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Abstract 

The objective of this paper is to present a method which bounds the error of an inertial navigation system (INS) when Global Navigation 

Satellite System (GNSS) is not available. Inertial navigation systems utilize gyroscopes and accelerometers, and calculate velocity, 

position and attitude, essentially by integrating the measurements obtained from these sensors. Due to the nature of integration, INS are 

notoriously prone to sensor biases and drifts. Typically, GNSS is used to correct the navigation system errors caused by the inertial 

sensor measurements. However, in GNSS degraded or denied environments, alternative solutions are required. If the platform on which 

an INS is mounted is known or estimated to be stationary, zero-velocity update (ZUPT) and/or zero turning update (ZTUPT) algorithms 

can be applied in order to bound the navigation system errors. Under certain assumptions, ZUPT based algorithms can be applied when 

the platform is not stationary. If a vehicle’s motion is constrained by the design of its kinematics, i.e. if it can be assumed that the vehicle 

cannot move or rotate along one or more of its body axes, ZUPT assisted Kalman estimators can be used to correct the errors along 

those axes. Potentially, ZUPT based estimation algorithms can also be utilized when a sufficiently high fidelity vehicle model is 

available. In this paper, the implementation of zero-velocity update (ZUPT) and zero turning update (ZTUPT) algorithms are analyzed 

for the purpose of estimating and bounding inertial navigation errors. The basic principle in navigation is based on combining the data 

obtained from the sensors onboard and the inertial navigation system through an Extended Kalman filter. Although this process requires 

additional software components, it potentially offers increased system accuracy and reliability. Incorporating the kinematics of the 

vehicle, along with a ZUPT and/or ZTUPT algorithm, provides additional data to feed into the Kalman filter and increases the efficiency 

of error estimation. Estimated error is then fed back into the INS algorithm in order to counteract the sources of error.  

Keywords: Inertial Navigation Systems, Zero Velocity Update, Zero Turn Update, Extended Kalman Filters.   

Küresel Konumlama Sisteminin Olmadığı Ortamlarda Navigasyon: 

Sıfır Hız ve Sıfır Dönü Güncelleme 
Öz 

Bu makalenin amacı, Küresel Konumlama Sisteminin (KKS) mevcut olmadığı durumlarda, bir ataletsel navigasyon sisteminin hata 

sinyallerini sınırlandırmayı amaçlayan bir yöntem sunmaktır. Ataletsel navigasyon sistemleri (ANS) dönüölçer ve ivmeölçerleri kullanır 

ve –özde– bu algılayıcılardan elde edilen sinyallerinin integralini alınarak hız, konum ve yönelimi hesaplar. Integral alma işleminin 

doğası gereği ANS, algılayıcıların kaymalarına ve sapmalarına karşı son derece hassastır. Tipik olarak, KKS, ataletsel algılayıcı 

ölçümlerinin neden olduğu navigasyon sistemi hatalarını düzeltmek için kullanılır. Ancak, KKS’nin kalitesinin bozulduğu veya KKS 

verisinin erişilir olmadığı ortamlarda alternatif çözümler gereklidir. Eğer bir ANS’nin monte edildiği platformun hareketsiz olduğu 

biliniyor veya tahmin ediliyor ise, navigasyon sistemi hatalarını sınırlandırmak amacıyla, sıfır hız güncellemesi (ZUPT) ve sıfır dönü 

güncellemesi (ZTUPT) algoritmaları uygulanabilir. Belirli varsayımlar altında, platformun durağan olmadığı durumlarda da ZUPT 

tabanlı algoritmalar uygulanabilir. Eğer bir aracın hareketi, kinematiğinin tasarımı ile sınırlıysa, yani aracın hareket edemeyeceği veya 

dönemeyeceği bir veya daha fazla eksen varsa, ZUPT destekli Kalman filtre algoritmaları bu eksenler doğrultusundaki hataları 

düzeltmek için kullanılabilir. Potansiyel olarak, ZUPT tabanlı tahmin algoritmaları, yeterince yüksek sadakatli bir araç modeli mevcutsa 

da kullanılabilir. Bu makalede, sıfır hız güncellemesi (ZUPT) ve/veya sıfır dönü güncellemesinin uygulanması yoluyla ataletsel 

navigasyon sistemi hatalarının tahmin edilmesi ve sınırlandırılması konusu incelenmektedir. Navigasyondaki temel prensip, platform 

üzerindeki algılayıcılardan elde edilen verilerin bir Genişletilmiş Kalman filtresi aracılığıyla ataletsel navigasyon sistemine entegre 

edilmesine dayanır. Bu işlem ek yazılım bileşenleri gerektirse de, potansiyel olarak artan bir doğruluk ve güvenilirlik sunar. Sıfır hız ve 

sıfır dönü algoritmalarına araç kinematiklerinin de eklemlenmesi, Kalman filtreye ek veri sağlar ve hata tahmininin doğruluğunu artırır. 

Tahmin edilen hata ANS algoritmasına geri beslenerek hata kaynaklarının etkisinin azaltılması sağlanır.  

 

Anahtar Kelimeler: Ataletsel Navigasyon Sistemleri, Sıfır Hız Güncelleme, Sıfır Dönü Güncelleme, Genişletilmiş Kalman Filtre. 
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1. Introduction 

An inertial navigation system (INS) is comprised of an 

inertial measurement unit (IMU), aiding sensors and a sensor/data 

fusion algorithm. In the case where the aiding system is a global 

navigation satellite system (GNSS), an integrated INS/GNSS 

provides absolute position and attitude information (Titterton and 

Weston, 2004). When GNSS is unavailable, denied or degraded 

due to jamming, disturbances, or physical conditions, external 

aiding sensors and systems are required in order to bound the 

position, velocity and attitude errors of an INS (Schmidt, 2015). 

Accelerometers and gyroscopes in an IMU are subject to 

numerous error sources such as bias, scale factor, nonlinearities, 

dead zone, quantization, and bandwidth limitations. Since 

computing position, velocity and attitude is performed essentially 

by integrating the measurements obtained from these sensors, the 

navigation solution will diverge from the true solution.  

The objective of this study is to provide an extended Kalman 

filter based algorithm that can be utilized in order to bound 

navigation errors. Specifically, zero velocity update (ZUPT) and 

zero turning update (ZTUPT) methods are investigated (Akcayir 

and Ozkazanc, 2003). Hence, in this study, the vehicle is assumed 

to be stationary in a GNSS denied environment. Various methods 

are proposed for zero velocity detection (Wagstaff and Kelly, 

2018), (Wahlström et al., 2019), (Xiaofang et al., 2014), and it is 

outside the scope of this study.  

Determining position and attitude when a vehicle is at rest is 

crucial in military applications. US Army’s Bradley Fighting 

Vehicle and Turkish Fırtına (Figures 1 and 2) are some of the 

leading examples of such vehicles.  

 

Figure 1. Bradley Fighting Vehicle 

 

 

Figure 2. T-155 Fırtına Howitzer 

 

For high precision target engagement, these vehicles require 

high fidelity position and attitude (angular orientation) 

information under conditions where GNSS is not available. 

Navigation equations are highly nonlinear. They need to be 

linearized in order to implement an extended Kalman filter for 

state estimation. This is performed by approximating the 

nonlinear state equations, implemented either in Euler angles or 

quaternions, by a piece-wise constant system (PWCS) at each 

iteration. Approximating the nonlinear system at the current 

iteration’s state-input combination helps capture the characteristic 

behavior of the system with little loss of accuracy (Goshen-

Meskin and Bar-Itzhack, 1992a,b). 

Through this implementation, expected outputs (zero 

velocity and/or zero turning) of a stationary vehicle and the 

outputs of the navigation equations are contrasted to obtain 

estimates of the navigation error states. In this sense, the control 

system is an output feedback controller. Error states are fed back 

to the navigation equations for the purposes of bounding INS 

errors, and simultaneously, estimating sensor drifts and biases. 

The remainder of the paper is structured as follows: Section 

2 states the problem to be addressed and describes the navigation 

system model, Section 3 describes the proposed solution and 

includes two scenarios, and finally Section 4 summarizes the 

paper and presents future directions. 

2. Problem Statement and Model 

The problem that needs to be addressed is the determination 

of position and attitude (Euler angles) of a vehicle, when it is not 

moving linearly. When GNSS is available, latitude (L), longitude 

(λ), altitude (h), north velocity (vN), east velocity (vE), down 

velocity (vD), roll angle (φ) and pitch angle (θ) can be obtained 

with very high accuracy. When GNSS is jammed or becomes 

unavailable for any reason, inertial sensors and other sensors such 

as barometers and magnetometers can be used. Although these 

sensors require no other external information source, their 

measurements are prone to measurement noise, biases, and drifts. 

Inertial navigation systems utilize a variety of sensors such 

as gyroscopes, accelerometers, magnetometers and barometers in 

order to compute velocity, position and attitude, essentially by 

integrating the measurements obtained from these sensors. 

Integration results in the problem of drifts in the solution, due to 

the biases and noise characteristics of these sensors. Typically, 

sensors which provide accurate position information are used in 

order to correct the navigation solution. A very common sensor is 

the GNSS. However, in environments where GNSS data are not 

available or degraded, alternative solutions are required. 

A side note should be given here for the heading angle: 

Determining the heading angle (ψ) is more complicated because 

it is closely associated with the North Finding Problem (Titterton 

and Weston, 2004). Magnetometers may be helpful, however, it 

should be noted that magnetometers will yield the magnetic north, 

which is different than the geodetic (true) north. True north can be 

determined by very high accuracy and low noise gyroscopes 

(expensive), or by using lower accuracy sensors. Lower accuracy 

sensor outputs may need to be collected for long periods of time 

for averaging (Titterton and Weston, 2004). North finding is left 

outside scope of this study and the effect of this exclusion will be 

apparent in the simulations results given in the following sections. 
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In order to describe the method devised to bound inertial 

navigation errors, navigation equations need to be described. 

 

2.1. Navigation Equations 

Navigation equations are nonlinear differential equations 

which define the position, velocity, and the attitude of the 

navigation system. They consist of three highly coupled 

components: (i) a set of equations to compute latitude, longitude, 

and altitude (L, λ, h), (ii) another set of equations to compute the 

north, east and down velocities in the navigation frame (vN, vE, 

vD), and (iii) another set of equations to compute attitude, i.e. the 

roll, pitch and yaw Euler angles (φ, θ, ψ). Notation and 

terminology used throughout the document is due to (Titterton 

and Weston, 2004). 

Throughout the document references are made to the 

reference coordinate frames (Groves, 2013). Inertial frame is a 

non-rotating frame with respect to the fixed stars with origin at 

the center of the Earth and z-axis along the Earth’s polar axis. 

Navigation frame is local geographic frame. Its origin is located 

on the navigating platform and the axes are aligned with north, 

east, and down. Navigation frame is tangent to the surface of the 

Earth. Body frame also has its origin on the navigating platform 

(usually at its center of gravity), and the axes are aligned with the 

Euler angles of the platform. 

Gyroscopes measure the angular rate of the body frame with 

respect to the inertial frame as resolved in the body frame and are 

given by 

 

 

where ωx, ωy, and ωz denote the measurements obtained from a 

gyroscope’s x, y, z axes, respectively. 

In order to compute the Euler angles, one needs the angular 

rate of the body frame with respect to the navigation frame as 

resolved in the body frame given as 

 
(1) 

where 

 

(2) 

denotes the turn rate of the earth, and 

 

(3) 

denotes the turn rate of the navigation frame, the transport rate, 

due to its vN, north velocity, vE, east velocity, and vD, down 

velocity on Earth. In Equations 1, 2, and 3, R denotes the mean 

radius of the earth, L the latitude, h the height above ground, Ω 

the turn rate of the Earth, and 𝐶𝑛
𝑏denotes the transformation matrix 

from the navigation frame to the body frame. 

The transformation matrix from the body frame to the 

navigation frame 𝐶𝑏
𝑛 = (𝐶𝑛

𝑏)𝑇 is given (for Euler angle 

implementation) by (Titterton and Weston, 2004) 

 

where 𝐶𝑥 ≜ cos 𝑥 and 𝑆𝑥 ≜ sin 𝑥. 

The first set of equations, so-called the kinematic equation, is 

used to compute the Euler angles from the body angular rates 

measured by the gyroscope, and is given by 

 

(4) 

The second set of navigation equations are associated with 

the north, east, down velocities of the navigation system (frame), 

given by 

 

(5) 

where, assuming a perfectly spherical earth, 

 

In Equation 5, g0 denotes the gravitational acceleration of the 

Earth and fb denotes the accelerometer measurements, i.e. 

 

where fx, fy, and fz denote the measurements obtained from an 

accelerometer’s x, y, z axes, respectively. 

The third set of navigation equations are associated with the 

geographic coordinates and altitude. It is given by 

 

(6) 

Equations 4, 5, and 6 can be combined to form a first order 

nonlinear differential equation to represent the navigation 

equation such that 
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 (7) 

where 

 

denotes the navigation state vector, and 

 

denotes input vector, i.e. the vector of inertial measurement unit 

(IMU) measurements. 

A more complete and comprehensive model can be formed 

by augmenting Equation 7 by 6 decoupled differential equations 

in order to include the inertial sensor errors, specifically 

accelerometer drifts and the gyroscope biases. Hence, the state 

vector is augmented to be 

 

where 𝑑∗ are the accelerometer drifts and 𝑏∗ are the gyroscope 

biases for each axis. The added differential equations are 

 

in which the initial conditions denote the constant residual drift 

error of the accelerometer and gyroscope. The IMU readings are 

then modified to include these errors, i.e. 

 

Finally, we arrive at the 15-dimensional nonlinear navigation 

equations in the form of Equation 8. 

 (8) 

2.2. Navigation Errors 

Inertial navigation dynamics (Equation 8) are unstable 

(Groves, 2013), i.e. its solution diverges in time when no aiding 

(correcting) sensor output is available.  

  In the simulations below, the vehicle is assumed to be 

equipped with a tactical grade inertial measurement unit (IMU). 

The accelerometer bias is assumed to be 1 mg (1σ) and gyroscope 

bias is assumed to be 1 deg/hr (1σ). These values are typical for a 

tactical grade IMU. Bias instability is ignored. 

Consider that this vehicle loses access to the GNSS, at which 

time its geodetic coordinates, altitude and attitude (i.e. Euler 

angles) are 

 

(9) 

 

 

and its velocity vector is 

 

Given the above, using Equations 1, 5 and 9, ideal (no bias, 

no noise) accelerometer measurements can be computed as 

 

(10) 

and the ideal gyroscope measurements can be computed as 

 

(11) 

The ideal measurements given in Equations 10 and 11 are 

dubbed as such because these sensor outputs (when there is no 

noise or bias) results in 

𝑓(𝑥, 𝑢) = 0, 

i.e. the navigation solution is exact. However, in the simulations 

below, the ideal measurements given in Equations 10 and 11 are 

corrupted by bias and noise (with variances of 1/10 of the bias 

variances) in order to compute the navigation errors when noise 

and bias exists in the system. So, the following results 

demonstrate a typical navigation solution without GNSS or any 

other aiding sensor, such as a barometer or a magnetometer. 

 

Figure 3. Latitude and Longitude Error 

 Figure 3 shows the latitude and longitude errors. About -0.8° 

of drift for the latitude and about 0.35° of drift of longitude 

correspond to approximately 90 kilometers of position error in 

one hour. This performance is typical of a tactical grade IMU. The 

relative boundedness of these errors are due to the well-known 

Schuler Pump mechanism. 
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Figure 4. Altitude Error 

Figure 4 indicates that a much severe error accumulates for the 

altitude. Altitude channel is particularly sensitive to drifts and 

biases of the IMU (Groves, 2013, pp.231). 

 

Figure 5. North, East, Down Velocity Error 

Figure 5 indicates that the error for north, east, and down 

velocities are considerably large. Down velocity is more sensitive 

to IMU errors. This sensitivity is exaggerated by the altitude 

channel. Note that by Equation 6, altitude is the negative integral 

of down velocity. 

 

Figure 6. Roll, Pitch, Heading Angle Error 

Figure 6 shows that the attitude solution of the navigation 

equations are not as large after one hour compared to the other 

navigation states. This is due to the fact that angular rates obtained 

from a gyroscope is integrated once to obtain Euler angles 

(Equation 4), while accelerometer outputs are integrated twice in 

order to obtain positon (Equations 5 and 6). Nevertheless, since 

the navigation equations are highly coupled, even small errors in 

the Euler Angles will have a large impact on the remaining states. 

It is also apparent that the heading channel is more sensitive to 

measurement errors. 

 The above results show that the error of the navigation 

solution of a tactical grade IMU is intolerably large, if the solution 

is not corrected by an aiding sensor or an algorithm. 90 kilometers 

of positional error and 10s of kilometers of altitude error give a 

clear sign that the absence of GNSS drives the error to 

unacceptable levels and that alternative strategies are needed. 

3. Proposed Solution and Results 

In this paper, INS errors are aimed to be bounded by utilizing an 

Extended Kalman Filter (EKF) along with the information that the 

vehicle in consideration is stationary. Figure 7 describes the EKF 

process. EKF is considered as a standard in the theory of nonlinear 

state estimation and navigation systems (Julier and Uhlmann, 

2004), (Musoff and Zarchan, 2009), (Wan, 2006). 

 

Figure 7. Extended Kalman Filter Structure 

In Figure 7, 

 𝑢𝑘 = [𝑓𝑥   𝑓𝑦  𝑓𝑧  𝜔𝑥   𝜔𝑦  𝜔𝑧]𝑘
𝑇  denotes the IMU 

measurements, 

 �̂�𝑘 = [𝐿  𝜆  ℎ  𝑣𝑁  𝑣𝐸   𝑣𝐷  𝜙  𝜃  𝜓 𝑑𝑥   𝑑𝑦  𝑑𝑧  𝑏𝑥   𝑏𝑦  𝑏𝑧]𝑘
𝑇 

denotes the current estimate (computed) of the navigation 

states, 

 �̂�𝑘+1 denotes the next estimate of the navigation states, 

 𝑓(𝑥, 𝑢) denotes the navigation equations described in 

Equations 1 - 8, 

 𝑔(𝑥, 𝑢) denotes the output function, which usually is simply 

a state selector, 

 �̃�𝑘 denotes the auxiliary inputs, such as outputs of an 

assisting sensor, or derived information, 

 𝑄𝑘 and 𝑅𝑘 denote the extended Kalman filter design 

parameters (covariance matrices), 

 𝐹𝑘 and 𝐻𝑘 denote the discrete state space matrices of the 

linearized navigation dynamics (explained below), 

 𝑃𝑘 and 𝑃𝑘+1 denote the current and next covariance matrices 

of the Kalman solution, respectively, and 

 𝐾𝑘 denotes the extended Kalman filter gain. 
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In order to employ the Extended Kalman Filter (EKF), state 

equations need to be linearized at each time instant when a new 

measurement becomes available. Given 

 (12) 

 (13) 

Such that 𝑥 ∈  ℝ𝑛, 𝑥𝑜 ∈  ℝ𝑛, 𝑢 ∈  ℝ𝑚, 𝑦 ∈  ℝ𝑝, 𝑓(𝑥, 𝑢) ∈  ℝ𝑛, 

𝑔(𝑥, 𝑢) ∈  ℝ𝑝, where n is the number of states, m is the number 

of inputs, and p is the number of outputs. Described below is the 

process by which a linear state space representation of a nonlinear 

system is derived. 

Linearization of Equations 12 and 13 about a fixed point 

(𝑥∗, 𝑢∗) is obtained as follows. Defining small perturbations 

 

a small signal linear state-space representation is obtained as: 

 (14) 

 (15) 

where 

 

 

 

 

A, B, C, D matrices are essentially the Jacobians of the input 

and output functions with respect to the states and inputs. The 

Extended Kalman filter is implemented in discrete time. ZOH 

discretization of the equations given in 14 and 15 at a sampling 

period of Ts are (δ’s are dropped for brevity) 

 

where 

 

 

Discrete state space representation of the 15-state augmented 

navigation system, after linearization about a fixed (𝑥𝑘 , 𝑢𝑘) is 

given by 

 

 

where 𝑧𝑘 ≜ [𝑑𝑥   𝑑𝑦  𝑑𝑧  𝑏𝑥   𝑏𝑦  𝑏𝑧]𝑘
𝑇 denotes the inertial sensor 

errors. 

 Finally, an extended Kalman filter can be implemented (Ma 

et al., 2020). At each step, a Kalman gain, 𝐾𝑘, is computed and 

correction in state estimation is achieved (see Figure 7) by 

 

In the following subsections, ZUPT and ZTUPT algorithms 

are demonstrated on selected scenarios. 

 

3.1. Zero Velocity Update (ZUPT) 

Zero velocity update (ZUPT) refers to the condition that north, 

east, down velocities of a vehicle is known or estimated to be zero. 

An EKF is devised that will utilize this information in order to 

bound the navigation errors.  

Consider the scenario described in Section 2.2. The initial 

navigation states given in Equation 9 constitute the initial state 

vector, and the initial estimate of the EKF is assumed 0. The ideal 

sensor outputs are given in Equations 10 and 11, and the vehicle 

is assumed to be equipped with a tactical grade IMU as in Section 

2.2. At the initialization of the simulations, bias values are 

determined and are kept constant throughout the simulations. 

ZUPT algorithm assumes no knowledge of the position and 

attitude (Euler angles) of the vehicle. The only information that is 

available and fed to the algorithm is 

 

Note that �̃�𝑘 = 0 is not a sensor measurement, but can be 

considered as a constraint. Hence, the associated covariance 

matrix is zero, i.e. 𝑅𝑘 = 𝟎3𝑥3. 

Latitude and longitude errors are given in Figures 8 and 9. 

Although position and Euler angles are known to be not varying 

under the described scenario, estimation for these quantities is still 

required because the sensor measurements are biased. 
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Figure 8. Latitude Error (ZUPT case) 

 

Figure 9. Longitude Error (ZUPT case) 

Figures 3 in Section 2.2 showed that, when the ZUPT algorithm 

is not active, latitude and longitude errors were large and resulted 

in a position error of approximately 90 km. However, as Figures 

9 and 10 indicate, when the ZUPT algorithm is active, almost no 

position error is made. According to the above results, position 

error is less than 1 m after one hour of operation without access 

to GNSS. 

 Note that no aiding sensor is used to achieve this result. Just 

the information that the vehicle is at rest results in significantly 

smaller navigation errors. 

 

Figure 10. Altitude Error (ZUPT case) 

It was shown previously in Figure 4 in Section 2.2 that altitude 

diverges when the EKF with ZUPT is not running. However, the 

altitude error is virtually nonexistent when the EKF with ZUPT is 

active (Figure 10). 

 

 Figures 11, 12, and 13 display north, east, and down velocities 

respectively. 

 

Figure 11. North Velocity Error (ZUPT case) 

 

 

Figure 12. East Velocity Error (ZUPT case) 

 

 

Figure 13. Down Velocity Error (ZUPT case) 

Figures 11 – 13 show that the EKF with ZUPT is performing as 

expected for the north, east, and down velocities. That this result 

is expected is due to the fact that (zero) velocities are made 

available to the EKF and north, east, and down velocities are 

enforced to remain at zero. The case where the EKF with ZUPT 

is not active exhibit large velocity errors (see Figure 5 in Section 

2.2). 

 Figure 14 show the roll and pitch angle errors when the EKF 

with ZUPT is active.  
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Figure 14. Roll and Pitch Angle Errors (ZUPT case) 

Figure 14 demonstrates that the EKF with ZUPT algorithm also 

bounds roll and pitch angle errors, although it cannot drive them 

to zero. This is because the EKF is not given any information on 

Euler angles. Roll and pitch angles are initially computed with 

some error; about -0.02° for the roll angle and about -0.035° for 

the pitch angle. This error is due to roll and pitch rate biases of the 

gyroscope and the time required for the convergence of the 

extended Kalman filter. The smaller the bias, the smaller the error. 

(Note that there is no discontinuity in the computed roll and pitch 

angles. The seemingly discontinuous behavior is due to the time 

scale of the plots.) By comparison, this result is better than the 

scenario without the EKF as shown in Figure 6. 

 

89

 

Figure 15. Heading Angle Error (ZUPT case) 

Figure 15 shows that the EKF with ZUPT algorithm is completely 

ineffective on the heading angle. The main reason behind this 

result is the fact that the heading angle is an unobservable state 

(Titterton and Weston, 2004). It performed even worse than the 

nonfunctional filter scenario (see Figure 6 in Section 2.2). 

However, this is completely due to the random sensor noise 

generated in the simulation. In other simulation runs, EKF with 

ZUPT could be better, although that would still not negate the fact 

that ZUPT has no effect on the heading angle. As stated before, 

dedicated North Finding algorithms are devised for heading angle 

estimation (Titterton and Weston, 2004). 

In short, ZUPT is a very successful algorithm in bounding 

position (L, λ, h) and velocity (vN, vE, vD) errors. Roll and pitch 

angle (φ, θ) errors may be considered more than acceptable, 

however, it is completely unreliable for the heading angle (ψ). 

This motivates the next improvement on the ZUPT method. 

3.2. Zero Turn Update (ZTUPT) 

The main invention of ZTUPT is to feed into the extended Kalman 

filter the additional information that a vehicle at rest is also non-

rotating, i.e. its Euler angle rates are zero. As given in Equation 

4, Euler rates evolve in time in accordance with 

 

(15) 

where 

 

ZTUPT utilizes the additional information that 

 

(16) 

when a vehicle is stationary. 

 For Equation 15 to be equal to zero, either T must be a zero 

matrix, which it clearly is not, or it must have a non-empty null 

space. For a land vehicle, it is safe to assume that −π/2 < θ < π/2. 

Then, 

 

for all 𝜃 ∈ [−𝜋/2, 𝜋/2], which in turn means that the null space 

of T is empty, i.e. 

 

Therefore, for Equation 15 to be true, it must be that 

 

However, since a vehicle at rest has zero linear velocities as well, 

by Equation 3, 𝜔𝑒𝑛
𝑛 = 0. This further simplifies the zero turning 

condition to  

 
(17) 

which describes what the gyroscopes should measure under such 

zero velocity and zero turning conditions. 

 In order to implement the ZTUPT algorithm, an output 

function, 

 

is devised to incorporate Equation 17 as an additional output of 

the navigation equations. Hence, 

 

(18) 
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where where 𝐶𝑥 ≜ cos 𝑥 and 𝑆𝑥 ≜ sin 𝑥. Equation 18 is clearly a 

function of the system states. The Jacobian of Equation 18 is also 

computed numerically in order to obtain the Hk matrix to be used 

in the EKF routine.  

As in the ZUPT case, consider the scenario described in 

Section 2.2. The initial navigation states given in Equation 9 

constitute the initial estimate of the EKF. The ideal sensor outputs 

are given in Equations 10 and 11, and the vehicle is assumed to 

be equipped with a tactical grade IMU as in Section 2.2. At the 

initialization of the simulations, bias values are determined and 

are kept constant throughout the simulations. 

ZTUPT algorithm assumes no knowledge of the position and 

attitude of the vehicle. The information available to the algorithm 

are 

 

Therefore, the auxiliary sensor output provided to the EKF 

with ZTUPT is 

 

Similar to the ZUPT case, please note that �̃�𝑘 = 0 is not a 

sensor measurement, but acts as a constraint. Hence, the 

associated covariance matrix is zero, i.e. 𝑅𝑘 = 𝟎6𝑥6. 

Latitude and longitude errors are given in Figures 15 and 16. 

 

Figure 16. Latitude Error (ZTUPT case) 

 

Figure 17. Latitude Error (ZTUPT case) 

Figures 16 and 17 indicate, when the EKF with ZTUPT is 

active, almost no position error is made. According to the above 

results, position error is less than 1 m. It is also apparent that the 

order of magnitude of errors are very similar for both scenarios. 

 

Figure 18. Altitude Error (ZTUPT case) 

As shown previously in Figure 4 in Section 2.2, altitude diverges 

when the EKF with ZTUPT is not running. However, the altitude 

error is virtually nonexistent when the EKF with ZTUPT is active 

(Figure 18). 

 Figures for north, east, and down velocities when EKF with 

ZTUPT is active is not shown here to save space. However, it is 

stated that the results are as expected and very similar to the 

results obtained for EKF with ZUPT. The north, east, and down 

velocities are enforced to remain at zero and the magnitude of 

error for all three velocities is of order 10-21.  

 

Figure 19. Roll and Pitch Angle Errors (ZTUPT case) 

Figure 19 shows that the EKF with ZTUPT algorithm bounds roll 

and pitch angle errors, although –as for the ZUPT case–  it cannot 

drive them to zero. This is because the EKF is not given any 

information on Euler angles, but just the rates of Euler angles. 

Roll and pitch angles are initially computed with some error; 

about -0.02° for the roll angle and about -0.035° for the pitch 

angle. This error is due to roll and pitch rate bias of the gyroscope 

and the time required for the convergence of the extended Kalman 

filter. The smaller the bias, the smaller the error. (As in Figure 14, 

please note that there is no discontinuity in the computed roll and 

pitch angles. The seemingly discontinuous behavior is due to the 

time scale of the plots.) By comparison, this result is better than 

the scenario without the EKF as shown in Figure 6, however very 

similar to the result obtained from EKF with ZUPT as shown in 

Figure 14. 

All the results presented so far to demonstrate that the 

performance of the ZTUPT algorithm are very similar to the 
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ZUPT algorithm. However, Figure 19 shows one of the expected 

benefits of the ZTUPT scenario.  

 

Figure 19. Heading Angle Error (ZTUPT case) 

Empowered by the information that turn rates are also zero, 

heading angle errors are successfully bounded by the ZTUPT 

algorithm. This is an expected result because ZTUPT specifically 

“tells” the extended Kalman filter that the system is not rotating. 

Please note that, this result is not the same as North finding. 

ZTUPT simply prevents the initial heading angle from diverging. 

4. Summary and Future Work 

Two methods that aim to bound navigation errors under 

GNSS denied environments are discussed in this paper: Zero 

Velocity Update (ZUPT) and Zero Turning Update (ZTUPT). 

Both methods show potential in bounding position and velocity 

errors. However, they are less successful at bounding attitude 

(Euler angle) errors, although roll and pitch angle error bounds 

may be deemed acceptable. While the ZUPT method is 

completely ineffective at bounding heading angle errors, ZTUPT 

performs much better. Although, estimation of the IMU bias is not 

the objective of this paper, these methods can be utilized for such 

a purpose.  The main advantage of these methods is the fact that 

they do not require any additional sensor to be implemented in 

order to bound the errors. However, they are restrictive in the 

sense that they only work when the vehicle is not moving, or 

moving in kinematically constrained manner. Although this is a 

hard constraint, there are military applications where the position 

and attitude of a stationary vehicle is of great importance. 

This study can be considered as a first step towards utilizing 

vehicle dynamics as an aiding algorithm to an inertial navigation 

system. Although, in this paper, a dynamic model is not 

introduced, properties of a non-moving vehicle are utilized. 

Reducing navigation errors while at rest is challenging because of 

the observability issues associated with the linearized dynamics 

of the system. Additionally, at rest, some of the sensors do 

measure zero, which makes estimation even harder. In this study, 

two methods, ZUPT and ZTUPT, are discussed and simulation 

results are presented. ZUPT manages to bound the navigation 

errors except for the heading angle. As a matter of fact, ZUPT has 

no effect on the heading angle. ZTUPT performed better than 

ZUPT overall, and also managed to bound heading angle errors. 

Both methods, as expected, failed to drive the attitude states to 

zero. Future work is going to try to incorporate a vehicle 

dynamical model and kinematic constraints into the extended 

Kalman filter structure and investigate the possibility of bounding 

navigation errors via an implementable framework even when the 

vehicles in consideration are moving. In addition, future work will 

incorporate more realistic IMU errors such as scale factor and 

nonlinearity. 
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