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SHADOW LEMMA ON FINSLER MANIFOLDS OF

HYPERBOLIC TYPE
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(Communicated by Bayram ŞAHIN)

Abstract. Let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F

be its universal Finslerian covering and αF the critical exponent of the group
of the deck transformations of M̃F . In this paper we prove the existence of an

αF -Busemann quasi-density on the Gromov boundary M̃G
F (∞) of M̃F . Fur-

thermore, we generalize the Shadow lemma to the compact Finsler manifolds
of hyperbolic type.

1. Introduction and main results

Let (M, g) be a complete Riemannian manifold with negative sectional curvature.
Then the universal cover X of M is diffeomorphic to the Euclidean space and can
be compactified by adding a topological sphere ∂X. The fundamental group Γ of
M acts by isometries on X ∪ ∂X.

In [10], when X is a real hyperbolic space, S.-J. Patterson constructed a familly
of measures {µx}x∈X as follows :

µs,x0,x =

∑
γ∈Γ e

−sdg(x,γx0)

e−sdg(x0,γx0)
δγx0

, s > αg, x and x0 ∈ X,

where dg is the distance function induced on X by g, δγx0
the Dirac point mass of

weight one at γx0 and αg the critical exponent of Γ. Let (sn)n be a sequence with
sn > αg and sn −→ αg such that µsn,x0,x converges weakly, as well to the measure
µx. The measure µx is Γ-quasi-invariant.

Let now (M,F ) be a compact Finsler manifold of hyperbolic type (cf. Definition

2.3) and M̃F the universal Finslerian cover of (M,F ) (cf. Definition 2.2). Let

denote by M̃G
F (∞) the Gromov boundary of M̃F , Γ ⊂ Iso(M̃F ) the group of the

deck transformations of M̃F and αF the critical exponent of Γ.
Following the original idea of Patterson (see [10]), we define on M̃F ∪ M̃G

F (∞), a
familly of measures {µx}x∈M̃F

. Using this construction, we prove the existence of

a Busemann quasi-density of dimension αF (cf. Definition 4.2 ) on M̃F ∪ M̃G
F (∞).
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For any point x ∈ M̃F and ρ > 0, let denote by OFx0
(x, ρ) (cf. Definition 4.3) the

shadow on M̃G
F (∞) viewed from x0 of the ball B+

F (x, ρ).
The main result of this paper is the following :

Theorem 1.1. Let (M,F ) be a compact Finsler manifold of hyperbolic type and

M̃F be its universal Finslerian covering. Let Γ be the group of deck transformations
of M̃F , αF its critical exponent and {µx}x∈M̃F

be a Patterson-Sullivan density

associated to Γ on M̃F ∪M̃G
F (∞). Then there exist a constant R > 0 and a function

b ≥ 1 such that for all ρ ≥ R and all x ∈ M̃F ,

1

b(ρ)rαF
≤ µx0(OFx0

(x, ρ)) ≤ b(ρ)rα
F

,

where r = e−dF (x,x0) and OFx0
(x, ρ) is the shadow on M̃G

F (∞) viewed from x0 of the

ball B+
F (x, ρ).

The Shadow lemma allows to estimate the measure of certain subsets of the
boundary with respect to Busemann quasidensities. It was proved by D. Sullivan
([13]) in 1979 to all hyperbolic spaces. In 1997, G. Knieper ([8]) used the Shadow
lemma to estimate the volume of geodesic spheres of the universal Riemannian
covering of the Hadamard manifolds of rank 1,

From Theorem 1.1 since all compact orientable surfaces of genus greater than
one admits a metric g0 of strictly negative curvature, we deduce the following :

Corollary 1.1. Let M be a compact orientable surface of genus greater than one,
F a Finsler metric on M and M̃F be its universal Finslerian covering. Let Γ be
the group of deck transformations of M̃F , αF its critical exponent and {µx}x∈M̃F

be a Patterson-Sullivan density associated to Γ on M̃F ∪ M̃G
F (∞). Then there exist

a constant R > 0 and a function b ≥ 1 such that for all ρ ≥ R and all x ∈ M̃F ,

1

b(ρ)rαF
≤ µx0

(OFx0
(x, ρ)) ≤ b(ρ)rα

F

,

where r = e−dF (x,x0) and OFx0
(x, ρ) is the shadow on M̃G

F (∞) viewed from x0 of the

ball B+
F (x, ρ).

The paper is organized as follows : in section 2, we recall some basic facts about
a Finsler manifold. Section 3 is devoted to the ideal boundary and the Gromov
boundary of a Finsler manifold of hyperbolic type. In section 4, we construct a
Busemann quasidensity and we provide the proof of the theorem 1.1.

2. Generality on Finsler manifold of hyperbolic type

In this section, we briefly recall some notions from Finsler geometry; see [2] or
[11] and the references therein for more details.

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space
at x ∈ M , and by TM := ∪x∈MTxM the tangent bundle of M . Each element
of TM has the form (x, y), where x ∈ M and y ∈ TxM . The natural projection
π : TM −→ M is given by π(x, y) := x. Let (x1, x2, · · · , xn) = (xi) : U −→ Rn
be a local coordinate system on an open subset U ⊂ M . As usual, { ∂

∂xi } is the

induced basis for TxM . Any y ∈ TxM is expressed as y = yi ∂
∂xi .

A Finsler structure on M is a function

F : TM −→ [0; +∞)
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with the following properties :

(1) Regularity: F is C∞ on the slit tangent bundle TM \ {0};
(2) Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0;
(3) Strong convexity: The n× n Hessian matrix

(gij) :=

([
1

2
F 2

]
yiyj

)
is positive definite at every point of TM \ {0}.

Note that the Finsler structure F is locally expressed as a function of (xi, yi)
and the partial derivatives of 1

2F
2 are taken with respect to yi. It is easy to check

that the positive-definiteness of 1
2F

2 is independent of the choice of any basis of
TxM .

Let M be an n-dimensional C∞ manifold. A smooth Riemannian metric g on M
is a family {gx}x∈M of inner products, one for each tangent space TxM , such that
the functions gij(x) := gx

(
∂
∂xi ,

∂
∂xj

)
are C∞. Since each gx is an inner product,

the matrix (gij(x)) is positive-definite at every x ∈M . Then g defines a symmetric
Finsler structure F on TM by :

F (x, y) :=
√
gx(y, y).

Therefore, every Riemannian manifold is a Finsler Manifold.

Let σ : [a, b] −→ M be a piecewise C∞ curve with velocity dσ
dt = dσi

dt
∂
∂xi ∈

Tσ(t)M . Its length lF (σ) =
∫ b
a
F (σ, dσdt )dt. For p and x ∈ M , denote by C∞(p, x)

the collection of all piecewise C∞ curves σ : [a, b] −→ M with σ(a) = p and
σ(b) = x. Define the metric distance from p to x by

dF (p, x) = inf
σ∈C∞(p,x)

lF (σ).

Note that if F is typically positively homogeneous (of degre 1) the distance dF is
non-symmetric.

We say that the Finsler structure F is absolute homogeneous if

F (x, λy) =| λ | F (x, y) for all λ ∈ R.
In this case, the distance dF is symmetric.

Let denote by B+
F (p, r) = {x ∈ M : dF (p, x) < r} and B−F (p, r) = {x ∈ M :

dF (x, p) < r}.
Definition 2.1. Let (M,F ) be a Finsler manifold.

(1) A piecewise C∞ curve c : [a, b] −→ M̃ satisfying F (ċ) = 1 is said to be
minimal if lF (c) = dF (c(a), c(b)).

(2) A curve c : [0,∞) −→ M̃ is called a forward ray if c |[a,b] is minimal for all
[a, b] ⊂ [0,∞).

(3) A curve c : (−∞, 0] −→ M̃ is called a backward ray if c |[a,b] is minimal for
all [a, b] ⊂ (−∞, 0].

(4) A curve c : R −→ M̃ is called a minimal geodesic if c |[a,b] is minimal for
all [a, b] ⊂ R.

Definition 2.2. Let (M,F ) be a Finsler manifold M . We say that F is uniformly
equivalent to a Riemannian metric g, if there is a constant cF such that

1

cF
· F ≤ ‖·‖g ≤ cF · F,
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where ‖v‖g =
√
gx(y, y) for all v = (x, y) ∈ TM .

Let p : M̃ −→M be the universal Riemannian covering of M . Using the map p,
we pull the Finsler structure F back to M̃ . The resulting F̃ defines on TM̃ \ {0}
a Finsler structure. We denote by M̃F the Finsler manifold (M̃, F̃ ); M̃F is the
universal Finslerian covering of the Finsler manifold (M,F ).

Let Γ ⊂ Iso(M̃F ) be the group of deck transformations. We say that F is
invariant under Γ if

F (dτ(pv)v) = F (v) ∀v ∈ TM̃, τ ∈ Γ.

Remark 2.1. Note that if M is a compact manifold and F is invariant under the
group of deck transformations Γ then F and g are uniform equivalence.

Definition 2.3. A Finsler manifold (M,F ) is called of hyperbolic type, if there
exists on the manifold M a Riemannian metric g0 of strictly negative curvature
such that F and g0 are uniformly equivalent (cf. Definition 2.2).

3. Ideal and Gromov Boundaries of Finsler manifolds of hyperbolic
type

In this section, we study the ideal Boundary and the Gromov hyperbolic bound-
ary of the universal Finslerian covering of a compact Finsler Manifold of hyperbolic
type.

The following theorem is fundamental for the study of the ideal boundary of
Finsler manifolds of hyperbolic type. It was proved by Morse in dimension 2 and
by Klingenberg in arbitrary dimensions. The fact that the Morse Lemma also holds
in Finsler case was first observed by E. M. Zaustinsky (see [14]). Due to Klingenberg
(see [7]), the Morse Lemma holds in any dimension.

Theorem 3.1 (Morse Lemma, cf. [12]). Let (M,F ) be a Finsler manifold of
hyperbolic type and g0 be a metric of strictly negative curvature on M such that F
and g0 are uniformly equivalent and M̃ be the universal covering of M .

Then there is a constant r0 = r0(F, g0) > 0 with the following properties.

(i) for any two points x and y ∈ M̃ , the g0-geodesic-segment γ : [0, dg0(x, y)]→
M̃ from x to y and any F -minimal segment c : [0, dF (x, y)] → M̃ from x
to y we have

max
t∈[0,dF (x,y)]

dg0
(γ([0, dg0

(x, y)], c(t))) ≤ r0.

(ii) If c : [0,∞) −→ M̃ is a F -forward ray, then there exists a g0-ray γ :

[0,∞) −→ M̃ and conversely, if γ : [0,∞) −→ M̃ is a g0-ray, then there

exists a F -forward ray c : [0,∞) −→ M̃ , such that

sup
t∈[0,∞)

dg0
(γ([0,∞), c(t))) ≤ r0.

This properties stay hold for backward rays and minimal geodesics.

Now let (M,F ) be a compact Finsler manifold of hyperbolic type and M̃F be
its universal Finslerian covering. Let g0 denotes an associated metric of strictly
negative curvature on M . Note that the universal Riemannian covering M̃0 of
(M, g0) is a Hadamard manifold and let denote by M̃0(∞) its ideal boundary. Two
F -forward rays c and c′ are said to be asymptotic if there exists a constant D0 ≥ 0
such that dH(c(R+), c′(R+)) ≤ D0, where dH is the Hausdorff distance with respect
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to the distance dF . This defines an equivalence relation on the set of F -forward rays
of M̃F . Let M̃F (∞) be the coset of asymptotic F -forward rays c of M̃F . For each

F -forward ray c of M̃F , it follows from Morse lemma that there exists a g0-geodesic
ray γ such that dH(c(R+), γ(R+)) ≤ D, where D is the constant in Morse lemma.
Let [c] be the equivalence class of a F -forward ray c and let [γ] the equivalence class
of the g0-geodesic γ. The map f defined by

f : M̃F (∞) → M̃0(∞)
[c] 7→ [γ]

is bijective. Then f defines on M̃F (∞) a natural topology with respect to which

M̃F (∞) and M̃0(∞) are homeomorphic (M̃F (∞) ' M̃0(∞)).
Let recall now some basic facts about Gromov hyperbolic spaces. Let (X, d) be

a metric space with a reference point x0. The Gromov product of the points x and
y of X with respect to x0 is the nonnegative real number (x.y)x0

defined by:

(x.y)x0
=

1

2
{d(x, x0) + d(y, x0)− d(x, y)}

Let δ ≥ 0. A metric space (X, d) is said to be a δ-hyperbolic space if

(x.y)x0
≥ min{(x.z)x0

; (y.z)x0
} − δ

for all x, y, z and every choice of reference point x0. We call X a Gromov hyperbolic
space if it is a δ-hyperbolic space for some δ ≥ 0. The usual hyperbolic space Hn is
a δ-hyperbolic space, where δ = log 3. More generally, every Hadamard manifold
with sectional curvature ≤ −k2 for some constant k > 0 is a δ-hyperbolic space,
where δ = k−1 log 3 (see [1] or [4]).

Lemma 3.1. (See [4] or [6]) Let (X, d) be a complete geodesic δ-hyperbolic space,
x0 a reference point in X, x and y two points of X. Then

d(x0, γxy)− 4δ ≤ (x.y)x0
≤ d(x0, γxy)

for every geodesic segment γxy joining x and y.

Definition 3.1. A function f : R → R is called k-convex if for all x, y ∈ R, and
t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + k.

Proposition 3.1. (See [4] or [6]) Let (X, d) be a δ-hyperbolic geodesic space and
c1, c2 : R→ X two minimizing geodesics. The function

f : R −→ R
t 7−→ d(c1(t), c2(t))

is 4δ-convex.

Definition 3.2. Let (X1, d1) and (X2, d2) be two metric spaces. A map Φ : X1 −→
X2 is called a quasi-isometric map, if there exist constants A > 1 and α > 0 with:

1

A
d1(x, y)− α ≤ d2(Φ(x),Φ(y)) ≤ Ad1(x, y) + α ∀x, y ∈ X1.

In a metric space X, a quasi-geodesic (resp. quasi-geodesic ray) is a quasi-isometric
map Φ : R −→ X (resp. Φ : R+ −→ X).
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Lemma 3.2. (see [4]) Let X1 be a metric space and (X2, d2) be a geodesic Gromov
hyperbolic space. If there exists a quasi-isometric map Φ : X1 −→ X2, then X1 is
also a Gromov hyperbolic space.

Now let X be a Gromov hyperbolic manifold, x0 a reference point in X. We say
that the sequence (xi)i∈N of points in X converges at infinity if

lim
i,j→∞

(xi · xj)x0
=∞.

If x1 is another reference point in X,

(x · y)x0
− d(x0, x1) ≤ (x · y)x1

≤ (x · y)x0
+ d(x0, x1).

Then the definition of the sequence that converges at infinity does not depend on
the choice of the reference point. Let us recall the following equivalence relation R
on the set of sequences of points in X that converge at infinity :

(xi)R(yj)⇐⇒ lim
i,j→∞

(xi · yj)x0 =∞.

The Gromov boundary XG(∞) of X is the coset of sequences that converge at
infinity.

Let X be a simply connected manifold which is a Gromov hyperbolic space. One
defines on the set X ∪XG(∞) a topology as follows (see [4] page 22) :

(1) if x ∈ X, a sequence (xi)i∈N converges to x with respect to the topology of
X.

(2) if (xi)i∈N defines a point ξ ∈ XG(∞), (xi)i∈N converges to ξ.
(3) For η ∈ XG(∞) and k > 0, let

Vk(η) :=
{
y ∈ X ∪XG(∞) / (y · η)x0 > k

}
,

where

(x · y)x0
= inf

{
lim inf
i→∞

(xi · yi)x0
/ xi → x, yi → y

}
for x and y elements of X ∪XG(∞).

The set of all Vk(η) and the open metric balls of X generate a topology on
X∪XG(∞).With respect to this topology, X is dense inX∪XG(∞) andX∪XG(∞)
is compact.

Lemma 3.3. (see [5]) Let X be a δ-hyperbolic space. Then

(1) Each geodesic γ : R −→X defines two distinct points at infinity γ(+∞) and
γ(−∞).

(2) For each (η, x) ∈ XG(∞) × X, there exists a geodesic ray γ such that
γ(0) = x and γ(+∞) = η. For any other geodesic ray γ, with γ,(0) = x and
γ,(+∞) = η we have d(γ,(t), γ(t)) ≤ 4δ for all t ≥ 0.

Definition 3.3. Let ξ ∈ XG(∞) and c : R+ −→ X be a minimal geodesic ray
satisfying c(+∞) = ξ. The function

bc(x) := lim
t→∞

(d(x, c(t))− t)

is well-defined on X and is called the Busemann function for the geodesic c.
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Lemma 3.4. (see [5]) Let X be a δ−hyperbolic space, ξ ∈ XG(∞), x, y ∈ X and
c a geodesic ray with c(0) = x and c(+∞) = ξ. Then there exists a neighbourhood
V of ξ in X ∪XG(∞) such that

|bc(y)− (d(z, y)− d(z, x))| ≤ K for all z ∈ V ∩X,

where bc is the busemann function for the geodesic c and K is a constant depending
only on δ.

Lemma 3.5. (see [4]) Let X1 be a metric space and (X2, d2) be a geodesic Gromov
hyperbolic space. If there exists a quasi-isometric map φ : X1 −→ X2, then X1 is
also a Gromov hyperbolic space. Moreover, if the map

x 7−→ d2(x, φ(X1))

is bounded above, XG
1 (∞) ' XG

2 (∞) ie XG
1 (∞) is homeomorphic to XG

2 (∞).

The following lemma give an homeomorphism between the ideal boundary and
the Gromov hyperbolic boundary of Hadamard manifolds :

Lemma 3.6. (see [3] ) Let X0 be a Hadamard manifold with sectional curvature
KX0

≤ −k2
0 < 0 for some constant k0 > 0. There exists a natural homeomorphism

φ : X0 ∪XG
0 (∞) −→ X0 ∪X0(∞).

In particular, XG
0 (∞) ' X0(∞).

Using Morse lemma, lemma 3.6 and the properties of the ideal boundaries, we
obtain the following lemma :

Lemma 3.7. Let (M,F ) be a compact Finsler manifold of hyperbolic type and

M̃F be its universal Finslerian covering. Let g0 be an associated metric of strictly
negative curvature on M and M̃0 be the universal Riemannian covering of (M, g0).
We have

M̃F (∞) ' M̃0(∞) ' M̃G
0 (∞) ' M̃G

F (∞).

4. Shadow lemma

Definition 4.1. Let X be a Gromov hyperbolic manifold with reference point x0

and Γ be a discrete and infinite subgroup of the isometry group Iso(X) of X. For
a given point x ∈ X, the limit set Λ(Γ, x) is the set of the accumulation points of
the orbit Γx in XG(∞).

Let (X, d) be a metric space and Γ be a discrete and infinite subgroup of the
isometry group Iso(X) of X. For x0, x ∈ X and s ∈ R,

Ps(x, x0) :=
∑
γ∈Γ

e−sd(x,γx0)

denotes the Poincaré series associated to Γ. The number

α := inf{s ∈ R;Ps(x, x0) <∞}

is called the critical exponent of Γ and is independent of x and x0. The subgroup Γ
is called of divergence type if the Poincaré series diverges for s = α. The following
lemma introduces a usefull modification (due to Patterson) of the Poincaré series
if Γ is not of divergence type.
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Lemma 4.1. (see [10]) Let Γ be a discrete group with critical exponent α. There
exists a function f : R+ −→ R+ which is continuous, nondecreasing and such that

for all a > 0, lim
r−→+∞

f(r + a)

f(r)
= 1

and the modified series

P̃s(x, x0) :=
∑
γ∈Γ

f(d(x, γx0))e−d(x,γx0)

converges for s > α and diverges for s ≤ α.

Now let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F be its
universal Finslerian covering. Let g0 denote a metric of strictly negative curvature
on M . The universal covering M̃0 of (M, g0) is a hadamard manifold satisfying
KM̃0

≤ −k2
0 < 0 for some constant k0 > 0.

Let Γ be the group of deck transformations of M̃ and αg0 be its critical exponent
with respect to the metric g0. It follows from theorem 5.1 in [8] that :

αg0 = h(g0) := lim
r−→∞

log volg0
Bg0

(x, r)

r
.

The fact that M is compact implies the existence of a constant λ ≥ 1 such that

λ−1dg0(x, y) ≤ dF (x, y) ≤ λdg0(x, y) for all x, y ∈ M̃F .

Then, the critical exponent αF of Γ with respect to the metric dF belongs to
[λ−1h(g0), λh(g0)] ⊂ R∗+.

Lemma 4.2. Let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F be

its universal Finslerian covering and Γ be the group of deck transformations of M̃F .
Then

(1) ΛF (Γ, x) = Γx ∩ M̃G
F (∞).

(2) γ(ΛF (Γ, x)) = ΛF (Γ, x) for all γ ∈ Γ and x ∈ M̃ .
(3) ΛF (Γ, x) is independent of x.

(4) ΛF (Γ, x) = M̃G
F (∞).

Proof of Lemma 4.2. (1) Direct because ΛF (Γ, x) = Γx \ Γx and Γx ⊂ M̃F .
(2) Let ξ ∈ ΛF (Γ, x). There exists a sequence γn ∈ Γ such that limn−→∞ γnx =

ξ. Then limn−→∞ γ · γnx = γξ.
(3) For all ξ ∈ ΛF (Γ, x), by the definition there is a sequence (γn)n of points

of Γ such that limn−→∞ γnx = ξ. Then

lim
m,n−→∞

(γnx·γmx)x0
= lim
m,n−→∞

[dF (γnx, x0) + dF (γmx, x0)− dF (γnx, γmx)] = +∞.

For all y ∈ M̃F , we have :

2(γnx · γny)x0
= dF (γnx, x0) + dF (γny, x0)− dF (γnx, γny)
= dF (γnx, x0) + dF (γny, x0)− dF (x, y)
≥ dF (γnx, x0)− dF (x, y)

Hence,

lim
n−→∞

(γnx · γny)x0
= +∞ and lim

n−→∞
γny = +ξ.

then ξ ∈ ΛF (Γ, y).
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(4) Let g0 denotes a metric of strictly negative curvature on M . The univer-

sal Riemannian covering M̃0 of (M, g0) is a Hadamard manifold satisfying

KM̃0
≤ −k2

0 < 0 for some constant k0 > 0. Then Λg0(Γ, x) = M̃0(∞)

(see [9]). Since Γ is cocompact, the identity map I : M̃0 −→ M̃F de-

fines a homeomorphism I∗ : M̃G
0 (∞) −→ M̃G

F (∞) (see lemma lemma 3.7).

Let ξ ∈ M̃G
F (∞) and η ∈ M̃G

0 (∞) such that ξ = I∗(η). The fact that

M̃G
0 (∞) = Λg0(Γ), there is a sequence (γn)n in Γ and y ∈ M̃F such that

the sequence (γny)n converges to η in M̃∪M̃G
0 (∞). Then I(γny)n = (γny)n

converges to I∗(η) = ξ in M̃F ∪ M̃G
F (∞).

�

Definition 4.2. Let X be a Gromov hyperbolic manifold with reference point x0,
α ∈ R+, and Γ be a discrete and infinite subgroup of Iso(X). A family {µx}x ∈ X
of finite nontrivial Borel measures on X ∪XG(∞) is an α-dimensional Busemann
quasidensity if :

(1) supµx ⊂ Λ(Γ, x), where Λ(Γ, x) is the limit set of the orbit Γx in XG(∞).
(2) µγx(γA) = µx(A) for all γ ∈ Γ, A ⊂ XG(∞), A measurable, x ∈ X.
(3) There exists a constant λ ≥ 1 sucvh that for all x ∈ X,

1

λ
e−αbc(x0) ≤ dµx0

dµx
(ξ) ≤ λe−alpha(x0)

for allmost all ξ ∈ XG(∞), where c is a geodesic satisfying c(0) = x and
c(∞) = ξ and bc is the Busemann function for the geodesic c.

The next lemma states the existence of a Busemann quasidensity on an universal
Finslerian covering of compact Finsler manifolds of hyperbolic type.

Lemma 4.3. Let (M,F ) be a compact Finsler manifold of hyperbolic type and M̃F

be its universal Finslerian covering. Let Γ be the group of deck transformations
of M̃F and let αF be its critical exponent. Then there exists an αF -dimensional
Busemann quasidensity {µx}x∈M̃F

on M̃F ∪ M̃G
F (∞).

Proof of Lemma 4.3. We have to construct a family of measures {µx}x ∈ M̃F which
satisfies the axiomatic definition 4.2
. A natural way to obtain Busemann quasidensity was given by Patterson (see [10])
in case of Fuchsian groups. Let x0 be a reference point of the Gromov hyperbolic
manifold M̃F . For s > αF and x ∈ M̃F , we consider the measure

µs,x0,x :=

∑
γ∈Γ f(dF (x, γx0))e−sdF (x,γx0)

P̃Fs (x0, x0)
δγx0 ,

where f is a usefull modification function (due to Patterson) of the Poincaré series
if Γ is not of divergence type and

P̃Fs (x0, x0) =
∑
γ∈Γ

f(dF (x0, γx0))e−sdF (x0,γx0).

Let (sn)n be a sequence with sn > αF and sn −→ αF such that µsn,x0,x converges
weakly, as well to the measure µx. For x /∈ Γx0, we choose a subsequence of (sn)n,
denoted by (sxn)n such that the measure µsxn,x0,x is also weakly convergent. For all

points of the same orbit Γx we can choose the same subsequence, that is, sx
′

n = sxn
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if x′ ∈ Γx.
These choices yield a family {µx}x∈M̃F

of measures.

(1) Using the triangle inequality of dF and the properties of the usefull function
f , we have

1

2
≤ f(dF (x, γx0))

f(dF (x0, γx0))
≤ 3

2

for allmost γ ∈ Γ.
Then, there exist constants a and b depending only on dF (x, x0) such that

ae−sdF (x,x0) ≤ µs,x0,x(M̃F ∪ M̃G
F (∞)) ≤ besdF (x,x0).

This implies that {µx}x ∈ M̃F is a family of finite nontrivial Borel measures

on M̃F ∪ M̃G
F (∞)).

(2) For all z ∈ M̃F ∪ M̃G
F (∞)) \ΛF (Γ, x), there is an open neighbourhood U of

z with

Γx ∩ U \ {z} = ∅.
Then

µsn,x0,x(U) =
∑
γ∈Γ,γx0∈U

f(dF (x,γx0))e−sndF (x,γx0)

P̃Fsn (x0,x0)

≤ f(dF (x,z))e−sndF (x,z)

P̃Fsn (x0,x0)
.

The fact that P̃Fsn(x0, x0) diverges for s = αF implies that µx(U) = 0.

(3) Let η ∈ Γ, and A be a measurable subset of M̃F ∪ M̃G
F (∞)). We have :

µs,x0,ηx(ηA) =
∑
γ∈Γ,γx0∈ηA

f(dF (ηx,γx0))e−sdF (ηx,γx0)

P̃Fs (x0,x0)

=
∑
γ′∈Γ,γ′x0∈A

f(dF (x,γ′x0))e−sdF (x,γ′x0)

P̃Fs (x0,x0)

= µs,x0,x(A).

Then µηx(ηA) = µx(A) for all η ∈ Γ.

(4) Let now ξ ∈ M̃G
F (∞) and a sequence (Un)n of open sets in M̃F ∪ M̃G

F (∞))
with limn−→∞ = {ξ}. By lemma 3.4, there n0 ∈ N such that

|bc(x0)− (dF (γx0, x0)− d(x, x0)) | ≤ K

for all n ≥ n0 and γx0 ∈ Un, where c is the F -forward ray joining x and ξ,
bc the Busemann function for the geodesic c, and K a constant depending
only on the metric g0. Finally, using the lemma 4.1, we deduce the existence
of a constant λ ≥ 1 such that :

1

λ
e−α

F bc(x0) ≤ dµx0

dµx
(ξ) ≤ λe−α

F bc(x0).

�

Definition 4.3. Let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F

its universal Finslerian covering and M̃G
F (∞) the Gromov boundary of M̃F . For

y ∈ M̃F ∪ M̃G
F (∞), x ∈ M̃F and ρ > 0, the shadow OFy (x, ρ) of the ball B+

F (x, ρ)

viewed from the point y is the set of alls points ξ ∈ M̃G
F (∞) such that all F -forward

rays cyξ connecting y and ξ satisfy cyξ ∩B+
F (x, ρ) 6= ∅.
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Lemma 4.4. Let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F its
universal Finslerian covering. Let Γ be the group of the deck transformations of
M̃F and F be a fundamental domain of Γ in M̃F . Then there exist constants R > 0
and ε > 0 such that for all y ∈ M̃F , x ∈ F ,

Cg0
ε (v) ⊂ OFy (x,R),

where v ∈ Sx0M̃0, Cg0
ε (v) := {cw(∞) : w ∈ Sx0M̃0 and (v, w) < ε} and cw is the

g0-geodesic satisfying ċw(0) = w.

Proof of Lemma 4.4. Let g0 be a metric of strictly negative curvature associated
to F on M . The universal Riemanniann covering M̃0 of (M, g0) is a Hadamard
manifold of strictly negative curvature. Then there exist constants R0 > 0 and ε > 0
such that for all x ∈ F and y ∈ M̃F , Cg0

ε (v) ⊂ Og0
y (x,R0), for some v ∈ Sx0

M̃0.
Let ξ ∈ Cg0

ε (v), γ0 the g0-geodesic connecting y and ξ. There exists t0 ≥ 0 such
that dg0(γ0(t0), x) ≤ R0. Then, there is λ ≥ 1 such that dF (γ0(t0), x) ≤ λR0.
Let γ be a F -forward ray connecting y and ξ. By Morse Lemma (see 3.1) there
is a constant k1 > 0 such that dF (γ0(t0), γ(R+)) ≤ k1. Let t1 ∈ R+ such that
dF (γ0(t0), γ(t1)) ≤ k1. Then, dF (x, γ(t1) ≤ λR0 + k1. This implies that

Cg0
ε (v) ⊂ OFy (x,R),

where R = λR0 + k1. �

Lemma 4.5. Let (M,F ) be a compact Finsler manifold of hyperbolic type, M̃F its
universal Finslerian covering. Let Γ be the group of the deck transformations of
M̃F , F be a fundamental domain of Γ in M̃F and {µx}x∈M̃F

an αF -dimensional

Busemann quasidensity on M̃F ∪ M̃G
F (∞). Then, for all ε > 0, there exists a

constant l > 0

µx(Cg0
ε (v)) ≥ l for all v ∈ Sx0M̃F and x ∈ F .

Proof of the Lemma 4.5. If it was not true, it would exist sequence {xn}n of points

of F and {vn}n ∈ Sx0
M̃F such that µxn(Cg0

ε (vn)) converges to 0. One can suppose

that xn −→ x ∈ F and vn −→ v ∈ SxM̃F . Then, there exists n0 such that n ≥ n0

implies that Cg0
ε
2

(v) ⊂ Cg0
ε (vn). Then µx(Cg0

ε
2

(v)) = 0. This is absurd because

Cg0
ε
2

(v) is an open set of M̃G
F (∞) and suppµx = M̃G

F (∞). �

Corollary 4.1. Let (M,F ), M̃F , Γ and {µx}x∈M̃F
be as in lemma 4.5. Then,

there exist constants l > 0 and R1 > 0 such that for all ρ ≥ R1

µx(OFy (x, ρ) ≥ l for all x and y ∈ M̃F .

Proof of the corollary 4.1. Using the lemmas 4.4 and 4.5, there exists constants
l > 0 and R > 0 such that for all ρ ≥ R

µx(OFy (x, ρ) ≥ l for all y ∈ M̃F and x ∈ F .

The fact that F is a fundamental domain of Γ in M̃F and γ
(
OFy (x, ρ)

)
= OFγy(γx, ρ)

implies that :

µx
(
OFy (x, ρ)

)
= µγx′

(
OFγ(γ−1y)(γx

′, ρ)
)

= µx′
(
γ
(
OFγ−1y(x′, ρ)

))
= µx′

(
OFγ−1y(x′, ρ)

)
.

�
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Now we can give a proof of Theorem 1.1

Proof of the teorem 1.1. By lemma 4.3, there exists a constant λ > 1 such that for
all ξ ∈ M̃G

F (∞),

λ−1e−α
F bc(x0) ≤ dµx0

dµx
(ξ) ≤ λe−α

F bc(x0)

for all x ∈ M̃F , where c is a F -forward ray connecting x and ξ and

bc(y) = lim
t−→∞

[dF (y, c(t))− t] .

Then

λ−1

∫
OFx0

(x,ρ)

e−α
F bc(x0)dµx(ξ) ≤ µx0

(
OFx0

(x, ρ)
)
≤ λ

∫
OFx0

(x,ρ)

e−α
F bc(x0)dµx(ξ)

for all ξ ∈ M̃G
F (∞) and x ∈ M̃F , where c is a F -forward ray connecting x and ξ, bc

the Busemann function for the geodesic c.
Morse lemma and the defintion of the shadow OFx0

(x, ρ) imply the existence of a
constant D > 0 such that

dF (x, x0)−D ≤ bc(x0) ≤ dF (x, x0) +D for all x ∈ M̃F .

Then,

µx0

(
OFx0

(x, ρ)
)
≤ λ

∫
OFx0

(x,ρ)
e−α

F dF (x,x0)−Ddµx(ξ)

≤ λe−α
F dF (x,x0)−Dµx

(
OFx0

(x, ρ)
)

≤ λeα
FDrα

F

µx
(
OFx0

(x, ρ)
)

≤ b′eα
FDrα

F

,

where b′ = supx∈M̃F
µx(M̃G

F (∞)). Moreover,

µx0

(
OFx0

(x, ρ)
)
≥ λ−1e−α

FDrα
F

µx
(
OFx0

(x, ρ
)
.

Using corollary 4.1, we have

µx
(
OFx0

(x, ρ
)
≥ l since ρ ≥ R.

Finally, putting b(ρ) = max{ e
αFDλ
l , eα

FDb′λ, 3
2} we obtain :

1

b(ρ)rαF
≤ µx0

(OFx0
(x, ρ)) ≤ b(ρ)rα

F

,

for all x ∈ M̃F . �
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in Math. No. 1441, Springer-Verlag, Berlin 1990.
[5] Coornaert M., Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens

de Gromov. Pacific J. of Math. 159, n. 2 (1993), 241-270.

[6] Coornert M., Papadoupoulos A., Symbolic Dynamics and Hyperbolic Groups, Lecture Notes
in Math., No. 1539, Springer-Verlag, 1993.



88 CYRIAQUE ATINDOGBÉ, CARLOS OGOUYANDJOU, JOËL TOSSA
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Calavi 01 BP 613 Porto-Novo, Republic of Benin.

E-mail address: atincyr@gmail.com

E-mail address: ogouyandjou@imsp-uac.org

E-mail address: joel.tossa@imsp-uac.org


