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Abstract 

Pneumatic Artificial Muscles (PAM) are soft actuators with advantages such as high force to weight ratio, flexible structure and low 

cost. Pneumatic Artificial Muscles have inherent compliance that makes them feasible for exoskeletons and rehabilitation robots. 

However, their inherent nonlinear characteristics yield difficulties in modelling and control actions, which is an important factor 

restricting use of PAM.  The compliance of  PAM is associated with nonlinearity, hysteresis, and time varying characteristics, which 

makes it more difficult to model the dynamics and operation with model based high-performance controllers. Although there are  

many  studies to overcome the modelling issue such as virtual work , empirical  and phenomenological models, they are either much 

complicated or very approximate ones as a variable stiffness spring for model with nonlinear input-output relationship. Based on the 

analysis of well known previous modeling works in our PAM test bed,  it has been observed that  efficacy of the those methods are 

limited for representing the physical behaviour of PAM and thus there is still requirement for  simple and effective models .  In this 

work, apart from previous modeling approaches, the behaviour of PAM is foreseen as an integrated  response to pressure input, which  

results in  simultaneous force and muscle length change.  Therefore, standard direct input-output identification methods are not 

suitable for modelling that behaviour. An inverse modeling approach is proposed in order to utilize it in control applications. The 

black box model  is implemented by an Artificial Neural Network (ANN) structure using  the experimental data collected from the 

PAM test bed. According to implementation results, an ANN based inverse model has yielded satisfactory performance deducing that 

it could be a simple and effective solution for PAM modelling and control . 
Keywords: Soft Actuators, Pneumatic Artificial Muscles, Inverse Modeling, Artificial Neural Network Based Modelling. 

 

Pnömatik Yapay Kaslar için Yapay Sinir Ağı Esaslı Ters Modelleme  

Öz 

Pnömatik Yapay Kaslar (PAM), yüksek kuvvet / ağırlık oranı, esnek yapı ve düşük maliyet gibi avantajlara sahip yumuşak 

aktüatörlerdir. Pnömatik Yapay Kaslar, dış iskelet ve rehabilitasyon robotlarında kullanımını mümkün kılan doğal bir uyumluluğa 

sahiptir. Bununla birlikte, doğrusal olmayan karakteristik özellikleri,  modelleme ve kontrol eylemlerinde zorluklar sağlayan ve 

kullanımını kısıtlayan önemli bir faktördür.  PAM doğal uyumluluğu, doğrusal olmayan, histerezis ve zamanla değişen özellikleri ile  

ilişkilidir, bu durum da PAM dinamik davranışını ve modele dayalı yüksek performanslı kontrolörlerle çalışmasını modellenmesini 

zorlaştırır. Literatürde modelleme sorununun üstesinden gelmek için,  sanal iş, ampirik ve fenomenolojik modeller gibi birçok çalışma 

olmasına rağmen,  bu çalışmalar  çok karmaşık veya doğrusal olmayan değişken bir sertlikli yay için giriş-çıkış ilişkisi olan model 

gibi çok yaklaşıktır. PAM test düzeneğimizde gerçekleştirdiğimiz iyi bilinen önceki modelleme çalışmalarının deneysel analizine 

dayanarak, bu yöntemlerin etkinliğinin PAM'ın fiziksel davranışını temsil etmek için sınırlı olduğu ve hala basit, etkili modellere 

ihtiyaç duyulduğu gözlemlenmiştir. Bu çalışmada, önceki modelleme yaklaşımlarından farklı olarak, PAM'ın davranışı, giriş işareti 

olarak basınç uygulandığında,  eşzamanlı kuvvet ve kas uzunluğu değişikliğine yol açan entegre bir sistem tepkisi olarak 
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öngörülmüştür. Bu nedenle, standart doğrudan giriş-çıkış tanımlama yöntemleri bu davranışı modellemek için uygun değildir. Bu 

çalışmada, kontrol uygulamalarında etkin kullanmak için bir tersine  modelleme yaklaşımı önerilmektedir. Önerilen kapalı kutu model 

ve PAM test yatağından toplanan deneysel veriler kullanılarak Yapay Sinir Ağı (YSA) yapısı tarafından uygulanmaktadır. Uygulama 

sonuçlarına göre, YSA tabanlı bir tersine model, PAM modelleme ve kontrol sorunu için basit ve etkili bir çözüm olabileceğini 

düşündüren tatmin edici bir performans sağlamıştır. 

Anahtar Kelimeler: Yumuşak Eyleyiciler, Pnömatik Yapay Kaslar, Tersine Modelleme, Yapay Sinir Ağı Tabanlı Modelleme. 
  

1. Introduction 

The pneumatic artificial muscle (PAM) is a fiber braided 

and coated rubber tube  actuator that changes  its actuating 

length when pressurized . PAM was invented firstly by J. L. 

McKibben. It was redesigned by Bridgestone Company and used 

for some applications to assist disabled individuals. As compared 

to other conventional actuators (e.g.,motors, hydraulic actuators, 

and penumatic cylinders), PAM could  be foreseen more similar 

to the human muscle in behaviour. Pneumatic Artificial Muscles 

(PAM) are type of actuators that mimic behavior of skeletal 

muscle by contracting and generating force in a nonlinear 

manner when pressurized. PAM has a radially inflation and 

axially contraction behavior which produces high 

pulling(tensile) forces along the longitudinal axis.  It has  low  

weight, and high power/weight output. Moreover, the PAM has 

inherent compliance that makes it feasible for exoskeletons and 

rehabilitation robots. (Daerden & Lefeber 2002).   

 However, the compliance of the PAM is associated with 

nonlinearity, hysteresis, and time varying characteristics, which 

makes it more difficult to model the dynamics and design high-

performance controllers.  A detailed survey of  McKibben PAM 

modelling approaches  is given by Tondu. (Tondu 2012). 

Furthermore, the dynamic models of the PAM may be grouped 

into two classes, a theoretical model and a phenomenological 

model, respectively  (Kelasidi et al 2012). The theoretical model 

describes the relationship between the PAM’s characteristics and 

the parameters directly related to the PAM’s geometric structure  

and material properties, that has a complex structure with many 

parameters.  For example, Chou and Hannaford derived the 

model from the law of energy conservation, and described the 

relationship among the pressure, the length, and the contractile 

force of the PAM (Chou and Hannaford 1996).  The 

phenomenological model, on the other hand, is constructed 

according to the relationship between the input and output of the 

PAM, and is suitable for very complex dynamics that are hard to 

describe by the theoretical model. Among the phenomenological 

models of the PAM , the most used one is the three-element 

model proposed by Reynolds, in which the PAM is considered as 

a parallel arrangement of three elements (Reynolds et al 2003). 

However, both the theoretical and the phenomenological models 

contain time varying parameters and non-modeled uncertainties 

that need to be compensated by control techniques.  Due to the 

nonlinearity, hysteresis, and time-varying characteristics of the 

PAM, it is difficult to precisely describe its dynamics in the 

entire range of pressure using only one model with constant 

parameters. (Zhang et al. 2016). The model-based schemes 

usually cannot obtain high-precision control due to the errors 

between the actual PAM dynamics. In addition, an emprical 

modelling approach is given by Wickramtunge and 

Leephakpreda which relates force and muscle legth as a 

nonlinear elastic relation . (Wickramtunge and Leephakpreda 

2013). Martens et al. , in their work, performed a comparative 

analysis of the existing static models developed for Festo PAM. 

(Martens and Boblan 2017). Moreover, Ishikawa et al. also 

performed model parameter extraction of  structurally different 

PAMs using SVM. (Ishikawa et al. 2018). 

 There are  many  studies to overcome the modelling issue in 

literature,  such as virtual work , empirical  and 

phenomenological models, AI based models. NNARX based  

modelling approaches is given by  Ahn et al. (Ahn et al 2008). A 

hybrid ANN approach is developed by Song et. al. (Song et. al. 

2015). A recurrent Neuro-Fuzzy based model is introduced by  

Chavoshian et al. (Chavoshian and Taghizadeh  2020).  

However, they are either much complicated or very approximate 

ones as a variable stiffness spring for model with nonlinear 

input-output relationship . Majority of the existing methods are 

standard direct pressure input and force output  models.   

 In this work, initially an experimental analysis for 

characteristics of PAM  has been performed  using a test bed.  

Based on the  analysis of  some well known previous models 

using our PAM test bed,  it has been observed that  efficacy of 

the those methods are limited for representing the physical 

behaviour of PAM due to fact that models mostly concentrate 

direct input-ouput relation in terms of pressure and force 

estimation. In many existing models, the integrated response 

behaviour of PAM is not combined effectively in terms of 

simultaneous resultant force and muscle contraction. Hence, we 

deduce that there is still requirement for  simple, effective 

models . By this foresight, apart from previous modeling 

approaches, the dynamic behaviour of PAM is modelled as an 

integrated  response to pressure input, which  results in  

simultaneous force and muscle length change.  In this case, 

standard direct input-output identification methods ,such as 

NNARX, are not suitable for modelling that behaviour. 

Furthermore, an inverse modeling approach is proposed in order 

to utilize the model in control applications. The black box model  

is implemented by an Articifial Neural Network (ANN) structure 

using  the experimental data collected from the PAM test bed.   

 The rest of the  paper as follows: In section II, the  

implementation method is given, where experimental setup and 

data acquisition , modelling approach are explained. In section 

III, experimental results and discussions are presented. In section 

IV conclusions are drawn. 

2. Material and Method 

Nowadays, PAM is produced commercially by Festo 

Company and it is also called Festo fluidic muscle. The Festo 

muscle is structurally different from the general McKibben 

muscles. The fiber of the fluidic muscle is knit into the rubber 

tube, offering easy assembly and improved hysteric behavior and 

nonlinearity compared to conventional design (Festo 2018). Due 

to difference in construction, Festo PAM have different 

properties as compared to other existing PAM models. In 

figure1, a  DMPS20 series Festo fluidic  muscle  and its dynamic 

characteristics is illustrated. In figure 1, F indicates the generated 

force by PAM in N and h indicates percentage muscle length 

change in terms of contraction [3] or extension [4], against 

different applied pressure curves. 
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An experimental analysis has been performed for physical 

characteristics of Festo PAM, using a hardware test bed. When 

the dynamic characteristics analyzed, it has been observed that 

PAM had different operating curves for different applied 

pressure values which is also a confirmation of manufacturer's 

curves. Those different operating curves is the main cause for 

nonlinear behaviour of PAM. During the analysis, it has been 

observed that although applied pressure was the only input, but 

there was an integrated response  of generated force and muscle 

length change as the output. In the test bed experiments, data has 

been obtained for different input pressure values  and with 

different external  loads. During the experiments,  data from test 

bed has been obtained and compared to Matlab simulation 

results of some well known models. It has been concluded that 

majority of existing modelling approaches includes muscle 

length but considers solely force as the ouput. However, in our 

case, when PAM used as actuator, both force and muscle length 

have become equally important. Hence, in this work integrated 

response approach has been implemented as inverse modelling 

approach. 

2.1.  Overview of  Main Modelling  Approaches 

 In this section, as a starting point, main PAM modelling 

approaches in literature  has been briefly introduced  in order to 

illustrate the differences.  In  the modeling works, the main 

purpose is to establish a relationship between pressure, extension 

of the muscle along the entire axis (displacement) and force. 

Pulling force, air pressure, diameter and length of the muscle, 

material properties play an important role in modeling 

approaches. PAM's mathematical models relate these factors 

(Kelasidi et al.,2011). In general, modeling approaches depend 

on the static and dynamic behavior of PAM. 

 When developing a static model of the muscle, the basic 

approach is based on energy modelling. That approach provides 

a relationship between "actuator force, pressure and length", 

showing the length or degree of contraction and the diameter of 

the muscle formed by the forces, the actuator performance, 

taking into account virtual work and energy savings. The Chou 

and Hannaford model is the simplest geometric model for the 

static performance of a PAM (Chou and Hannaford,1996). In 

their approach, PAM actuator is modeled as a cylinder and the 

equation showing the expression between pressure, position and 

pressure according to this model is as follows. In the equation 

1,b is the thread length. n indicates the number of turns of a 

thread. θ angle is defined as the angle between longitudinal axis 

and thread. 

𝑭 = 𝑷′
𝒃𝟐

𝟒𝝅𝒏𝟐
(𝟑𝒄𝒐𝒔𝟐𝜽 − 𝟏)           ( 1) 

 

  The aim of the dynamic model, also known as the 

phenomenological model of PAM, is a simple approach to 

evaluate the dynamic behavior of the pneumatic muscle. In 

dynamic modeling, as seen in  Figure 2, the parallel 

configuration of the muscle, spring, damper and contractile 

element is used. the coefficients corresponding to these three 

elements depend on the input pressure of the PMA (Reynolds et 

al., 2003).  

𝑴�̈� + 𝑩(𝑷)�̇� + 𝑲(𝑷)𝒙 = 𝑭(𝑷) − 𝑴𝒈       (2)   

In equation 2, M is the load mass , g denotes the acceleration of 

gravity. K(P) indicates the spring coefficient. B(P) is damping 

coefficient and it depends on whether the PAM being inflated or 

deflated. F(P) is the effective force provided by the contractile 

element. The details for coefficients could be found in the work 

by Xing (Xing et al 2010). 

 

 

 

 

Figure 1. Festo Fluidic Muscle and Dynamic Characteristics (Festo 2018) 
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Figure 2. Three Element Phenomenological  Model of PAM 

 

2.2. PAM Test Bed Hardware Implementation and 

Data Collection. 

  Pneumatic Artificial Muscle Test Bed that has been used to 

perform experiments is shown in figure 3. The corresponding 

labels for the components of harware are given as follows: 

Electronic Interface and Data Acquisition Module  is indicated 

with label I.  Bourne AMS22 type encoder labeled with II  is 

used for the muscle active length measurement. The pneumatic 

artificial muscle (PAM) indicated with III is the DMSP 20 series 

of Festo and that could  work in the range of 0-7 bars , with a 

length of 250 mm.  Label IV marks  Honeywell 24PCF series 

pressure sensor operating in the range of 0-8 bar. Label V shows 

Matrix MX890 series very fast on/off valves of  used  with 

PWM drives. For the force measurement , Zemic H3-P3 S type 

load cell  with 0-100 kg range is used.  

 
 

 

 

 

 

 

 

  

 

 

Figure 3 Pneumatic Artificial Muscle Test Bed 
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During the experiments, MATLAB /Simulink blocks are used to 

implement data acquisition software for sensors and actuator 

configurations and closed loop controllers.  The Simulink blocks 

are compiled and sent to a microprocessor running in "Data 

Acquisition" unit. In the test bed, ATMEL Arm Cortex M3 

microprocessor card is used to control the system. Initially, the 

accuracy of our PAM test bed is checked by  the emprical 

modelling  experiment  and hence we obtained very similar 

results to that non-linear elastic relation expressed by  

Wickramtunge et al. After that, we have concluded that the 

performance of our test is satisfactory. (Wickramtunge and 

Leephakpreda 2013). The experiments has been performed using 

0.05 Hz  sinusodial reference curves with PID pressure control 

in order to obtain data to be used in modelling. The slow 

pressure reference has been chosen to understand quasi-static 

characteristics of  PAM. The collected data used in Matlab  for 

ANN toolbox. 

2.3. Neural Network Implementation. 
  In this work, in order to model the dynamic behaviour of 

PAM as an integrated  response to pressure input, an Artificial 

Neural Network  was chosen and implemented by using Matlab 

ANN Toolbox. ANN is a basic MLP with 1 hidden layer 

composed of 20 neurons. ANN was trained with Levenberq-

Marquardt algorithm. Structure of ANN is formed  by empirical 

manner. Overall block diagrams of ANN is given in figure 4 and 

5. The experimental data in terms of force, muscle length and 

pressure was collected from the PAM test bed and has been used 

for training and testing  ANN.  As an inverse relation, the force 

data and muscle length data were used as inputs  to ANN and 

pressure value was used as desired output for training and for 

performance analysis. Training and testing performance of  ANN 

is given in figures 6 and 7. Regression results indicate that ANN 

is successfully trained and tested. 
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Figure 4 Block Diagram of  Implemented ANN 

 

 

 Figure 5 Matlab Block Diagram of  ANN 
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Figure 6 Training Performance of ANN 

 

 

Figure 7 Testing Performance of ANN 

3. Results and Discussion  

 After having the ANN successfully implemented and 

trained, three other data set has been used for performance 

analysis. The ANN has been transformed into a Simulink model 

as shown in figure 8.  Different data sets are generated from 

PAM test and has been fed to ANN model test in Simulink. Data 

generation was performed by applying a closed loop PID 

pressure control on PAM test bed with a 0.05Hz sinusoidal 

reference signal varying in 0-7 bar, with the test bed under 

different loads in range of 15-100 kg. During the data 

generation, a full range of muscle contraction (25 %) and 

extension (5 %) has been reached for the  muscle length 

variation.  A random mixture of data is formed  as Input-Output 

vectors by a common sequence index in Matlab. The force and 

muscle length data vector is applied as inputs to ANN where as 

pressure values are used for performance comparison. For 

performance analysis, the output pressure estimation of ANN has 

been compared to experimental pressure values from new data 

set. In figure 9,  the first data set composed of 85 item vectors is 

applied to ANN model and the resultant performance occured as 

quite satisfactory with an error of maximum 5-8 %.  In figure 10 

a similar performance has been observed with another test data 

set.  Moreover, another data set generated by using a faster 

reference signal which is 0.5 Hz is  also applied for longer run. 

Figure 11 indicates the performance of ANN for this long run 

data set. However, percentage error for the fast reference 

performance has  increased due to effect of fast switching on-off 

valves during data generation.  To conclude, those performances  

indicated that a simple ANN could be used as a transforming and 
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mapping control  block between high level and low level. A high 

level desired actuator position in terms of muscle length and a 

simultaneous force generation demand has been mapped into a 

low level  pressure set value to be used  in  PID pressure control 

loop for PAM. 

 

Figure 8 Simulink Performance Test Application 

 

Figure 9 ANN Performance Test Result #1 

 

 

Figure 10 ANN Performance Test Result #2 
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 Figure 11 ANN Performance Test Result #3 

4. Conclusion 

 In this work, apart from previous modeling approaches, the 

behaviour of PAM is foreseen as an integrated  response to 

pressure input, which  results in  simultaneous force and muscle 

length change.  Therefore, standard direct input-output 

identification methods are not suitable for modelling that 

behaviour. An inverse modeling approach is proposed in order to 

utilize it in control applications. The black box model  is 

implemented by an Artificial Neural Network (ANN) structure 

using  the experimental data collected from the PAM test bed. 

According to implementation results, an ANN based inverse 

model has yielded satisfactory performance deducing that it 

could be a simple and effective solution for the PAM control in 

terms of high level to low level mapping. 
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