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Abstract 

The increase in the world population and the resulting demand for water and energy place an increasing pressure on water resources. 

Machine learning (ML) plays an active role in predicting river flows. The recurrent neural network (RNN) model, which is one of the 

ML methods, was insufficient due to the lost gradient problem in repetitive data sets. Long short-term memory networks (LSTM) allow 

network cells to forget some of their previously stored memory. Another method, the gated repetitive unit (GRU), updates the memory 

and solves the loss problem. GRU is fast as it has less training parameter and uses less memory, whereas in LSTM model it is more 

accurate on dataset as longer sequences are used. Since the data set obtained from the flow data of the Fatopaşa flow measurement 

station (FMS) (2000-2009) on the Euphrates River (E21A035) has medium size and repetitive values, these two models were compared 

with the data obtained from this station in the study. Adadelta, Adagrad, FTRL, SGD, RMSprop, Nadam, Adamax, Adam improvers 

were tested for the study. Considering the R2, MAE, RMSE statistical evaluation criteria, it was seen that Adam and Adamax optimizers 

gave better results and it was decided to use these optimizers that were most suitable for the data. MAE, MSE and LogCosh loss 

functions were used in the study. When the performance of LSTM and GRU models are analyzed, it is observed that better results are 

obtained than the GRU model, with values of 0.3346 RMSE, 0.1464 MAE and 0.9718 R2. 

Keywords: Streamflow, Long-short term memory, gated recurrent unit, river management, water resources.   

Nehir Akım Tahmininde Uzun-Kısa Süreli Bellek ve Geçitli 

Tekrarlayan Birim Model Tabanlı Derin Öğrenme Modellerinin 

Karşılaştırılması 
Öz 

Dünya nüfusundaki artış ve bunun sonucunda ortaya çıkan su ve enerji talebi, su kaynakları üzerinde artan bir baskı oluşturmaktadır. 

Makine öğrenmesi (ML), nehir akışlarını tahmin etmede etkin bir rol oynamaktadır. ML yöntemlerinden olan tekrarlayan sinir ağı 

(RNN) modeli, tekrarlayan veri setlerinde kaybolan gradyan sorunu nedeniyle yetersiz kalmıştır. Uzun kısa süreli bellek ağları (LSTM), 

ağ hücrelerinin önceden depolanmış belleklerinin bir kısmını unutmasına izin verir. Diğer bir yöntem olan geçitli tekrarlayan birim 

(GRU) ise hafızayı günceller ve kayıp problemini çözer. GRU'nun eğitim parametresi daha az olduğu ve daha az bellek kullandığı için 

hızlıdır, LSTM modelinde ise daha uzun diziler kullanıldığından veri kümesinde daha doğrudur. Fırat Nehri üzerindeki (E21A035) 

Fatopaşa akım ölçüm istasyonunun (FMS) (2000-2009) akış verilerinden elde edilen veri seti orta büyüklükte ve tekrarlayan değerlere 

sahip olduğundan çalışmada bu iki model bu istasyondan elde edilen veriler ile karşılaştırılmıştır. Çalışma için Adadelta, Adagrad, 

FTRL, SGD, RMSprop, Nadam, Adamax, Adam iyileştiricileri test edilmiştir. R2, MAE, RMSE istatistiksel değerlendirme kriterleri 

göz önüne alındığında Adam ve Adamax optimize edicilerin daha iyi sonuçlar verdiği görülmüş ve verilere en uygun olan bu 

iyileştiricilerin kullanılmasına karar verilmiştir. Çalışmada MAE, MSE ve LogCosh kayıp fonksiyonları kullanılmıştır. LSTM ve GRU 

modellerinin performansı analiz edildiğinde, GRU modelinden daha iyi sonuçlar elde edildiği, 0.3346 RMSE, 0.1464 MAE ve 0.9718 

R2 değerleri ile gözlemlenmiştir. 
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1. Introduction 

Water is one of the most important substances for the survival 

of all living things on earth. Since the amount of water on earth is 

constant and the need for water increases as the population 

increases, planning and managing water resources as accurately 

as possible has recently been one of the most important issues in 

hydrology (Nazimi, 2021). In Turkey, economically current water 

potential is 110 km3 and 57km3 of the potential water is consumed. 

Also, 77% of this amount is used in irrigation, 23% in drinking-

use and industry. Considering that the irrigation sector targets 

65% of this amount, provided that all of our consumable water 

potential is used in 2030; It is stated that achieving this goal 

depends on water saving and the provision of sustainable water 

resources (Yavuz and Yavuz, 2021; Hasırcı, 2021). 

One of the important points to ensure sustainability is the 

estimation of river flows. Recently, there is an increasing need for 

a higher spatiotemporal resolution in the analysis and modelling 

of water-energy demand, as they would be more useful for policy 

analysis and infrastructure planning in both water and energy 

systems. In summary, short-term or long-term flow estimations 

have an important place in effective water management. With the 

development of deep learning models depending on artificial 

intelligence, there are many hydrological models in the literature 

(Kılınç, 2021). Recently, important progress has been made in 

Deep learning (DL), Machine learnnig (ML) and data knowledge. 
Convulational Neural Network (CNN), Long-short term memory 

network (LSTM), Gated recurrent unit (GRU), Recurrent neural 

network (RNN), Restricted Boltzmann Machine (RBM) are some 

of the popular DL models used in the literature. The DL approach, 

known as LSTM, overcomes the problems RNNs face and 

maintains long-term timer knowledge of time series datum (Khan 

and Yairi, 2018; Zhou et al. 2019). Long Short-Term Memory 

Networks are a proprietary recursive neural network architecture 

designed to model temporal sequences and their long-range 

dependencies more accurately than traditional recurrent neural 

networks. (Hochreiter and Schmidhuber, 1997; Gers et al. 1999). 

Another popular DL model GRU has much lower training time 

than the LSTM model, as its performance is similar to the LSTM 

(Day and Salem, 2017). The GRU is optimized and condensed on 

the basis of LSTM, which has two gates named reset gate and 

update gate to control the flow of information. Benefiting from 

the structure, the forecasting speed of GRU is effectively 

improved and maintain the strength of LSTM at the same time 

(Wang et al. 2020). GRU has emerged as a powerful tool in 

various applications encompassing time series prediction, such as 

streamflow prediction, machine health monitoring, wind speed 

prediction and traffic flow prediction (Zhao et al. 2018). In the 

literature, streamflow forecasting models have been used for river 

flow forecasting in many studies (Demir and Tona, 2021; Cebe 

and Bilhan, 2021; Soyaslan, 2019; Zhao et al. 2021; Apaydin et 

al. 2020). The proposed study contributes to the algorithm-based 

prediction model literature. Comparing the success of both 

models in forecasting will enable the model to be used to produce 

efficient solutions to be further strengthened and applied in future 

studies. The results produced in the study were compared by 

considering other methods in the current literature. The statistical 

significance of the comparison of the proposed method with the 

methods in the literature has also been demonstrated. In the Bulam 

River (Fatopaşa) on the Euphrates basin, daily time series were 

obtained from the Flow Measurement Station (FMS) numbered 

E21A035 and their applicability in flow estimation was 

investigated by the comparative analysis of the GRU and LSTM 

models. 

2. Material and Method 

2.1. Study Region and Dataset 

The Euphrates Basin defines the border of the provinces of 

Tunceli, Erzincan, Elazig, Diyarbakir, Malatya, Adıyaman, 

Gaziantep, Şanlıurfa, starts from the east of Turkey, passes from 

the north to the south, and then joins with the Tigris basin in Iraq 

and Basra Province of Iraq. The Euphrates then empties into the 

Persian Gulf. This basin has an area of 127304 km2 and an average 

height of 1009m, making it one of the largest water basins in 

Turkey. The average annual precipitation in this basin is 540.1 

mm/year and the average annual flow is 31.61 km3. This basin is 

the largest in Turkey in terms of average annual flow (Nazimi, 

2021). 

The average annual flow of the Euphrates is around 32 billion 

cubic meters, and 80% of this amount is located in the upper basin 

to the north of the Keban Dam. Its maximum flow in April and 

May corresponds to 42% of the total annual flow. Euphrates River 

flow values vary in the basin. While the flow is 200 m3/s in the 

winter months due to the precipitation in the form of snow, this 

figure increases up to 2000 m3/s in the spring with rain and snow 

melts. The flow, which decreases rapidly in July, decreases to the 

minimum level in September-October. The fact that the 

temperature is sufficient especially in the middle parts of the 

Euphrates River basin and that the drought creates a long period 

of time during the vegetation period increases the importance of 

the precipitation falling in the high regions. This situation shows 

the importance of precipitation in the middle and lower Euphrates 

Basin. In addition, the examination of the factors created by the 

river regime on the basin has been effective in the selection of this 

region as the subject of study (Yıldırım, 2006; Özcan et al. 2013).  

The Euphrates river ranks first among the total water potentials of 

the rivers in Turkey with a share of 24.93%. While scenarios are 

being written such that fresh water is insufficient and therefore 

water wars may be experienced, this water potential of the 

Euphrates river is an important factor for the socio-economic 

development of the region; The fact that there is a cross-border 

water also raises the concern that there may be water sharing 

crises among the partner countries in the future. In this respect, if 

the river water is used effectively and efficiently and the problems 

arising in river management are minimized, it has the feature of 

being a solution to potential water scarcity problems for Turkey 

and partner countries. In this respect, the geopolitical and socio-

economic importance of the river has been influential in the 

selection of this region in the study (Bilbay, 2014). 

Also, the FMS was selected in accordance with the conditions of 

being on important branches of the Euphrates River Basin shown 

in Figure 1. In the study, 10-year, daily streamflow data among 

the years 2000-2009 belonging to the Bulam River Fatopaşa FMS 

located in the Euphrates Basin, numbered E21A035, were used. 

The daily streamflow data required for this study has been 

obtained from the printed and digital sources published by the 

General Directorate of Electrical Works and Survey 

Administration (EIEI) and the General Directorate of State 

Hydraulic Works (DSI).  
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Figure 1. Location of Fatopaşa FMS at Euphrates River Basin 

Fatopaşa FMS (E21A035) is located in the Euphrates River Basin 

at 37°59'38" north latitude and 38°14'13" east longitude. The 

annual flow data of the station is 3,534 m3/s. Its total drainage area 

is 154.8 km2 and its height is 1252m. As shown in Figure 2, the 

minimum and maximum flow rates of the river station are 2.3 m3/s 

and 49.8 m3/s, respectively. 

 

Figure 2. Distribution of daily streamflow for Fatopaşa FMS  

In the study, Python 3.9, one of the Python programs, was used to 

process the input parameters and daily flow data in the models. 

Daily flow data analyzed using LSTM and GRU models were 

generated with 50 periods and performance analysis with 8 batch 

sizes. In the study, performance evaluation was made with many 

optimizers during the analysis phase and the ADAM optimizer 

with optimum conditions was used. RMSE was used as the loss 

function. The data obtained from Fatopaşa station included 10 

years of daily flow data between 2000-2009. 80% of the data was 

obtained as the training set and the remaining 20% as the test set. 

The obtained data and the models were compared and the 

performance analysis was carried out with the test data. 

In the study, river flows were estimated with the data of Fatopaşa 

station located on Bulam river. Measurement difficulties may be 

experienced in flow data due to some meteorological and 

hydrological factors (difficulty of transportation, measurement 

problems, etc.). For this reason, when determining the data time 

intervals, the time intervals when the data were complete were 

taken into account as much as possible. 

 

2.2. Method 

2.2.1. Long-Short Term Memory 

LSTM networks are basically an effective method in 

explaining past information to current information and predicting 

future information. As shown in Fig. 3, LSTM blocks have three 

gates. These gates perform the writing, reading and resetting of 

the cell. All cells are controlled by these three gates (Fang et al. 

2020). The entrance gate controls the input information to the 

open cell, determines how much information is transferred to the 

new data using the past gate, and controls how much information 

is used when calculating the output using the exit gate. 

 

gt = σ(Ugxt + Wght-1 + bf )                                               (1) 

it = σ(Uixt + Wiht-1 + bi)                                                   (2) 

cet = tanh(Ucxt + Wcht-1 + bc)                                          (3) 

ct = gt * ct-1 + it * cet                                                        (4) 

ot = σ(Uoxt + Woht-1 + bo)                                               (5) 

ht = ot * tanh(ct)                                                                (6) 

 

 

Figure 3. The structure of the LSTM model cell 

U and W are known as the input weights of different gates. 

All these controllers determine the amount of information 

obtained from the previous cycle and the amount of information 

transferred to the new state. 

2.2.2. Gated Recurrent Unit 

GRUs are special variations of RNNs (Fig. 4). The structure 

of a GRU and the equations of GRU that govern its functions are 

listed in (7)– (10) (Sing et al. 2017). 

rt = σ(Wr · [ht-1,xt] + br)                                                   (7) 

       eht = tanh(W · [rt · ht-1,xt])                                               (8) 

       zt = σ(Wz[ht-1,xt] + bz)                                                     (9) 

      ht = (1 - zt) · ht-1 + zt· eht                                                 (10) 
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 Figure 4. The structure of the GRU model cell 

3. Results and Discussion  

Predictive models were validated using test data and analysed 

using the evaluation criteria. With the selected evaluation 

parameters LSTM and GRU models were applied to forecast daily 

stream flows at Bulam river Fatopaşa FMS. 

Fig. 5 (a)-(f) GRU, Fig. 6 (a)- (f) LSTM indicated the distribution 

of data. The model with the less deviation was shown in GRU 

model using Adam optimizer with MAE loss in Fig. 6 (a), while 

the model with the highest deviation was the model in Fig. 7 (e). 

It was seen that LSTM model using the MSE loss function and 

ADAMAX optimizer function in LSTM model, Fig. 7 (f) of 

Adamax optimizer and LogCosh loss function showed the best 

result. 

Table 1 showed the results of GRU and LSTM models using 

different loss functions and optimizers according to performance 

evaluation criteria. As shown in table, RMSE criterion, the best 

result for GRU was found 0.3346 from the model in which the 

Adam optimizer and the MAE loss function were used; the worst 

conclusion was obtained from the model using Adamax optimizer 

and MSE loss function with a value of 0.4615. From the model 

where Adamax optimizer and LogCosh loss function were used 

with 0.3487 value of the best conclusion for LSTM; the worst 

conclusion is obtained from the model using Adamax optimizer 

and MSE loss function with a value of 0.4483. According to this 

criterion, the GRU model was more successful than the LSTM 

model, and the MSE loss function had the worst result in both 

models. 

According to MAE performance criterion, the best result for GRU 

was 0. 1464 from the model in which the Adam optimizer and the 

MAE loss function were used; the worst result is from the model 

where Adamax optimizer and MSE loss function were used with 

a value of 0.2169; The best result for LSTM was 0. 1545 with the 

value of Adam optimizer and the MAE loss function from the 

model; the worst conclusion was obtained from the model using 

Adamax optimizer and MSE loss function with a value of 0.2135. 

After the best values of this criterion were compared, it was 

observed that the GRU model was more successful and the MSE 

loss function had the worst performance. 

According to STD performance criteria, the best result for GRU 

with a value of 0.1595 from the model in which the Adam 

optimizer and the MSE lost function were used; The worst result 

was from the model using Adamax optimizer and LogCosh loss 

function with a value of 0.1680; from the model where the best 

result for LSTM was 0.1647 with the value of Adam optimizer 

and MAE loss function; It is seen that the worst conclusion was 

obtained from the model using the Adam optimizer and MSE loss 

function with a value of 0.2135. According to this criterion, the 

most successful result belongs to the GRU model, and the Adam 

optimizer performed better in both models. 

Finally, according to the R2 performance criterion, the best result 

for GRU with 0.9718 value from the model where Adam 

optimizer and MAE loss function were used; The worst result was 

from the model where Adamax optimizer and MSE loss function 

were used with a value of 0.9494; From the model in which 

Adamax optimizer and LogCosh loss function were used with a 

value of 0.9689 for LSTM; the worst conclusion was obtained 

from the model using Adamax optimizer and MSE loss function 

with a value of 0.9513. When the best results of this criterion were 

compared, the GRU model was more successful and the results 

with the worst performance for both models belong to MSE. 

Considering all performance criteria; the GRU model was more 

successful than the LSTM model and the MAE loss function was 

more successful for both models compared to the other loss 

functions, and the MSE loss function was less successful than the 

other loss functions, and when the optimizers were compared, the 

Adam optimizer was generally more successful. The 

technological progress and capacity reduction of high-water-

consuming technologies could reduce the water stress. Both water 

demand side and water supply side estimations were suggested to 

reach the coordinated development of energy with water 

resources. 
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Table 1.  Forecasting evaluation criteria 

  GRU LSTM 

  
 

                       OPTIMIZERS OPTIMIZERS 

    ADAMAX ADAM ADAMAX ADAM 

S
T

A
T

IS
T

IC
A

L
 

M
E

T
R

IC
S

 

LOSS FUNCTIONS LOSS FUNCTIONS 

 
MAE MSE LOG COSH MAE MSE LOG COSH MAE MSE LOG COSH MAE MSE LOG COSH 

RMSE 0,4346 0,4615 0,4403 0,3346 0,4304 0,4272 0,4380 0,4483 0,3487 0,4212 0,4473 0,4331 

MAE 0,1773 0,2169 0,1796 0,1464 0,2029 0,1846 0,1860 0,2135 0,1555 0,1545 0,1703 0,1742 

STD 0,1651 0,1628 0,1680 0,1608 0,1595 0,1650 0,1654 0,1715 0,1654 0,1647 0,1768 0,1662 

R2 0,9556 0,9494 0,9556 0,9718 0,9537 0,9551 0,9528 0,9513 0,9689 0,9557 0,9515 0,9524 

  

  

Figure 5. Fatopaşa FMS scatter plots model test results for GRU
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Figure 6. Fatopaşa FMS scatter plots model test results for LSTM

4. Conclusions and Recommendations 

It is essential to use reliable flow estimates when planning 

regulations and applications in flows. Traditional flow estimation 

methods can be insufficient to make effective estimates with the 

uncertainties of the system and the nonlinear properties of the 

system. When the GRU and LSTM models, which are among the 

artificial intelligence methods that give effective results in the 

studies they were used in, were examined, they were found to be 

suitable as a solution method. 

This study viewed a method of a DL model based on GRU and 

LSTM were improved to estimate the streamflow of the Euphrates 

River. While the LSTM and GRU methods were tested with the 

training and test data in the study, it was modeled using all 

optimizers (Adadelta, Adagrad, FTRL, SGD, RMSprop, Nadam, 

Adamax, Adam) and using loss functions appropriate for 

regression (MAE, MSE, LogCosh). The optimizers and loss 

functions below R2 value of 0.93 were ignored and were not 

included in the study. The results of the achieve of the GRU and 

LSTM models were evaluated by comparing the Adam and 

Adamax optimizers with R2 value of 0.94 and above according to 

other statistical evaluation criteria. According to the evaluation 

method, the GRU model shows better accuracy in the context of 

ownership of the time series of the streamflow. However, there is 

still room for improvement in the LSTM streamflow forecasting 

model. The models can be used as an effective tool for designating 

proper energy and water resource management strategies in the 

region. 
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