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Abstract 

In 2022, Tutdere proved that the covering radii 𝑅 of a class of primitive binary cyclic codes with minimum distance strictly greater 

than an odd integer ℓ satisfy 𝑟 ≤ 𝑅 ≤ ℓ, where ℓ, 𝑟 are some integers depending on the given code. We here first discuss some 

equivalences of linear codes defined by Gold functions, which are quadratic APN (almost perfect nonlinear) functions. We then show 

that by applying the result of Tutdere one can find the covering radii of these quasi-perfect codes. In 2016, Li and Helleseth proved 

that the linear codes defined by the quadratic APN functions are quasi-perfect and they asked whether the linear codes defined by the 

non-quadratic APN functions are quasi-perfect or not. We here prove that the linear codes defined by some non-quadratic APN 

functions over the finite field 𝔽2𝑚 , for 1 ≤ 𝑚 ≤ 8, are quasi-perfect, by computing the covering radii of these codes.  

Keywords: APN functions, Finite field, Covering radius, Cyclic code.  

APN Fonksiyonlar ile Tanımlanan Bazı İkili Yarı-mükemmel Lineer 

Kodlar 

Öz 

2022 yılında, Tutdere, minimum uzaklığı  bir tek ℓ sayısından büyük olan bir primitif ikili devirli kodlar sınıfının  örtme yarıçapı  𝑅 

nin 𝑟 ≤ 𝑅 ≤ ℓ eşitsizliğini sağladığını göstermiştir, burada ℓ, 𝑟 verilen koda bağlı olan tam sayılardır. Burada, ilk olarak kuadratik 

APN (hemen hemen mükemmel lineer olmayan) fonksiyon olan Gold fonksiyonlar ile tanımlanan lineer kodların bazı denklikleri 

incelenmiştir. Daha sonra Tutdere’nin elde ettiği sonucun uygulanarak bu yarı-mükemmel kodların örtme yarıçaplarının 

hesaplanabileceği gösterilmiştir. 2016 yılında Li ve Helleseth, kuadratik APN fonksiyonlar ile tanımlanan lineer kodların yarı-

mükemmel olduklarını göstermişlerdir ve kuadratik olmayan APN fonksiyonlar ile tanımlanan kodların yarı-mükemmel olup olmadığı 

problemini sunmuşlardır. Burada, sonlu cisim  𝔽2𝑚 , 1 ≤ 𝑚 ≤ 8 için, üzerinde tanımlanan kuadratik olmayan bazı APN fonksiyonlar 

ile tanımlanan lineer kodların örtme yarıçapları hesaplanarak bu kodların yarı-mükemmel olduğu gösterilmiştir.  

 

Anahtar Kelimeler: APN fonksiyonlar, Sonlu Cisim, Örtme Yarıçapı, Devirli Kodlar. 
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1. Introduction 

In coding theory, cyclic codes are an important class of error-

correcting codes which have favorable algebraic properties for 

efficient error detection and correction. In literature, there are 

many examples and studies on these codes, for instance see 

(Çalışkan, 2021), (Moreno et al., 2003), (Kavut et al., 2019). We 

here consider binary primitive cyclic codes defined by the APN 

functions over finite fields, which are linear codes. Let  𝔽𝑞 be a 

finite field, with 𝑞 = 2𝑚 where 𝑚 ≥ 1 is an integer, and let 𝐶 be 

a binary cyclic [𝑛, 𝑘, 𝑑] code having length 𝑛, dimension 𝑘, 

minimum distance 𝑑 ≔ 𝑑(𝐶), and covering radius 𝑅 ≔ 𝑅(𝐶).  
By definition, 𝑅 is the smallest integer 𝑟 such that every element 

of   𝔽𝑞
𝑛−𝑘 can be written as a linear combination of at most 𝑟 

columns of the parity-check matrix of 𝐶. In other words, the 

covering radius of 𝐶 is the maximal distance of any vector from 

the code, i.e., 

𝑅 ≔ max{min{𝑑(𝑥, 𝑐): 𝑐 ∈ 𝐶}: 𝑥 ∈  𝔽𝑞 } 

where 𝑑(. , . ) is the Hamming distance. It has many applications 

in the information theory, such as data compression, testing, and 

write-once memories, for instance see (Cohen et al., 1997).  

The covering radii of cyclic codes has been comprehensively 

studied by many researchers since the paper (Delsarte, 1973), for 

instance see (Carlet, 2010), (Cohen et al., 1985). Let 𝛼 be a 

primitive element of  𝔽2𝑚 and let 𝐶 be a primitive binary cyclic 

code. In (Moreno et al., 2003, Theorem 6), Moreno and Castro 

proved that if the zeros of 𝐶 are 𝛼, 𝛼2𝑖+1 with (𝑖, 𝑚) = 1, then  

𝑅(𝐶) = 3, where 𝑑(𝐶) = 5 (Van Lint et al.,1986). They also 

showed that if the zeros of 𝐶 are 𝛼, 𝛼2𝑖+1, 𝛼2𝑗+1 with distinct 

positive integers 𝑖, 𝑗  and 𝑑(𝐶) = 7, then 𝑅(𝐶) = 5 for 𝑚 >
8 (Moreno et al., 2003, Theorem 9). In (Kavut et al., 2019)  

Kavut and Tutdere gave a generalization of the aforementioned 

results of Moreno and Castro as follows:  if the zeros of 𝐶 are  𝛼, 

𝛼2𝑖1+1, …,𝛼2𝑖𝑡+1, where 𝑡 = (𝑟 − 1)/2, 𝑟 is any odd integer 

such that 𝑑(𝐶) ≥  𝑟 + 2, then 𝑅(𝐶) = 𝑟, under some restrictions 

on 𝑚 and 𝑟. In (Tutdere, 2022), Tutdere proved the following: if 

the zeros of 𝐶 are 𝛼𝑑0, 𝛼𝑑1, …,𝛼𝑑𝑡, where 𝑑𝑖’s are distinct 

positive integers, and the sum of 2-weights of 𝑑𝑖’s, which we 

call ℓ, is odd such that 𝑑(𝐶) > 𝑙, then  𝑟 ≤ 𝑅(𝐶) ≤ ℓ, under 

some assumptions on 𝑚 and 𝑟.  

APN functions have a great importance in cryptography for the 

attacks on block ciphers. In (Li et al., 2016), Li and Helleseth 

proved that the  codes defined by the binary quadratic APN 

functions are quasi-perfect by computing the covering radii of 

these codes, and they asked whether the  codes defined by the 

non-quadratic functions are quasi-perfect or not. Note that quasi-

perfect codes are the codes having covering radius one more 

than their packing radius. To find a classification of the 

parameters for which quasi-perfect codes exist is a hard task. In 

particular, binary quasi-perfect codes play a fundemental role in 

information theory when using a binary symmetric channel. 

We here first discuss some linear equivalent quasi-perfect cyclic 

codes defined by the Gold functions, which are quadratic APN 

functions. We then show that one can obtain the covering radii of 

these codes by applying the result of (Tutdere, 2022). 

We next prove that the codes defined by some non-quadratic 

APN functions over the finite field 𝔽2𝑚 , for 1 ≤ 𝑚 ≤ 8, are 

quasi-perfect, by computing the covering radii of these codes. 

Further, we find in the process that the covering radii of the 

codes defined by the inverse function for odd values of 𝑚, which 

are not APN, is the same as those of the APN functions. 

The organization of the paper is as follows: We give, in Section 

2, some basic background and known results which will be used 

in the subsequent sections. In Section 3, we give the main results 

and discussion. Section 4 is devoted to the conclusion and some 

recommendations. 

2. Material and Method 

For any prime number 𝑝, let 𝑓:  𝔽𝑝𝑚  →  𝔽𝑝𝑚   be a function with 

𝑓(0) = 0 and let 𝛼 be a primitive element of the field 𝔽𝑝𝑚. 

Set 𝑛: = 𝑝𝑚 − 1.  Consider the matrix  

𝐻𝑓 = [
1 𝛼 𝛼2

𝑓(1) 𝑓(𝛼) 𝑓(𝛼2)
… 𝛼𝑛−1

… 𝑓(𝛼𝑛−1)
] 

where each entry stands for the column of its coordinate with 

respect to a basis of the vector space  𝔽𝑝𝑚 over the field  𝔽𝑝 .  We 

denote the code having 𝐻𝑓 as a parity-check matrix by 𝐶𝑓. It is 

clear that when 𝑓 (𝑥)  =  𝑥𝑑 is a power function, 𝐶𝑓 is a cyclic 

code with the generator polynomial 𝑔(𝑥)  =  𝑚1(𝑥)𝑚𝑑(𝑥), 

where 𝑚𝑖(𝑥) is the minimal polynomial of 𝛼𝑖 over  𝔽𝑝  for 𝑖 =
1, 𝑑. We here consider only power functions. Throughout this 

paper, 𝑓 is a power function and the related code 𝐶𝑓 is a binary 

primitive cyclic [𝑛, 𝑘, 𝑑] code having length 𝑛 = 2𝑚 − 1, 

dimension 𝑘, minimum distance 𝑑 = 𝑑(𝐶), and covering radius 

𝑅 = 𝑅(𝐶𝑓).  

Definition 2.1. The linear codes satisfying the conditon that 𝑅 =

⌊
𝑑+1

2
⌋ are called quasi-perfect codes.  

Definition 2.2. A function𝑓:  𝔽𝑝𝑚  →  𝔽𝑝𝑚 of the form 

𝑓(𝑥) = ∑ 𝑎𝑖𝑗𝑥
2𝑖+2𝑗

,

𝑚−1

𝑖,𝑗=0

 

where 𝑎𝑖𝑗 ∈  𝔽𝑝𝑚 is called a quadratic function. 

Definition 2.3. A function 𝑓:  𝔽𝑝𝑚 →  𝔽𝑝𝑚  is called almost perfect 

nonlinear (APN) if  

max
𝑎,𝑏 ∈ Ϝ𝑝𝑚 ,𝑎≠0

|{𝑥 ∈  𝔽𝑝𝑚: 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) = 𝑏}| = 2. 

In other words,  if 𝑓 is differentially 2-uniform, then it is called 

an APN function. In particular, when 𝑝 = 2, 𝑓 is called APN if 

and only if the function 𝑥 → 𝑓(𝑥 + 𝑎) − 𝑓(𝑥) is two-to-one for 

all 0 ≠ 𝑎 ∈   𝔽2𝑚. 

Lemma 2.1.(Carlet et al., 1998, Theorem 5(ii)) Let 𝑓:  𝔽2𝑚 →
 𝔽2𝑚 be a function with 𝑓(0) = 0. Then 𝑓 is APN if and only if 

the code 𝐶𝑓 defined by 𝑓 has minimum distance 5. 

In (Carlet et al., 1998), it is shown that if 𝑓 is a quadratic APN 

function in odd number of variables, i.e.,  𝑚 is odd, then the 

related code 𝐶𝑓 has covering radius 3. In (Li et al., 2016), the 

followig result is obtained.  

Theorem 2.1.(Li et al., 2016, Theorem 1) Let 𝑚 ≥  3 and  

𝑓(𝑥) = ∑ 𝑎𝑖𝑗𝑥
2𝑖+2𝑗

,

𝑚−1

𝑖,𝑗=0
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where 𝑎𝑖𝑗 ∈  𝔽2𝑚, be a quadratic function. Then the code 𝐶𝑓 

defined by 𝑓 is quasi-perfect if and only if 𝑓 is APN.  

In (Li et al., 2016), the following open problem is proposed:  

Open problem: For all APN functions 𝑓 over  𝔽2𝑚, are the  

codes 𝐶𝑓 defined by 𝑓 quasi-perfect or not?  

Theorem 2.2. (Tutdere, 2022) Let 𝐶 be a primitive binary cyclic 

code with the zero set 𝑍(𝐶) = {𝛼𝑑0 , 𝛼𝑑1 , … , 𝛼𝑑𝑡} for some 

distinct positive integers 𝑑0, 𝑑1, … , 𝑑𝑡 . Suppose that there is a 

code 𝐶′ such that 𝐶 ⊂  𝐶′ and 𝑑(𝐶′) = 𝑟 for any integer 𝑟. 

Assume that the sum ℓ ≔ ∑ 𝜎2(𝑑𝑖)
𝑡
𝑖=0  is an odd integer. If 

𝑑(𝐶) > 𝑙, then 𝑟 ≤ 𝑅(𝐶) ≤  ℓ for  

                         𝑓 > (ℓ − 𝑠) max 𝜎2(𝑑𝑖), 

where 𝑠 is the largest integer such that  2𝑠|(ℓ + 1). 

In Section 3.1. we propose an application of Theorem 2.2. We  

now give the following notion which will be used frequently 

throughout the paper. 

Definition 2.4. Let 𝑝 be a prime number and 𝑛 be an integer 

with 𝑝-expansion 

𝑛 = 𝑎0 + 𝑎1𝑝 + ⋯+ 𝑎𝑠𝑝
𝑠 

where 0 ≤ 𝑎𝑖 < 𝑝.The sum 𝜎𝑝(𝑛) ≔ ∑ 𝑎𝑖
𝑠
𝑖=0  is called the 𝑝-

weight of 𝑛 and the 𝑝-weight degree of a monomial 𝑥𝑑: =

𝑥1
𝑑1𝑥2

𝑑2 …𝑥𝑛
𝑑𝑛is defined as  

 𝜔𝑝(𝑥
𝑑) ≔ 𝜎𝑝(𝑑1) + 𝜎𝑝(𝑑2) + ⋯ + 𝜎𝑝(𝑑𝑛). 

The 𝑝-weight degree of  a polynomial 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) =
∑ 𝑎𝑑𝑥𝑑

𝑑  is  

𝜔𝑝(𝐹) ≔ max
𝑥𝑑,𝑎𝑑≠0

𝜔𝑝(𝑥𝑑) 

Definition 2.5.  Two codes 𝐶1  and 𝐶2  of the same length over  

the field  𝔽𝑞 are called equivalent if 𝐶2  is obtained from 𝐶1 by 

applying a combination of the following operations: 

(i) multiplication of the symbols appearing in a fixed position in    

all codewords of  𝐶1 by a nonzero scaler, 

(ii) a permutation of the digits in all codewords of 𝐶1. 

Note that a function 𝑓 from  𝔽2𝑚 has a unique representation as 

follows: 

𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖2𝑚−1

𝑖=0  ,   where each 𝑎𝑖 ∈  𝔽2𝑚 . 

3. Results and Discussion 

3.1. Some Equivalences of Linear Codes Defined 

by Gold Functions  

The functions 𝑓𝑖(𝑥) = 𝑥2𝑖+1, with (𝑖,𝑚) = 1 are called Gold 

functions (Gold, 1968) for all 𝑚 ≥  3, which are quadratic APN 

power functions. In this section we first discuss some 

equivalences of  codes defined by Gold functions. We then more 

generally mention from some equivalences of codes defined by 

power functions.  

Proposition 3.1. Let 𝐶 be a primitive cyclic code with the zero 

set {𝛼𝑑1 , 𝛼𝑑2} for some distinct 𝑑1 and 𝑑2 over the field  𝔽2𝑚 

such that (𝑑1, 2
𝑚 − 1) = 1. Then 𝐶 is equivalent to the code 

defined by Gold function 𝑓(𝑥) = 𝑥2𝑖+1, for some 𝑖 such that 

(𝑖,𝑚) = 1 if 𝑑2 ≡ 𝑑1(2
𝑖 + 1)  mod (2𝑚 − 1), and hence these 

codes are quasi-perfect.  

Proof. Set 𝑛 = 2𝑚 − 1.  It is well-known that if (𝑑1, 2
𝑚 − 1) =

1, then 𝛽 = 𝛼𝑑1 is also a primitive element of  𝔽2𝑚. Therefore, 

there is a positive integer 𝑘 such that 𝛼𝑑2  = 𝛽𝑘   for some 𝑘.  

Then by assumption we have 𝛽𝑘 = 𝛼𝑑2 = 𝛼𝑑1(2𝑖+1) mod (2𝑚−1), 

and so 𝑘 = 2𝑖 + 1. That means, 𝐶 is equivalent to the code with 

the zero set {𝛽, 𝛽2𝑖+1}, which corresponds to the code defined by 

the Gold function 𝑓(𝑥) = 𝑥2𝑖+1.  

It is known from (Moreno et al., 2003) that the code with the 

zero set {𝛽, 𝛽2𝑖+1} is quasi-perfect. We here give a detailed proof 

by using the result of (Tutdere, 2022) which covers that result of 

(Moreno et al., 2003). The parity-check matrix of the code 

corresponding to the function 𝑓 is as follows:  

       𝐻𝑓 = [
1 𝛽 𝛽2

𝑓(1) 𝑓(𝛽) 𝑓(𝛽2)

  … 𝛽𝑛−1

  … 𝑓(𝛽𝑛−1)
] 

  = [
1 𝛽 𝛽2

1 𝛽2𝑖+1 𝛽2(2𝑖+1)

  … 𝛽𝑛−1

  … 𝛽(𝑛−1)(2𝑖+1)
]. 

By Lemma 2.1, the code 𝐶𝑓 has minimum distance 𝑑(𝐶) = 5. It 

is well-known that the code 𝐶′ with the zero set {𝛽} is the 

Hamming code and 𝑑(𝐶′) = 3. Since 𝐶 ⊂  𝐶′, we can apply 

Theorem 2.2 with 𝛽, 𝐶 = 𝐶𝑓, 𝐶′, and the parameters 𝑟 = 3, 𝑑0 =

1, 𝑑1 = 2𝑖 + 1. Then the parameter ℓ = 1 + 2 = 3. Clearly, the 

codition 𝑑(𝐶) > 𝑙 is satisfied. Thus, it follows from Theorem 

2.2 that 𝑅(𝐶) = 3 for all 𝑚 > (𝑙 − 𝑠)max
𝑖

𝜎2(𝑑𝑖) = (3 − 2) ∙

2 = 2, i.e., 𝑚 ≥  3. Then, it follows from  Definition 2.1 that the 

related code is quasi-perfect.  

Example 3.1. Let us consider the code 𝐶 over  𝔽24 having the 

zero set {𝛼3, 𝛼7}, where 𝛼 is a primitive element of  𝔽24.The 

parity-check matrix 𝐻 of the code 𝐶 is then obtained as follows: 

𝐻 = [
1 𝛼3 (𝛼3)2

1 𝛼7 (𝛼7)2

  … (𝛼3)14

  … (𝛼7)14]. 

As (7,15) = 1, 𝛽 = 𝛼7 is also a primitive element of  𝔽24 and 

then we have 𝛽𝑘 = 𝛼3 = (𝛼7)𝑘, from which it is found that 𝑘 =
23 + 1 = 9. Therefore, the zero set {𝛼3, 𝛼7} can be equivalently 

considered as {𝛽, 𝛽9}, which gives the code equivalent to the one 

defined by the Gold function 𝑓3(𝑥) = 𝑥23+1 (notice that (3,4) =
1, satisfying the condition imposed by the definition). Hence, the 

parity-check matrix 𝐻 can be expressed in the following form: 

𝐻 = [
1 𝛽9 (𝛽9)2

1 𝛽 𝛽2

  … (𝛽9)14

  … 𝛽14 ] 

     = [
1 𝛽9 (𝛽2)9

1 𝛽 𝛽2

  … (𝛽14)9

  … 𝛽14 ]. 

Since permuting the positions of a code generates an equivalent 

code, the code 𝐶 is equivalent to the code 𝐶′ having the parity 

check matrix 𝐻′ given below: 

𝐻′ = [
1 𝛽 𝛽2

1 𝛽9 (𝛽2)9

  … 𝛽14

  … (𝛽14)9]. 

In (Tutdere, 2022) the covering radii and the minimum distances 

of the primitive cyclic codes having distinct zero sets are given 

for  𝔽24  and  𝔽25  in Tables 1 and 2, respectively. It can be seen 

from Table 1 in (Tutdere, 2022) that there are only three quasi-

perfect codes having distinct zero sets which are {𝛼5}, {𝛼, 𝛼3} 
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and {𝛼3, 𝛼7}. We have already shown that the code with zero set 

{𝛼, 𝛼3} is equivalent to the one with zero set {𝛼, 𝛼9}; however 

as 𝛼3 and 𝛼9 are in the cyclotomic coset, i.e., 𝛼9 = 𝛼3∙2𝑖 mod 15 

for 𝑖 = 3, these two codes are also equivalent. As a consequence, 

there is only one quasi-perfect code defined by the power 

functions different up to the equivalence which corresponds to 

the code defined by the Gold function for the field  𝔽24 . 

Let us now relax the condition of being equivalent to the Gold 

function in Proposition 3.1, by permitting that the exponent 𝑘 

can be any positive integer. In this case, assuming as in 

Proposition 3.1 that the primitive cyclic code 𝐶 has the zero set 

{𝛼𝑑1 , 𝛼𝑑2} for some distinct 𝑑1 and 𝑑2 over the field  𝔽24 such 

that (𝑑1, 2
𝑚 − 1) = 1, the code 𝐶 is equivalent to the code 

defined by the power function 𝑓(𝑥) = 𝑥𝑑 for some 𝑑 if 𝑑2 ≡
𝑑1𝑑  mod (2𝑚 − 1), which can be considered as a more general 

form of Proposition 3.1. Next, we give an example for this 

situation. 

Example 3.2. We here consider the code 𝐶 over  𝔽25 with the 

zero set {𝛼3, 𝛼11}, where 𝛼 is a primitive element of  𝔽25. The 

parity-check matrix 𝐻 of the code 𝐶 is then obtained as follows: 

𝐻 = [
1 𝛼3 (𝛼3)2

1 𝛼11 (𝛼11)2

  … (𝛼3)30

  … (𝛼11)30]. 

One can choose 𝛽 = 𝛼3, which is another primitive element of 

 𝔽25 and then it is found that (𝛼3)14 = 𝛽14 = 𝛼11. Thus, the zero 

set can be equivalently represented by {𝛽, 𝛽14}, for which the 

parity-check matrix 𝐻 can be written as follows: 

𝐻 = [
1 𝛽 𝛽2

1 𝛽14 (𝛽14)2

  … 𝛽30

  … (𝛽14)30]. 

Consequently, the code with the zero set {𝛼3, 𝛼11} is equivalent 

to that with the zero set {𝛼, 𝛼𝑘} for any 𝑘 ∈ {7, 14, 19, 25, 28}, 
as 𝛼7, 𝛼14, 𝛼19, 𝛼25, 𝛼28 are in the same cyclotomic coset. In 

(Tutdere, 2022), it can be seen from Table 2 that every code over 

the field 𝔽25 with the zero set {𝛼𝑑1 , 𝛼𝑑2} such that {𝑑1, 𝑑2} ∈
{1, 3, 5, 7, 11, 15} has the covering radius 3 and the minimum 

distance 5, satisfying the condition of being quasi-perfect. 

Hence, the code 𝐶 that we consider in this example is quasi-

perfect.   

As the mentioned quasi-perfect codes given in (Tutdere, 2022) is 

complete for the field  𝔽25, we have checked the codes which are 

different up to the equivalence, following our argument used in 

the above examples. Then we have found that there are five such 

codes having the zero sets {𝛼, 𝛼3}, {𝛼, 𝛼5}, {𝛼, 𝛼7}, {𝛼, 𝛼11}, and 

{𝛼, 𝛼15}. On the other hand, it is well-known that the inverse of 

an APN function is also an APN (Carlet, 2010). Recalling from 

(Nyberg, 1994) that the inverse of 𝑥2𝑖+1 is 𝑥𝑑, where  

𝑑 = ∑ 22𝑖𝑘   

𝑚−1

2

𝑘=0

mod (2𝑚 − 1), 

with 𝑚 being odd. It can be easily found that the exponents 𝑥7 

and 𝑥11 are obtained from the inverses of the Gold functions. 

      

3.2. Covering Radius for Non-quadratic APNs 

In (Li et al., 2016), Li and Helleseth computationally find for 

small values of 𝑚 that the covering radius of the codes defined 

by the known non-quadratic APN functions on  𝔽2𝑚 is 3 and 

mainly based on this observation, whether the codes for all APN 

functions are quasi-perfect is posed as an open question (see 

Section 2), which is still unsettled. However, the details of their 

computation and the values of 𝑚 is not given in (Li et al., 2016). 

We here compute the covering radii for  𝑚 ≤ 8 for all the known 

non-quadratic APN functions, which are listed in Table 1, and 

find that the codes defined by those APN functions have 

covering radius 3, which confirms the result of (Li et al., 2016) 

independently. As a result we obtain the following.  

Theorem 3.2. The codes defined by the non-quadratic APN 

functions given in Table 1 are quasi-perfect for all 𝑚 ≤ 8 . 

Proof. Let  𝐶𝑓 be a  code defined by a non-quadratic APN 

function 𝑓 over  the finite field  𝔽2𝑚 given in Table 1. By Lemma 

2.1. the minimum distance of 𝐶𝑓 is 5. By using the Sage code 

given in Figure 1, we obtain that the covering radius of 𝐶𝑓 is 3. 

Therefore, by Definition 2.1, 𝐶𝑓 is a quasi-perfect code.  

Tablo 1.  𝔽2𝑚  üzerinde kuadratik olmayan ve bilinen tüm 𝑥𝑑 

biçimindeki APN fonksiyonları. 

Table 1. All the known non-quadratic APN functions in the form 

of 𝑥𝑑on  𝔽2𝑚 . 

Family Exponent (𝒅) Condition 

(Dobbertin,2001) 16𝑖 + 8𝑖 + 4𝑖 + 2𝑖 − 1 𝑖 = 𝑚/5 

Inverse 

(Nyberg, 1994) 
4𝑖 − 1 𝑖 =

𝑚 − 1

2
 

(Kasami,1971) 4𝑖 − 2𝑖 + 1 (𝑖,𝑚) = 1 

Niho 

(Dobbertin,1999), 

(Hollmann et al., 

2001) 

2𝑖 + 2𝑖/2 − 1, for even 𝑖 

2𝑖 + 2
3𝑖+1

2 − 1, for odd 𝑖 
𝑖 =

𝑚 − 1

2
 

Welch 

(Canteaut et al., 

2000), 

(Dobbertin, 1999) 

2𝑖 + 3 𝑖 =
𝑚 − 1

2
 

We use Sage (Developers et al., 2020) with GAP package 

Guava, which is limited to computing with finite fields of size at 

most 256, to find the covering radius of  codes corresponding to 

the APN functions in Table 1. The Sage code that we use is 

given in Figure 1. 

1: m=eval(input('Enter m:')) 

2: d=eval(input('Enter d:')) 

3: R.<x> = PolynomialRing(GF(2)) 

4: F.<t> = GF(2^m) 

5: p = t.minpoly() 

6: q = (t^d).minpoly() 

7: g = p*q 

8: C = codes.CyclicCode(generator_pol = g, length = 2^m-1) 

9: print('Covering radius =',C.covering_radius()) 

Figure 1. Sage code used to compute the covering radius. 

Şekil 1. Örtme yarıçapını hesaplamak için kullanılan Sage kodu. 

In Figure 1, lines 1 and 2 request from user to enter the degree of 

the extension field (𝑚) and the exponent (𝑑), respectively. Line 

3 creates a univariate polynomial ring 𝑅 in x over  𝔽2  and line 4 

builds a finite field 𝐹  in 𝑡 of size 2𝑚. Lines 5 and 6 obtain the 

minimal polynomials of 𝑡 and 𝑡𝑑 as 𝑝 and 𝑞, respectively. Then, 

multiplying the minimal polynomials 𝑝 and 𝑞, the generator 

polynomial 𝑔 of the cyclic code 𝐶 is found in line 7. After that, 

the cyclic code 𝐶 of length 2𝑚 − 1 is constructed in line 8 by 
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using the generator polynomial g. Finally, line 9 computes and 

displays the covering radius of the code 𝐶. Notice that the 

command covering_radius in line 9 requires the GAP package 

Guava.  

Remark 3.3. It is well-known that the inverse function 𝑥 → 𝑥−1 

on  𝔽2𝑚 is differentially 4-uniform for even values of 𝑚, that is, 

it is not an APN function. For this case, we have checked the 

covering radius of the inverse function for even 𝑚 ≤ 8 and 

found that it is also 3. However, it is necessary to find the 

minimum distance to show that whether they are quasi-perfect or 

not (see Definition 2.1), which may require a huge computation 

power. Hence, with a personel computer we could only compute 

(by using Sage) for a small value of  𝑚 = 4 that the inverse 

function is not quasi-perfect as the minimum distance is found as 

3. 

We now give an example to illustrate the computation of the 

covering radius of a  code corresponding to an APN function. 

Example 3.3. For simplicity, let us consider the inverse function 

𝑓(𝑥) = 𝑥3 on 𝔽23 , i.e., 𝑚 = 3 and 𝑑 = 3 (see Table 1) . It 

should be noted that in this case all the APN functions (except 

the Dobbertin family for which the corresponding condition is 

not satisfied for 𝑚 = 3) in Table 1 are quadratic and equivalent 

to the Gold function. The parity-check matrix of the 

corresponding code 𝐶𝑓 of length 23 − 1 = 7 is then obtained as 

follows: 

𝐻𝑓 = [
1 𝛼 𝛼2

𝑓(1) 𝑓(𝛼) 𝑓(𝛼2)
     

𝛼3 𝛼4 𝛼5

𝑓(𝛼3) 𝑓(𝛼4) 𝑓(𝛼5)
     

𝛼6

𝑓(𝛼6)
] 

      = [1 𝛼 𝛼2

1 𝛼3 𝛼6     
𝛼3 𝛼4 𝛼5

𝛼2 𝛼5 𝛼
     𝛼

6

𝛼4], 

where 𝛼 is a primitive element of the field  𝔽23 and each element 

of the parity-check matrix 𝐻𝑓 can be represented by a binary 

vector of length 3. The binary representation of the elements of 

 𝔽23  is given by Table 2, in which 𝛼 is the primitive element of 

the irreducible polynomial 𝛼3 + 𝛼 + 1. 

 Tablo 2.  𝔽23   sonlu cisim elemanlarının ikili gösterimleri. 

    Tablo 2. The binary representations of the elements of the 

finite field  𝔽23. 

Field 

elements 

Polynomial 

representation 

Binary 

representation 

0 0 (0, 0, 0) 

1 1 (0, 0, 1) 

𝛼 𝛼 (0, 1, 0) 

𝛼2 𝛼2 (1, 0, 0) 

𝛼3 𝛼 + 1 (0, 1, 1) 

𝛼4 𝛼2 + 𝛼 (1, 1, 0) 

𝛼5 𝛼2 + 𝛼 + 1 (1, 1, 1) 

𝛼6 𝛼2 + 1 (1, 0, 1) 

 

Substituting the binary representations for the respective field 

elements of the parity-check matrix, we get the following form 

of 𝐻𝑓:  

𝐻𝑓 =

[
 
 
 
 
 
0 0 1
0 1 0

     
0 1 1
1 1 1

     
1
0

1 0 0
0 0 1

     
1 0 1
1 1 0

     
1
1

0 1 0
1 1 1

     
0 1 1
0 1 0

     
1
0]
 
 
 
 
 

, 

 

from which we should find the smallest number such that every 

element of 𝔽2
6, i.e., every binary vector of length 6 corresponding 

to the 8-ary 2-tuples, can be represented by a linear combination 

of at most that number of columns to determine the covering 

radius of the code 𝐶. Clearly, there are 7 columns of 𝐻𝑓 and the 

numbers 1 + (
7
1
) = 8 and 1 + (

7
1
) + (

7
2
) = 29 of the linear 

combinations of at most one and two columns, respectively, are 

less than the number 26 = 64 of the elements of 𝔽2
6. Thus, the 

covering radius should be greater than 2. One can 

computationally check that when we take into account the linear 

combinations of  3 columns, all the binary vectors of length 6 are 

produced, and consequently the covering radius of the code 𝐶𝑓 

obtained from the inverse function 𝑓(𝑥) = 𝑥3 on  𝔽23 is 3. 

Notice that the code 𝐶𝑓 has minimum distance 5 due to Lemma 

2.1, and hence the condition of being quasi-perfect given by 

Definition 2.1 is satisfied. 

4. Conclusions and Recommendations 

In this paper, we studied on the covering radii of some cyclic 

codes defined by the quadratic and non-quadratic APN functions  

over the finite fields 𝔽2𝑚.We first gave a discussion on some 

equivalences of quasi-perfect codes defined by Gold functions, 

and showed that by applying the result of (Tutdere, 2022), one 

can obtain the covering radii of these codes. Next, by computing 

the covering radii of the codes defined by some non-quadratic 

APN functions over the finite field  𝔽2𝑚, for 1 ≤ 𝑚 ≤ 8, we 

showed that these codes are quasi-perfect. Moreover, we found 

out in the process that the covering radii of the codes defined by 

the inverse function for odd values of 𝑚, which are not APN, is 

the same as those of the APN functions. By studying on the 

method of  (Tutdere, 2022), one may obtain the covering radii of 

the codes defined by the non-quadratic APN functions for large 

values of m (𝑚 ≥ 9) as a future work. If it is true that all these 

codes have covering radius 3, then as the minimum distance of 

these codes is 5, one obtains a large class of binary quasi-perfect 

codes.  
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