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Abstract 

In recent years, unmanned aerial vehicle (UAV) applications have been widely used in various manufacturing areas for the purpose of 

material handling or monitoring tasks. This situation increased the importance of proper estimation of UAVs’ location. This paper 

presents hardware based Kalman Filter implementation for UAVs to accurately locate/detect its positions. To maintain high 

performance and compact form factor, Field-programmable Gate Array (FPGA) has been used as a hardware source. However, 

Kalman Filter algorithm needs lots of matrix computation and the typical implementation of matrix computations in hardware is 

complex and requires more effort than traditional software-based approaches. Matrix inversion computation in the Kalman gain 

formula is one of the most difficult matrix calculations in Kalman Filter algorithm and Chebyshev type inversion is used as a matrix 

inversion method to simplify hardware implementation. The proposed method simulated on both Matlab and Vivado based on the 

same scenario and numerical results of Kalman Filter and Chebyshev algorithm compared between these two simulation platforms. 

According to experimental results, the proposed solution serves compact and high performance standalone solution via FPGA for 

Kalman Filter implementation for UAVs.  

Keywords: Unmanned Aerial Vehicle, Kalman Filter, Chebyshev Inversion, Field-programmable Gate Array, Navigation Application, 

Autonomous Systems. 

İnsansız Hava Araçlarının Seyrüsefer Uygulamaları İçin Sahada 

Programlanabilir Kapı Dizisinde Kalman Filtresi Gerçekleştirmesi 

Öz 

Son yıllarda insansız hava aracı (İHA) uygulamaları, malzeme taşıma veya izleme görevleri amacıyla çeşitli imalat alanlarında yaygın 

olarak kullanılmaktadır. Bu durum İHA'ların yerinin doğru tahmin edilmesinin önemini arttırmıştır. Bu makale, İHA'ların 

konumlarının doğru bir şekilde konumlandırılması/tespit edilmesi için donanım tabanlı Kalman Filtresi uygulamasını sunmaktadır. 

İHA’ların yüksek performans ve kompakt form faktörünü korumak için, Alanda Programlanabilir Kapı Dizisi (FPGA) donanım 

kaynağı olarak kullanılmıştır. Bununla birlikte, Kalman Filtre algoritması çok sayıda matris hesaplamasına ihtiyaç duyar. Matris 

hesaplamalarının donanımda tipik uygulaması karmaşıktır ve geleneksel yazılım tabanlı yaklaşımlardan daha fazla çaba gerektirir. 

Kalman kazanç formülündeki matris ters çevirme hesaplaması, Kalman Filtre algoritmasındaki en zor matris hesaplamalarından 

biridir ve donanım uygulamasını basitleştirmek için bir matris ters çevirme yöntemi olarak Chebyshev tipi ters çevirme metodu 

kullanılmıştır. Önerilen yöntem, aynı senaryoya dayalı olarak hem Matlab hem de Vivado üzerinde simülasyonu yapılmıştır ve 

Kalman Filtresi ve Chebyshev algoritmasının sayısal sonuçları bu iki simülasyon platformu arasında karşılaştırılmıştır. Deneysel 

sonuçlara göre, önerilen çözüm, İHA'lara yönelik Kalman Filtre uygulaması için FPGA üzerinden kompakt ve yüksek performanslı 

bağımsız bir çözüm sunmaktadır. 

 

Anahtar Kelimeler: İnsansız Hava Aracı, Kalman Filtresi, Chebyshev Matris Tersi Alma, Sahada Programlanabilir Kapı Dizisi, 

Navigasyon Uygulaması, Otonom Sistemler. 
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1. Introduction 

The number of UAV implementations increase with the 

demand of autonomous systems in production areas that try to 

implement Industry 4.0 solutions.  Because of that, the fast and 

accurate state estimation for UAVs became more necessary and 

important for these production areas such as factories. Study of 

Khosiawan & Nielsen (2016) can be given as indoor application 

for UAVs. 

Kalman Filter is much known estimation algorithm and it has 

been used in diverse areas for navigation and control purposes 

(Kim & Bang, 2019). Hence it is suitable algorithm for state 

estimation of UAVs.  

There are many software based Kalman Filter implementation 

has been in literature; but, UAV applications desires high 

performance in a light and compact form and thus, it can be a 

problem in software-based approaches (Soh & Wu, 2017). 

Hardware implementation approaches offer high performance 

over software-based approaches in terms of a power usage and 

an execution-time. However, hardware implementation 

approaches tend to increase complexity and development time of 

overall design. In addition, they decrease the flexibility with its 

application specific structure. Field-programmable gate arrays 

(FPGAs) are suitable for reducing these disadvantages in 

contrast to traditional application-specific-integrated-circuit 

(ASIC) approaches. Nevertheless, they still need more 

development time than software based approaches (Soh & Wu, 

2017). 

Kalman Filter algorithm includes lots of matrix computations 

such as matrix multiplication and matrix inversion. As the 

dimension of matrixes increase, computation complexity 

increases. Performing matrix inversion calculation on FPGA is 

complex and takes large area. There are two implemented 

methods that are frequently used to calculate the inversion of a 

matrix in hardware: One of them is CORDIC algorithm (Lu et 

al., 2010). The other is QR decomposition (QRD) (Bai et al., 

2012), (Stanislaus & Mohsenin, 2013). However, developing 

and implementing these algorithms in FPGA is not easy. Hence, 

Chebyshev algorithm have been used to find matrix inverse to 

purpose of decreasing complexity and development time (Rico-

Aniles et al., 2014), (Rawal, 2015). 

In this paper, Kalman Filter implementation on FPGA for 

navigation applications of UAVs is presented for the selected 

scenario. The matrix inversion has been implemented on FPGA 

with Chebsyhev type matrix inversion method  that makes easier 

to development process of hardware implementation (Rico-

Aniles et al., 2014), (Rawal, 2015). VHSIC (Very High Speed 

Integrated Circuit) Hardware Description Language (VHDL) 

design on FPGA is demonstrated by using Xilinx Vivado Design 

(WebPack) Program (Xilinx, 2021). The selected scenario is 

simulated using Matlab Program (Mathworks, 2021). There are 

two input sources for the selected scenario: The position and 

velocity values coming from GNSS receiver and the 

accelerometer values coming from the inertial measurement unit 

(IMU). These are generated by using Matlab and these are given 

into the FPGA simulation. The simulation results which are 

obtained by using Matlab are accepted as ground truth. The 

simulation results which are obtained by using FPGA simulation 

are compared with the ground truth results.  

The rest of the paper is planned as follows: The next section 

presents the related works from literature. In Section 3, the 

proposed method is introduced. The selected scenario and the 

simulation results are demonstrated in Section 4. Finally, the last 

section gives some concluding remarks and future issues. 

 

2. Related Works 

Kalman Filter is an estimation method (Kim & Bang, 2019). It 

takes series of measurements as inputs and it generates estimates 

of unknown variables as outputs. It can be used in several areas 

for the purpose of navigation using IMU/GNSS, terrain-

referenced navigation (TRN), battery-range estimation, target 

tracking, control systems and much more. In this work, our 

interest is Kalman Filter for the navigation application by using 

the position and velocity values coming from GNSS receiver and 

the accelerometers values coming from the inertial measurement 

unit (IMU).  

To use a Kalman Filter in GNSS application, first step is 

establishing a proper model with state vector and measurement 

vector. In established model, the UAV state (position and 

velocity) are estimated. Position and velocity (in 3-D) construct 

the state vector below that dimension is 6 (Kim & Bang, 2019): 

𝑥 = [𝑝𝑇 , 𝑣𝑇]𝑇                    Eq. (1) 

where p is position vector, v is the velocity vector in 3 

dimensional space. Then, state vector in time k can be estimated 

by using the previous state vector in time k-1 as; 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑎𝑘−1 + 𝑤𝑘−1    Eq. (2) 

where B is a matrix (control), F is a matrix (state transition),  w 

is a noise generated by process. 

Measurement vector can be formed as; 

𝑧𝑘 =  [
𝑝𝑘

𝑣𝑘
] + 𝑣𝑘            Eq. (3) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘            Eq. (4) 

where 𝑣𝑘 is measurement noise and H is measurement matrix. 

After filter model is established, filter algorithm can be 

started. Kalman Filter comprises of two steps that are prediction 

and update. In prediction step, estimations are made according to 

previous measurement and estimations Eq. (5) and Eq. (6). In 

update step, measurement residual and Kalman gain are 

calculated according to new measurements Eq. (7) and Eq. (8). 

Then, state estimate and error is updated based on Kalman gain 

Eq. (9) and Eq. (10). The prediction and update formulas are 

below (Kim & Bang, 2019): 

 

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘−1     Eq. (5) 

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹𝑇 + 𝑄         Eq. (6) 

𝑦𝑘 =  𝑧𝑘 − 𝐻𝑥𝑘          Eq. (7)  

𝐾𝑘 =  𝑃𝑘𝐻𝑇(𝑅 + 𝐻𝑃𝑘𝐻𝑇)−1   Eq. (8) 

 𝑥𝑘 =  𝑥𝑘 +  𝐾𝑘𝑦            Eq. (9) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘          Eq. (10) 

 

where I is identity matrix and R is measurement noise 

covariance matrix. In order to obtain detail information for this 

issue,  can be studied from Kim  & Bang (2019). 

Matrix inversion implementation on FPGA is not easy. One of 

the solution approaches for matrix inversion implementation on 

FPGA is Chebyshev algorithm. The Chebyshev-type matrix 

inversion method is given by Rico-Aniles et al.(2014) and Rawal 

(2015).  

 

𝑁𝑚+1 =  𝑁𝑚(3𝐼 − 𝐴𝑁𝑚(3𝐼 − 𝐴𝑁𝑚))         Eq. (11) 

 

where 𝑁𝑚+1is a next inverse approximation, 𝑁𝑚 is a previous 

inverse approximation and A is a matrix to be inverted. 
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This algorithm starts with an initial guess and continues 

iteratively until to make true estimation. Hence it is important to 

give a proper initial estimate, otherwise it cannot converge.  

Proper initial guess that assures the method’s convergence can 

be made with Eq. (12) (Rico-Aniles et al., 2014), (Rawal, 

2015) : 

𝑁0 =  
𝐴𝑇

‖𝐴‖1‖𝐴‖∞
                                 Eq. (12) 

where 𝑁0 is initial guess, 𝐴𝑇  is transpose of A, ‖𝐴‖1 is the 

maximum value of the summation of the elements on the each 

column, ‖𝐴‖∞ is the maximum value of the summation of the 

elements on the each row. 

The entire algorithm can be summarized as below (Rico-

Aniles et al., 2014), (Rawal, 2015): 

 

Input: Matrix A 

Precondition: 𝑁0 =  
𝐴𝑇

‖𝐴‖1‖𝐴‖∞
    

Iteration: 

𝑁𝑚+1 =  𝑁𝑚(3𝐼 − 𝐴𝑁𝑚(3𝐼 − 𝐴𝑁𝑚))  
Verification: 

If      𝐴 ∗  𝑁𝑚+1  ≈ 𝐼     stop the algorithm 

Else  𝑁𝑚 =  𝑁𝑚+1       continue iterative stage 

Output: 𝑁𝑚+1 as 𝐴−1 

3. Proposed Method  

In this section, the proposed state estimation method for UAV 

applications is presented. The proposed method uses Kalman 

Filter as an algorithm and uses FPGA as a hardware source.   

 

 
Fig. 1 System blog diagram 

 

System blog diagram is shown in Fig 1. The main inputs of 

the system are measurements z (position and velocity vector) 

and u (accelerometer values).  The main output of the system is 

updated state estimate x_est (position and velocity vectors) that 

represents estimation of new state. 

 KF Logic refers to Kalman Filter state machine algorithm 

that manages prediction and update processes. The main Kalman 

filter calculations are done in block that are state estimate 

prediction, error covariance prediction, calculation  of 

measurement residual, calculation  of Kalman gain, updating 

state estimate and updating error covariance. The multiplier and 

inversion sub blocks include matrix calculation algorithms for 

KF Logic main block. 

The M from 1 to 3 refers multipliers with different sizes for 

matrix multiplications that are 6x6 prod 6x6, 6x6 prod 6x1, 6x3 

prod 3x1. Multipliers use DSP48 slices on FPGA. Because of 

the DSP48 slice count is limited on FPGA, it is not possible to 

calculate all row and columns of matrix multiplication 

simultaneously. Hence, for all multiplier sizes, first matrix is 

taken row by row and multiplication is performed. In order to 

perform a matrix multiplication with two 6x6 matrices, this 

module needs to be used 6 times. 

In the proposed method, VHDL is used as a hardware 

description language and fixed point representation used as a 

data type.  To avoid overflow of fixed point data while sum and 

multiplication calculations, Q16,16 representation is used that 

means 16 bits for integer part, 16 bits for fractional part. In this 

way, it guarantees the represent our calculations in range without 

overflow. Xilinx fixed point library is used to design for fixed 

point calculations (Xilinx, 2021). 

KFLogic block includes two processes that are predict/update 

and Kalman gain calculation. Whereas predict/update process 

includes calculation of 𝑥𝑘 (Eq.5), 𝑃𝑘 (Eq.6, Eq.9 and Eq.10); 

Kalman gain calculation process includes calculation of y (Eq.7) 

and K (Eq. 8). Predict/update process starts with prediction of 

state estimate and error covariance. These calculations include 

matrix multiplications and to perform these calculations, 

multipliers are used in sub-blocks. When the state estimate 

prediction is done, Predict/update process sends a signal to 

Kalman gain calculation process in order to start measurement 

residual and Kalman gain calculation. Matrix inverse calculation 

is required for Kalman gain (Eq. 8). In the proposed system 

Chebyshev inverse algorithm from Rico-Aniles et al.(2014)  is 

used to overcome matrix inverse calculation in Kalman gain 

formula. The inversion block on Fig. 1 includes this algorithm 

implementation. The Chebyshev inverse algorithm is composed 

of three parts that are preconditioning, iterative and verification 

states. When the Kalman gain calculation process sent to  start 

signal to the inversion block to calculate inverse of (𝑅 +
𝐻𝑃𝑘𝐻𝑇) in the Kalman gain formula, the Chebyshev algorithm 

starts preconditioning process with this flag and firstly performs 

its initial guess 𝑁0. This is an iterative algorithm, in each 

iteration find an estimation matrix and check estimation matrix 

multiply input matrix equals to unit matrix in verification state. 

If not equals iteration continues. It is observed that generally it 

takes 8-15 cycle to find inverse matrix. When the inverse 

calculation is done, it sends a finish signal to KFLogic to 

continue its Kalman filter process. 

When the Kalman gain is calculated, predict/update process 

updates state estimate and error covariance (Eq. 9 and Eq. 10). 

One iteration of Kalman filter is completed and the algorithm 

waits for new measurements to pass a new iteration. 

 

4. Experimental Simulation Results 

In order to test the proposed design, testbench feature of 

Xilinx Vivado Design (WebPack) Program is used (Xilinx, 

2021).  Same scenario is simulated on both Matlab and Vivado 

testbench, then compared. In order to simulate the selected 

scenario on Matlab, it has been benefited from Introduction to 

Kalman Filter and Its Applications website (2021) and the 

selected scenario is defined as follows. 
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     In the selected scenario, UAV is assumed to operate in 

outdoor space in a factory. UAV is moving only in x-axis with 

constant speed that is 2m/s and located at (0,0,0) as initial true 

position. For the initial state position, UAV is supposed to 

located at (1,1,1). Its velocity is  2m/s in x-axis and y-axis, 0m/s 

in z-axis that compose the initial system state vector as [1; 1; 1; 

2; 2; 0]. 

     The main inputs, that are accelerometer, GNSS position and 

GNSS velocity values, are generated and corrupted with noise 

with randn function in Matlab at every step.  Standard deviation 

value is selected 0.6 m/s2 in three axes for accelerometer, 

selected 3m in three axes for GNSS position and selected 0.06 

m/s in three axes for GNSS velocity. Then, these input values 

are given to Matlab and essential vector values are generated. 

Thus, these vectors, i.e. u and z, are given to Vivado simulations. 

Estimated position and velocity values on Matlab can be seen 

in Fig. 2 and Fig. 3. Also, Vivado simulation of the same values 

can be seen in Fig. 4 and Fig.5.  

 

      Fig. 2 Estimated position on Matlab 

 

 

    Fig. 3 Estimated velocity on Matlab 

 

 

         Fig. 4 Estimated position on Vivado 

 

           Fig. 5 Estimated velocity on Vivado 

 
    Fig. 6 Vivado testbench simulation of estimated position 

 

On both Matlab and Vivado, estimated values are consistent 

with true values. Hence, it can be said that the Kalman Filter is 

working properly on both simulations. 

 

Table 1 Comparison table between Matlab and Vivado 

 
  

Also, when estimated position and velocity values on both 

simulations are compared to each other (Table 1), it can be 

understood that, hardware solution on FPGA works with high 

precision. 

In addition to entire Kalman Filter simulation, Chebyshev 

algorithm is tested individually on Matlab and its iteration count 

to find inverse matrix are nearly the same in FPGA approach. 

However; because of hardware is faster than software, this 

FPGA implementation saves a huge amount of time as the 

iteration count increase. In Fig. 7 Inverse of matrix A that size is 

6x6 is calculated in Matlab in 12 iterations. In Fig. 8, inverse of 

same matrix is calculated in Vivado testbench. 
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Fig. 7  Chebyshev method tested on Matlab 

 

      Fig. 8  Chebyshev method tested on Vivado testbench 

 

5. Conclusion 

In this paper, Kalman Filter implementation on FPGA for 

navigation applications of UAVs is demonstrated. Synthesizable 

VHDL design on FPGA is presented.  The selected scenario is 

simulated and then it is examined on FPGA simulation. 

Experimental simulation results show that VHDL design on 

FPGA is validated. On the other hand, there is a future issue that 

the proposed method can be examined on the hardware by using 

implementation of the proposed VHDL design. 
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