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Abstract: This paper presents an analysis of the vibration stability of a rotating blade due to shaft torsional 

vibration excitation. The governing equation adopted in the study is a Hill’s type linear second order ordinary 

differential equation with multiple harmonically variable coefficient terms. The differential equation of the 

system is rewritten as two coupled first order ordinary differential equations. The stable and unstable regions are 

determined by the Lyapunov characteristics exponents on parameter space (grid) relating to the rotor speed, the 

torsional vibration excitation frequency and the blade natural frequency. The results are contrasted to those 

obtained by the strained parameter method (a perturbation technique), an excellent match is observed for small 

torsional vibration amplitudes . 
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Lyapunov Üstelleri Kullanılarak Dönen Bir Bıçağın Titreşimlerinin 

Stabilite Analizi 
 
Özet: Bu makalede, dönen bir bıçağın titreşim kararlılığının mil titreşim uyarılmasına bağlı olarak analizi 

sunulmaktadır. Çalışmada kullanılan temel denklem, birden fazla harmonik olarak değişken katsayı terimine 

sahip Hill tipi doğrusal ikinci dereceden adi diferansiyel denklemdir. Sistemin diferansiyel denklemi, iki 

birleşmiş birinci mertebeden adi diferansiyel denklem olarak yeniden yazılmıştır. Kararlı ve kararsız bölgeler, 

rotor hızına, burulma titreşim uyarılma frekansına ve bıçak doğal frekansına ilişkin parametre uzayındaki 

Lyapunov karakteristik üstelleri tarafından belirlenir. Sonuçlar, genişletilmiş parametreler yöntemiyle (bir 

pertürbasyon tekniği) elde edilenlerle karşılaştırıldığında,  küçük burulma titreşim genlikleri için mükemmel bir 

eşleşme gözlemlenmiştir. 

 
Anahtar kelimeler: Kaos, Lineer olmayan dinamik, Lyapunov Üstelleri, Dönen Bıçak Titreşimi, Stabilite. 

 
 
 

1.  Introduction 

 

In complex dynamical systems, one way to exhibit the stable and unstable regions of the solution of 

the differential equation that represents the system is to calculate the Lyapunov characteristics 

exponents (LCEs). This paper aims to reproduce the stability charts formed by perturbation methods 

and numerical simulations by using alternative method of LCEs. Rotating blade vibration was 

recognized as one major cause of failure in turbomachinery that put a growing demand on more 

thorough analysis at the design stage. One problem that deserves more attention is the problem of 

blade vibration instability due to torsional vibration excitation. A study that results in a stability 

map for the shaft-blade design is extremely valuable for designers, diagnostics, and maintenance 
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engineers. The importance of blade vibration was highlighted by A.V. Srinivasan [1] in his survey 

on the vibration of bladed disk assemblies. He classified blade vibrations into two categories; 

namely (i) structure induced vibration and (ii) aero-elastic induced vibrations.  

 

The survey was mainly concerned with the structural induced vibrations and their modeling. The 

effect of stagger angle on the inertial and elastic coupling in bladed disks was reported by Crawley 

and Mokadam [2]. Tang and Wang [3] proposed a model for rotor fuselage dynamic analysis. The 

problem of blade vibration and its interaction with the main rotor torsional vibration was studied by 

Okabe et al. [4]. They showed that it is necessary to model both blade bending vibration and main 

rotor torsional vibration in turbomachinery. The authors adopted the modal synthesis procedure in 

their model by modeling the blade as a simple mass-spring subsystem and the shaft torsional 

flexibility as another discrete subsystem. The two subsystems were coupled and the natural 

frequencies were analyzed. The model-produced natural frequencies were compared to the actual 

measurement and close agreement was reported. Huang and Ho [5], the results of a study on the 

coupled shaft torsional and blade bending vibrations of a rotating shaft-disk-blade unit were 

presented. The shaft torsional and blade bending deformations were modeled using the Assumed 

Modes Method (AMM). 

 

 

 

 

 

 

 

Figure 1.  Schematic diagram of blade-disk-shaft system, Al-Bedoor (2001). 

  

The study identified the nonlinear interaction and the destabilizing effect that the blade and shaft 

could introduce to excite each other. Due to the difficulty encountered in quantifying the nature of 

nonlinear coupling when the finite element method is used, a reduced-order nonlinear dynamic 

model for shaft-torsional and blade-bending vibrations that adopted the AMM to approximate blade 

deformations was presented by Al-Bedoor [6]. The simulation results showed that (i) the torsional 

vibration of the rotor system works as an excitation to the blade, (ii) some certain combinations of 

blade-shaft parameters can lead to unstable blade vibration and (iii) there is no explicit criteria for 

identifying exact combinations of parameters that can lead to unstable vibrations. Al-Nassar and Al-

Bedoor [7] extracted an equation from the general solution developed by Al-Bedoor [6]. This 

extracted equation was converted into a general Mathieu equation whose solutions show the 

dynamic behavior of the blade under the effect of torsional vibration excitation. 

  

In this work, the chaotic behavior of the governing equation developed by Al-Nassar at al. [8] was 

investigated. The Lyapunov exponents of the dynamical system were computed by using a 

numerical scheme proposed by Chen at al. [9]. The numerical approach is based on a time 

integration and is computationally efficient. It was shown that the maximum Lyapunov exponent 

was shown to have positive values for unstable regions, which indicates a chaotic motion of 

dynamical system under consideration. However, it is nearly zero for stable regions. Therefore, it is 

worth noting that the obtained Lyapunov spectrum is in agreement with the theoretical results 

obtained by Al-Nassar at al. [8]. 

 

2. The Governing Equation 

 

A disk-shaft-blade system driven by an electrical motor is shown in Fig.1. The disk is assumed to 

be rigid and flexible blades are attached radially to the disk. The radius of the disk is   . The 
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coordinate system for the consideration is also shown in Fig.2. XY  is the inertial frame, 
m mx y  is a 

body coordinate system of the motor shaft, 
d dx y is a body coordinate system of the disk and 

b bx y  

is the blade coordinate system which is attached to the root of the blade. bx  is always directed 

along undeformed blade centerline. 

 

The dynamic model of a blade-disk-shaft system shown in Fig. 1 was used in this study. The 

equation of blade modal vibration can be written in the form 

 

                                        (1) 

 

where opened and detailed forms of the factors are given by Al-Bedoor and Al-Qaisia [10].  

 

The degrees of freedom are the rigid body rotation  , the torsional deflection   and the blade 

modal deflection q . By considering only the blade model degree of freedom and under the 

assumptions of constant rotating speed     , and the square of the torsional deflection is small 
2 0  , the following equation can be written: 

 

                                   
           

 
         .  (2) 

 

 

 

 

 

 

 

 

 

 

Figure 2. The coordinates system. 

 

Here h  and 1C  are constants depending on blade bending mode and B  is the blade natural 

frequency. As mentioned in ref. [8],  1C  can be taken as unity. The first term in Eq.(2) stands for 

part of dynamic coupling between the shaft torsional degree of freedom and the blade bending 

modes. The second term is blade modal acceleration and third term is a function of torsional degree 

of freedom parameters which can also be taken as a forcing term. The blade damping terms are 

shown in fourth term in Eq.(2) where   represents the structural damping and      stands for the 

effect of torsional vibration. 

 

It is possible to write rotor torsional deflection as 

 

sin t    

 

where   is a small parameter and indicates the small order of torsional vibration,   is the torsional 

excitation frequency. The equation of motion reduces to the  following form if one substitutes   

and    into Eq.(2) 
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                           (3) 

 

This is a second order differential equation with respect to ( )q t  having variable coefficiens. In this 

equation, 

2

1

2 2 2 2 2 231
2 2 2

2 2

( ) sin 2 2 ,

( ) 2 cos cos 2 ,

( ) sin 2 sin 2 .

B

B

P t t

P t t t

f t h t t

   

       

     

 

     

  

 

 

If one uses the transformation 

 

 1
12

exp ( )q x P t dt    

 

and considers the homogeneous part of Eq.(3), the system reduces to the following form 

 

                 (4) 

where 

        
 

 
  
  

 

 
  
  . 

 

It is convenient to rewrite the governing equation in non-dimensional form. To do this, one can 

define first the dimensionless frequencies 1 Br    and 2r    which are independent to each 

other and govern the stability of the system. Second, using the transformation 

1
2

t   

Eq.(4) becomes 

 

 2 41
2 2

8 cos2 2 cos4 cos8 0x r x                    (5) 

where double prime denotes the differentiation with respect to dimensionless time variable   and 
2 2 23

21 24( )r r    . Here the term due to damping is neglected. 

  
3. Numerical Calculation of LCEs 

 

The Lyapunov characteristic exponents(LCEs) play a crucial role on determining the behavior of 

dynamical systems. Because of the strong dependence on initial conditions, one may compute LCEs 

of a corresponding dynamical system to understand how it evolves in time and want to check if it 

has a chaotic manner. An n-dimensional autonomous smooth dynamical system can be 

characterized by a differential equation as 

   
  

  
              (6) 
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Here F is a continuous function on an open set nU R  and has continuous derivatives on the same 

set[11]. ( )x t  is the state vector at time t . A non-autonomous system could be rewritten as an 

autonomous system by adding the time as a dependent variable ( / 1)dt dt  . So the dimensionality 

increases by one. It is possible to make the above description for discrete dynamical systems 

rewriting the state equation as 

1 ( )t tx f x        (7) 

 

where t is now a natural number, f  maps tx  to 1tx  . Starting with an initial condition 0x , the 

repeated iterations of f  will produce a discrete set of points namely an orbit in phase space. 

 

3.1 Computation of LCEs 

   

Let us assume that the dynamical system under consideration is described by the ordinary 

differential equation system (6). Differentiating with respect to the initial condition 0x , we derive 

the 2n -dimensional ordinary differential equation system [9] 

 

                 (8) 

 

where nI  denotes the n n  identity matrix and ( )J x  the Jacobian matrix of f . Now let us consider 

the evolution of an infinitesimal n  parallelepiped with the axis ( ) ( ) (0)i ip t Y t p  for 1,...,i n , 

where  1(0),..., (0)np p  denotes an orthogonal basis of the phase space. The i th Lyapunov exponent, 

which measures the long-time sensitivity of the flow ( )x t  with respect to the initial data 0x  at the 

direction ( )ip t , is defined by the expansion rate of the length of the i th axis ( )ip t . The i th 

exponent can be calculated as the time evolution limit of  the natural logarithm of the rate; briefly, 

 

( )
lim ln .

(0)

i
i

t
i

p t

p



       (9) 

 

Without loss of generality, the direction ( )ip t  can be chosen as the i th column of the identity 

matrix nI . Thus if the Gram-Schmidt (QR) reorthonormalization procedure proposed in refs. 

[12,13] is used for Y(t) in the form 

 

( ) ( ) ( )Y t Q t R t ,     (10) 

 

the orthonormal matrix ( )Q t  is uniquely defined and an upper triangular matrix ( )R t  with positive 

diagonal entries , ( )i iR t . Therefore, with these assumptions, it is possible to introduce the alternative 

definition for Lyapunov exponents[13], 

 

,

1
lim ln ( ).i i i
t

R t
t




      (11) 

 

The presence of the limit in Eq.(11) basically depends on the fundamental theorem of ergodic 

dynamical systems [14]. The numerical computation of Lyapunov exponents are well developed as 

described by Benettin at al. [15] where the numerical algorithm uses a discrete QR algorithm. Some 
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additional successful developments of continuous algorithms in computing Lyapunov exponents are 

available in literature[16,17]. Here we will use a simple discrete QR algorithm proposed in [9] 

where the detailed explanation of the algorithm can be found. For a given time interval [0, ]T  the 

mesh points could be 0 1, ,..., Mt t t  where it ih . The step-size h  is calculated from the rate of  T
M

. 

For sufficiently small h  values, the approximate solution for ( )Y t  can be written as 

 

1( ) exp( ( ( ))) ( )i i iY t hJ x t Y t       (12) 

 

and finally we have 

1

0
0

( ) lim exp( ( ( ))).
M

i
h

i

Y T hJ x t





      (13) 

 

By using this equation, the description of the numerical Lyapunov exponents at time T  can be 

written in the form 

1

,

0

1
ln( )

M

L

i j i i

j

R
T







  .     (14) 

 

We set 1L   and 1M
L
  in order to apply the Gram-Schmidt reorthonormalization procedure to 

each product 
1
exp( ( ( )))

jL L

ii jL
hJ x t

 

  instead of the single term exp( ( ( )))ihJ x t  where j  is an 

integer. So Gram-Schmidt reorthonormalization procedure is applied once only for every time 

length Lh  and the computation time reduces. The matrix exponential is computed approximately by 

using the truncated Taylor expansion: 

 

16

1

exp( ( )) ( )
!

i
i

n

i

h
hJ x I J x

i

      (15) 

 

The numerical time integration used to discretize Eq. (1) is performed by using a linear multi-step 

method given by the fourth-order Adams-Bashforth formula[18,19]: 

 

1 1 2 324
[55 ( ) 59 ( ) 37 ( ) 9 ( )]h

n n n n n nx x f x f x f x f x        .   (16) 

 

3.2  Construction of The Jacobian Matrix 

 

When considering such a dynamical system, it is a straightforward procedure to construct the 

Jacobian matrix of differential equation that characterizes the system. To do this we need to convert 

our non-autonomous system to an autonomous system. As mentioned earlier in this section, a non-

autonomous system of equation that describes the evolution of the dynamical system can be 

rewritten as an autonomous system by adding an equation. The differential equation that describes 

the blade-disk-shaft system has already been given as Eq.(5) in previous section, which has   as  a 

dimensionless time variable. One can rewrite the differential equation of the system, i.e., Eq.(5) as a 
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system of equations by making a new substitution     . Then it becomes a set of first order 

ODE's 

 

( )

1,

x y

y f x



 

  

   
 

where prime denotes differentiation with respect to   and the function      is the fractional part of 

second term of the left-handside of Eq.(5). The third equation above guarantees that the system is 

autonomous. To clarify system of equations, it is suitable to make a transformation        
       . Then, the blade-disk-shaft system can be represented as a matrix equation. We have  

 

1
1

2 3 2

3 3
3

0 1 0

( ) 0 0 .

0 0 1/

x x

x f x x

x xx

 
   
     
      

    
      (17) 

 

The jacobian matrix can be constructed as     matrix taking the first and second rows and 

columns of the matrix seen righthandside of Eq.(17) i.e., 

 

 

3

0 1

( ) 0
J

f x

 
  

        (18) 

 

which actually represents the evolution of our dynamical system. Certainly, this representation is an 

irreducible one. 

Figure 3. The LCE   calculated for a given specific parameter set. 

 

 

3.3  Computing The LCE's 

 

Each Lyapunov exponent has been calculated by employing a routine code whose step size h is set 

to 0.01. This value of h is sufficiently small to use when compared to other studies. A subroutine 

inside code has been utilized to numerical integration including forth-order Adams-Bashford 

formula (see Eq.16). This provides high precession in computations. 
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Table 1. The sign of LCEs 

Topological Dimension Trajectory of Attractor Sign of LCE () 

1 Fixed Point - 

2 Periodic Motion 0,- 

3 Torus T
2
, Chaos C

1
 00-,+0- 

 

 

4. Sability and Unstability Regions 

 

In determining the stability regions of the dynamical system under consideration, it is useful to deal 

with outcomes of strained parameter method [20]. The method is used in calculating the branches 

separating stable and unstable regions, which is based on perturbation analysis. In Eq.(5), one can 

observe that there are, in fact, three parameters ( 2, ,r  ) that govern the stability of dynamical 

system. 

Figure 4. The LCEs 1 2 3, ,    at selected points in stable (a) and unstable (b) regions of the grid. 

 

Parameter Space: An approximate analytical soluton of Eq.(5) given by Al-Nassar at al. (2007) 

may guide our analysis to estimate stability and instability regions of the differential equation of 

system under consideration. According to [8], parameter 2r  should be not very small or large 

 2 0r  . The stability branches seem to emerge from specific values of  
20,1,4,...,n   where n  is 

an integer while parameter   varies between 0 and 1. Thus, the parameter space is constructed as 

   grids. Then the LCE's is now to be computed for every points of parameter space in which 

each of points represent a dynamical system state mentioned in section 3. As an example, the time 

evolution of a LCE has been plotted in Fig.3 for a specific set of parameters. If sufficiently long 

time is passed it converges a limit value. 

 

 The stability of a point in the space is determined by the sign of LCEs given in Table 1. The 

dimension of dynamical system considered is 3. Thereby three Lyapunov exponents will occur, 
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namely here 1 2,   and 3  ; at least one of these tends always to go monotonically to zero as seen in 

Fig.4 (say, 1 0  ). In stable regions, it is well known that at least one of LCEs is zero when the 

trajectory of an attractor has no fixed points [21].  If there is at least one positive exponent then the 

system has a strange attractor, thus has a chaotic behavior(See Fig.4 (b)). For a system having 

positive Lyapunov exponents ( 0,i i   ), it is said to be chaotic. This means that the differential 

equation of the system would have some instability regions. Here in our study, the LCE whose 

value approaches positive numbers is just 3  as shown in Fig.4, and thus it is expected that the 

system considered will exhibit chaotic behavior. 

 

 

5.  Results and Discussion 

 

As mentioned above, the differential equation that represents our system would have both stability 

and instability regions. The LCEs were computed for every points of    grids in parameter 

space. The dimensionality of our dynamical system is set to 3, hence there are three LCEs to 

compute for each points of grid. According to our results, it is possible to say that the exponent 

corresponding to time variable should approaches rapidly to zero ( 1 0  ) and  produces a limiting 

cycle in the motion of the dynamical system. It is also seen that the 2
nd

 LCE ( 2 ) produces 

dominantly periodic motions due to its non-positive values. Only the 3
rd

 LCE 3  takes positive 

values for specific parts of the grid and therefore is responsible for chaotic motion of the system. 

 

In this paper, we aimed to investigate the stability branches in the scope of LCEs and paid more 

attention to 3  which seem to be the source of chaotic behavior. In Figs.(5-7), positive values of 3  

representing by “+z-axis” refer to unstable region and zero surfaces correspond to stable region. At 

first glance, it is easy to see that for different 2r  values there are resembling patterns in    grids 

for Figs.(5-7). In all figures, the half funnel-shaped surfaces illustrate the positive Lyapunov 

exponents. Thus, points on those surfaces belong to the unstable region of the system driven by 

shaft torsional vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The LCE    in the     grid for         with n=1,2,3,4. 
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Fig.5 shows four landscapes for 2r . The specific value of   that determines stability branches 

according to 2n  (where n  in an integer) is set to 1,2,3, and 4 respectively. The grid step size is 

chosen as 0.01 for both variables   and  .  Thus, there are exactly 200100=20000 points in the 

region         and          for  first landscape of the figure. In the second landscape, 

boundaries of region are          and          respectively, which includes equally amount of 

points with first landscape. Third and fourth landscapes have less amount of points and thus have 

less density.  In Figs.6 and 7, similar landscapes are observed. In both, the first landscape of figures 

is seen to be much dense because of the intensity of points. In these cases,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The LCE 3  in the    grid for 2r =0.3162 with          . 

 

the parameter 2r  takes the values of 0.3162 and 0.4, respectively. In the third and especially fourth 

landscapes of figures, the intensity of fluctuations of 3
th

 LCE around zero becomes more evident 

due to the relative intensity of the value of 3 . Outside of the aforementioned specific surfaces, 

some additional set of points making 3  positive are obtained. This set also corresponds to 

instability.  The values of 3  in first landscapes in both figures are obviously greater than those in 

the other landscapes. This means that the chaotic behavior of the attractor of the system arises 

relatively more intensive near the value of parameter 1  . The boundaries between half-funnel 

shapes and flat surfaces in figures might be interpreted as transition zones indicating the edge of 

chaos. If a cross-section is taken near the zero surface for each figure then in corresponding regions, 

an excellent agreement is obviously observed with the study done in [8]. 
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Figure 7. The LCE 3  in the    grid for 2r =0.4 with           

 

 

Figure 8. Phase space trajectories of a landscape of the grid where parameters 2r =0.2 and    . 
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To make a more distinct explanation for the instability regions of the system, one can draw the 

phase space trajectories. Such trajectories are known as attractors in the phase space of dynamical 

systems as briefly explained in Sec.4. In Fig.8 trajectories have been plotted for the dynamical 

system under consideration. The parameter set is chosen for two different regions as expected; 

while imaginary vertical and horizontal paths are followed in    grid for a selected landscape for 

example, one can meet specifically three cases. In the first case, we are in region where all LCEs 

are zero; namely we are in a stable region. The first row of Fig.8 shows this case. Attractors 

strongly resemble limiting cycles referred to periodic motions of the system. The second case is 

related to transition zones where torus-shaped trajectories occurred according to Table 1. In this 

case, 2  is negative we are faced to edge of chaos because, attractors drawn on the second row of 

the figure begin apparently to show quasi-periodic cycles which may be interpreted as escaping 

from the regular motion. In the third case, attractors become strange where we are now in an 

unstable region of the grid. Here, 3  is strictly positive and chaotic behavior is observed. 

 

6. Conclusion 

 

In this paper, we focused on reestablishing an analysis for the stability and instability regions of 

rotating blade vibration due to shaft torsional excitation in terms of Lyapunov exponents. To do 

this, one can rewrite the second order differential equation as two coupled first order differential 

equations. This enables us to develop necessary tools for generating the Lyapunov exponents.  

 

The LCEs are distinctly essential indicators for understanding the evolution of dynamical systems. 

Here we have three LCEs one of which is systematically zero. One of remaining takes negative 

values and the latter one takes positive values for unstable regions as shown in figures. For special 

sections of parameter space (grid), landscapes are built up where unstable regions are exhibited by  

the intensity of third LCE 3 . When comparing the instability of regions studied by ''strained 

parameter method" described by Al-Nassar [8] with those which are found in this work, a close 

match is observed.   

 

Moreover, the phase space trajectories of the corresponding sections are plotted for different 

parameter sets to illustrate how the dynamical system evolves. The trajectories are as known, called 

attractors. In stable regions of a typical section, attractors are found to depict periodic motions as 

shown in Fig.8 whereas in unstable regions, they begin to depict chaotic motions which is 

unpredictable, and turn out to be strange attractors. At the boundaries that two regions are met, we 

observe the phase transition which means the system is in the edge of chaos.  
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