {{0, 1, ..., n} : n ∈ N}

Morever, the basis elements are

〈{0, 1, ..., n};N〉 = {N} = 〈N;N〉 and 〈∅;N〉 = {∅}

Then,W↓ = {∅,H↓}. Hence, (H↓,W↓,⊆) is an ordered hypertopological space.
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Example 3.2. Let X = {x, y, z}, �= {(x, x), (y, y), (z, z), (x, y)} and c be a closure operator defined as:

c(∅) = ∅, c({x}) = {x, y},
c({y}) = {y, z}, c({z}) = {x, z},

c({x, y}) = c({x, z}) = c({y, z}) = c(X) = X.

Then we obtain
intc{∅} = intc{x} = intc{y} = intc{z} = ∅

intc{x, y} = {y}, intc{y, z} = {z}
intc{x, z} = {x}, intc{X} = X.

Therefore,H↑ = {{z, y}, {x, z}, X} and the basis elements

〈X; {y}〉 = {{y, z}, X}, 〈X; {x}〉 = {{x, z}, X},
〈X; {y}, {x}〉 = {X}, 〈{y}; {y}〉 = ∅

construct the topologyW↑ = {H↑, ∅, {X}, {{x, z}, X}, {{y, z}, X}} onH↑.

Lemma 3.1. If (X, c,�) is an ordered Čech closure space, then
i) ∀A ∈ H↓ : A+ is decreasing and closed inW↓,
ii) ∀A ⊆ X 3 A =↑ A : (c(A))− is increasing and closed inW↓,
iii) ∀G ⊆ X and G1, G2, ..., Gn ⊆ X :

clW↓〈G;G1, ..., Gn〉 ⊆ 〈c(↓ G); c(↑ G1), ..., c(↑ Gn)〉.

Proof. i) Let A ∈ H↓. For an arbitrary K ∈↓ (A+) , there exists H ∈ A+ such that K ⊆ H . This implies that K ∈ A+.
For the second claim, we know that there exists a decreasing set K such that A = c(K). Thus Kc is increasing and
Ac = (c(K))c = intc(K

c). Therefore (A+)c = (Ac)− = (intc(K
c))− = 〈X; intc(K

c)〉 ∈ W↓. Hence A+ is closed.
ii) Let A be an increasing subset of X. To show that (c(A))− is increasing, let K ∈↑ ((c(A))−) . Then there exists

H ∈ (c(A))− such that H ⊆ K. It follows that K ∩ c(A) 6= ∅. Hence K ∈ (c(A))−. For the second claim, it is clear
that ((c(A))−)c = ((c(A))c)+ = (intc(A

c))+ = 〈intc(Ac);X〉 ∈ W↓. Hence (c(A))− is closed.
iii) Let G ∈ J− and (Gi)1≤i≤n ⊂ J +. Since

〈c(↓ G); c(↑ G1), ..., c(↑ Gn)〉 = (c(↓ G))+ ∩ (c(↑ G1))− ∩ ... ∩ (c(↑ Gn))−

and (c(↓ G))+, (c(↑ Gi))− are closed for each i ∈ {1, ..., n}, then 〈c(↓ G); c(↑ G1), ..., c(↑ Gn)〉 is closed in (H↓,W↓,⊆
). It follows that

clW↓〈G;G1, ..., Gn〉 ⊆ 〈c(↓ G); c(↑ G1), ..., c(↑ Gn)〉.

Theorem 3.1. If (X, c,�) is a lower T1-ordered Čech closure space, then for eachG ⊆ X andG1, G2, ..., Gn ⊆ X satisfying
Gi ⊆ G for each i ∈ {1, 2, ..., n}

〈c(G); c(G1), ..., c(Gn) ⊆ clH
↓

W 〈G;G1, ..., Gn〉.

Proof. Let G ⊆ X and G1, G2, ..., Gn ⊆ X such that Gi ⊆ G for each i ∈ {1, 2, ..., n}. To show the inclusion, let
H ∈ 〈c(G); c(G1), ..., c(Gn)〉. Then H ⊆ c(G) and H ∩ c(Gi) 6= ∅ for each i ∈ {1, ..., n} . Therefore

∀i ∈ {1, 2, . . . , n} : ∃xi ∈ H ∩ c(Gi).

On the other hand, for an open neighbourhood V of H inW , there exists open decreasing set U and family of open
increasing sets (Uj)1≤j≤m in (X, c,�) such that H ∈ 〈U ;U1, ..., Um〉 ⊂ V . It follows that H ⊆ U and H ∩ Uj 6= ∅ for
each j ∈ {1, 2, . . . ,m}. Then

∀j ∈ {1, 2, . . . ,m} : ∃ zj ∈ H ∩ Uj .
Since xi ∈ U ∩ c(Gi) for each i ∈ {1, ..., n} , there exists x′i ∈ U ∩ Gi for each i ∈ {1, ..., n} . Similarly, since
zj ∈ c(G) ∩ Uj for each j ∈ {1, 2, . . . ,m} , there exists z′j ∈ G ∩ Uj for each j ∈ {1, 2, . . . ,m} .Now let A =
{x′1, . . . , x′n, z′1, . . . , z′n} , then to complete the proof we have to show that

↓ A ∈ 〈G;G1, ..., Gn〉 ∩ V .

Since X is lower T1-ordered, ↓ A is closed and decreasing. Thus ↓ A ∈ H↓. ↓ A ⊆↓ G = G and ↓ A ⊆↓ U = U
implies that ↓ A ⊆ G ∩ U. Therefore A ∩ Gi 6= ∅ for each i ∈ {1, ..., n} and A ∩ Uj 6= ∅ for each j ∈ {1, ...,m}.
Consequently, A ∈ 〈G;G1, ..., Gn〉 ∩ 〈U ;U1, ..., Um〉 ⊂ 〈G;G1, ..., Gn〉 ∩ V .
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In the sequal, the decreasing closed sets of the Čech closure space (X, c,�) will be denoted by D(X). Also we
will consider the Čech based Vietoris topologiesW↓ on D(X) which is defined similar to the one defined onH↓.

Theorem 3.2. If (X, c,�) is a lower T1-ordered Čech closure space , then {↓ F | F is a finite subset of X} is dense in(
H↓,W,⊆

)
.

Proof. If P is a nonempty open set inW , then for each A ∈ P there exists an open decreasing set G and a family of
open increasing sets (Gi)1≤i≤n in (X, c,�) such that A ∈ 〈G;G1, ..., Gn〉 ⊂ P . Then, A ⊆ G and A ∩Gi 6= ∅ for each
i ∈ {1, ..., n} . Therefore there exists xi ∈ A ∩Gi for each i ∈ {1, ..., n} and this implies that

↓ {x1, ..., xn} ∈ 〈G;G1, ..., Gn〉.

Since (X, c,�) is lower T1-ordered, ↓ {x1, ..., xn} is closed and decreasing in (X, c,�). Thus we obtain that

〈G;G1, ..., Gn〉 ∩ {↓ F | F is a finite subset of X} 6= ∅

which completes the proof.

Remark 3.1. If we consider Theorem 2, then {↓ F | F is a finite subset of X} is also dense in (D(X),W,⊆). So we
obtain Proposition 2 of [25] as a result.

Proposition 3.1. If (X, c,�) is a regular ordered Čech closure space, then (D(X),W↓,⊆) is T2-ordered space.

Proof. Let A,B ∈ D(X) and A  B. Then there exists a ∈ A such that a /∈ B = c(B). Therefore regularity of X
implies the existence of an increasing neighbourhood U of a and decreasing neighbourhood V of B such that
U∩V = ∅. Thus a ∈ intcU andB ⊆ intcV. Therefore 〈X; intcU〉 is an increasing neighbourhood ofA and 〈intcV ;X〉
is a decreasing neighbourhood of B. Now claim that

〈X; intcU〉 ∩ 〈intcV ;X〉 = ∅.

If 〈X; intcU〉 ∩ 〈intcV ;X〉 6= ∅, then there exists K ∈ 〈X; intcU〉 ∩ 〈intcV ;X〉, so K ∩ intcU 6= ∅ and K ⊆ intcV.
Therefore U ∩ V 6= ∅which is a contradiction.

A collection (Uα)α∈I is called an interior cover of a set A in a Čech closure space (X, c) , if the collection
{intc (Uα)}α∈I covers A [6].

Definition 3.1. An ordered Čech closure space (X, c,�) is called strongly down(up)-compact if every interior
cover of X which consists of decreasing sets (increasing sets) has a finite sub-interior cover. (X, c,�) is called
down(up)-compact if every interior cover ofX which consist of decreasing sets (increasing sets) has a finite subcover
not necessarily an interior cover.

Remark 3.2. If we assume that X is endowed with the discrete order, then the notions strongly down(up)-
compactness and down(up)-compactness coincide with strongly compactness and compactness, respectively.

Next example shows that there exists an ordered closure space which is not compact and strongly compact but
it is up compact and also strongly up compact.

Example 3.3. On the set of integers Z the topology τ which has a basis

B = {{2m− 1} | m ∈ Z} ∪ {{2m− 1, 2m, 2m+ 1} | m ∈ Z}

is called the digital topology. For an arbitrary A ⊂ Z, define cθ(A) as the set of points whose each closed
neighbourhood intersects A. Then, (Z, cθ) (given as Example 4 in [15]) is called the θ−closure space of the digital
topology. (Z, cθ) is a Čech closure space and with the ordinary order ≤ on integers (Z, cθ,≤) is an ordered closure
space. (Z, cθ,≤) is neither compact nor strongly compact, but it is up and strongly up compact space since the only
interior cover of Zwhich consists of increasing sets is {Z}.

Proposition 3.2. Let (X, c,�) be an ordered Čech closure space. If (H↓,W↓,⊆) is a compact space, then (X, c,�) is strongly
up-compact.
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Proof. Let (Ui)i∈I be an interior cover of X which consists of increasing sets. Then X =
⋃
i∈I

intcUi and clearly

{〈X; intcUi〉}i∈I is an open cover ofH↓. It follows from the hypothesis that there exists a finite subcover ofH↓. Let
J ⊆ I and {〈X; intcUi〉}i∈J be the finite subcover ofH↓. Then {Ui}i∈J is a finite sub-interior cover of X. Therefore,
(X, c,�) is strongly up-compact space.

Proposition 3.3. Let (X, c,�) be an ordered Čech closure space and C = (Ci)i∈I be a collection which consists of the subsets
of X . If Ci is strongly down-compact for each i ∈ I and C is compact in (H↓,W↓,⊆), then

⋃
i∈I

Ci is down-compact.

Proof. If (Uλ)λ∈Γ is an interior cover of
⋃
i∈I

Ci which consists of decreasing sets, then for each i ∈ I there exists a

finite set Γi ⊆ Γ such that Ci ⊆
⋃
λ∈Γi

intc (Uλ) ⊆
⋃
λ∈Γi

Uλ = UΓi
. For each i ∈ I, UΓi

is a decreasing set and

S = (Si)i∈I =
(〈
intcUΓi

; {intc (↑ Uλ)}λ∈Γi

〉)
i∈I

is an open cover for C in (H↓,W↓,⊆). It follows that there exists a finite set J ⊂ I such that C ⊆
⋃
j∈J

Sj . Then for

each i ∈ I, there exists ji ∈ J such that Ci ∈ Sj , i.e. Ci ⊂ intc
(
UΓji

)
. Hence⋃

i∈I
Ci ⊂

⋃
ji∈J

intc
(
UΓji

)
which completes the proof.

Proposition 3.4. Let (X, c,�) be a regular ordered Čech closure space with a neighbourhood base consisting of increasing
sets. If C is a compact collection in (H↓,W↓,⊆) consisting of closed and decreasing sets, then

⋃
A∈C

A is closed and decreasing.

Proof. Let x ∈ c(
⋃
A∈C

A). Then for each neighbourhood W of x there is an increasing neighbourhood U of x such

that U ⊆W. Since (X, c,�) is a regular ordered space, there exists an increasing neighbourhood V of x such that
V ⊆ c(V ) ⊆ U ⊆W. Since V ∩ (

⋃
A∈C

A) 6= ∅, there exists A ∈ C such that c(V ) ∩A 6= ∅which implies A ∈ (c(V ))−.

Then it follows from Lemma 1 that C∩(c(V ))− is closed in C and

{C∩(c(V ))− | V is an increasing neighbourhood of x}

has the finite intersection property since {Vi}1≤i≤n is a family of increasing neighbourhoods of x implies
n
∩
i=1
Vi is an

increasing neighbourhood of x and since

C∩(c(
n
∩
i=1
Vi))

− ⊆ C∩((
n
∩
i=1
c(Vi)

−),

C∩((
n
∩
i=1
c(Vi)

−) 6= ∅. Compactness of (C,W↑C,⊆) implies the existence of a nonempty subcollection C
′⊆ C such

that, for each A′ ∈ C
′
, A′ ∈ {C∩(c(V ))− | V is an increasing neighbourhood of x}. Thus A′ ∩ c(V ) 6= ∅ and since

c(V ) ⊆ U ⊆ W, A′ ∩W 6= ∅, for each neighbourhood W of x and so x ∈ c(A′) = A′ ⊆
⋃
A∈C

A and x ∈
⋃
A∈C

A.

Consequently,
⋃
A∈C

A is a closed and decreasing set in (X, c,�).

Corollary 3.1. When the preorder on X is the discrete order, then we present Proposition 6, Proposition 7 and Proposition 8
of [3] as results of Proposition 2, Proposition 3, Proposition 4, respectively.
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