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Abstract 

Technology rapidly advances on a daily basis and the resulting changes can provide numerousbenefits for manufacturing methods and 

machines. Manufacturers who are able to swiftly embrace thesedevelopments can increase their manufacturing output, thereby 

boosting profitability and gainingcompetitive advantages over their rivals. However, the cost savings which result from new 

innovationscan vary, depending on the manufacturing model. Consequently, manufacturers need to conduct accurateanalyses for 

appropriate manufacturing methods in order to ensure that new changes are cost-effective.Nowadays, the use of industrial automation 

systems is gaining popularity as a method of increasingprofitability for mass production, and these systems utilize control systems, 

such as industrial robots andprogrammable logic controllers. The use of these elements in the manufacturing process not onlyprovides 

quality and flexible production methods, which are indispensable considerations, but alsoconserves human effort. The aim of this 

study was to minimize the cost of a factory-installed industrialautomation system, which produced globe valves with side couplings, 

through the combined use ofindustrial robots and programmable logic controllers. While calculating returns from the installed 

system,the differential evolution algorithm was used to predict future unit prices of electricity, and it wasdetermined that the cost of 

investment would be recovered after a maximum of 2.5 years and that currentyearly production would increase fourfold. 

Keywords: Industrial automation, Programmable logic controller, Industrial robots, Differential evolution algorithm, Prediction. 

Endüstriyel Robot ve PLC Entegrasyonuyla Talaşlı İmalat Üretim 

İşleminin Gerçekleştirilmesi 

Öz 

Üreticiler üretim şekillerini değiştirmeden önce doğru analizler yaparak kendilerine en uygun üretim yöntemini seçmeleri 

gerekmektedir. Bu çalışmada yan rakorlu küresel vana üretilen bir fabrikada Endüstriyel Otomasyon Sistemi kurulmuş ve kurulan bu 

sistemin maliyeti Endüstriyel Robot ve PLC beraber kullanılarak en aza indirilmesi hedeflenmiştir. Üretim yönteminde Endüstriyel 

Robotun kullanılması ve mevcut sistemde ki üretimde bir takım değişiklikler yapılmasıyla esnek üretim sağlanmış ve üretimin 

aksamaması için bazı tedbirler alınmıştır. Kurulan sistem maliyetinin geri dönüşüm süreci hesaplanmasında Diferansiyel Evrim 

Algoritmasından yararlanılarak gelecekteki elektrik birim fiyatları tahmin edilmiştir. Bu çalışmada, yapılan yatırımın en fazla 2,5 yıl 

içerisinde geri döneceği ve mevcut yıllık üretim miktarının da yaklaşık 4 kat artacağı tespit edilmiştir. 

 

Anahtar Kelimeler: Endüstriyel Otomasyon, PLC, Endüstriyel Robot, Diferansiyel Evrim Algoritması. 
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1. Introduction 

As technology advances apace, new innovations have a critical 

effect on our lives. Manufacturing quality and the availability of 

cheap products have become inevitable necessities in today’s 

global markets. The use of automation technologies has made it 

is possible to mass-produce items and lower production costs [1]. 

Automation is defined as the automatic control of a tool, process, 

or system as a result of observation, decision making, and the 

ability to effect changes via mechanical or electronic devices, 

rather than human interaction [2]. An entire task is shared by 

humans and machines, and the sharing ratio of this activity 

effectively determines the level of automation. If human power 

predominates, the resulting system is said to be semi-automated; 

if machine power is dominant, this is known as full automation 

[3]. Industrial automation (IA), which uses modern techniques 

and applications in manufacturing, is an impressive 

manufacturing strategy that leads to ongoing competition 

between rival companies [4]. These systems are capable of 

replacing human power in virtually any business sector and 

utilize vital control systems, such as programmable logic 

controllers (PLC), industrial robots, computers and information 

technologies. This strategy enables quality and flexibility to be 

increased within manufacturing operations, and, on inspecting 

the manufacturing processes of developed countries, it becomes 

immediately obvious when automation systems have been 

widely deployed. 

Industrial robots, which are among the most critical elements 

of industrial automation systems, continue to grow in importance 

on a daily basis [5]. Japan was the first country to use robots in 

industry and, at the time, their introduction brought concerns that 

unemployment would rise. However, their widening usage has 

removed any doubts that this would happen and has, in fact, led 

to many new lines of work, with the result that unemployment 

has decreased substantially [6]. Today, they are most frequently 

used in working environments where there is a risk to human life 

from hazardous conditions, resulting from high temperatures, 

mechanical vibrations, chemicals, and nuclear energy [7]. 

The PLC is another important element of industrial automation 

systems. Intended to replace relay command circuits, the PLC 

was so named because it was only able to perform basic logic 

operations when first introduced. Firms such as Allen Bradley, 

General Electric, Siemens, and Westinghouse produced the first 

medium-cost and high-performance PLCs, allowing this type of 

controller to be applied in industry [3]. As Toshiba, Mitsubishi, 

and Omron developed low-cost, high-performance devices, their 

use in industrial automation systems became even more 

widespread [8]. PLCs have many attributes including, but not 

limited to, flexibility, reliability, ease of expansion, and low 

power consumption. It is possible to control alterations and 

enlarge the system solely by changing the PLC software [9]. 

Various industrial automation studies have been documented 

in which PLCs and industrial robots have been used. In 2007, 

Niola et. al. examined the possibility of using a video system to 

plan a robot’s trajectory, and this was achieved by controlling 

robots with a computer mouse from a personal computer (PC) 

monitor [10]. Dong and Kuang’s 2013 study analyzed the 

communication signals between a Mitsubishi PLC and 

GlaxoSmithKline robot [11]. In 2017, Stückelmaier et al. 

presented a method of gradually increasing the trajectory 

accuracy of industrial robots and examined dynamic modeling, 

definition, and kinematic calibration [12]. Jeong et al. published 

a study, in 2017, that discussed the software architecture of an 

integrated PLC robot, which played a key role in industrial smart 

systems [13]. Chen and Dong conducted studies to increase the 

accuracy and efficiency of robotic engraving and examined the 

feasibility of developing engraving systems that are capable of 

carrying out tasks that were previously thought to be the preserve 

of computer numerical control (CNC) machines [14]. 

In developed countries, engineering services are usually billed 

on an hourly basis. However, this is not the case in developing 

countries, such as Turkey, where remittance usually occurs at 

monthly intervals. In addition, advanced robots are more 

expensive compared to basic machines, and this results in 

additional costs for developing countries. Consequently, 

developed countries are able to use high-end industrial robots, 

that do not require additional engineering services and are 

capable of using PLC software, rather than having to procure 

further control systems. However, installation costs can be 

lowered by the use of a basic robot operating in conjunction with 

a PLC, and a number of studies have been documented that focus 

on reducing this expenditure.  

This study was conducted in an active and physically-

accommodating plant and produced statistical data, which was 

subsequently evaluated. In order to accurately calculate the cost 

of the installed system and determine the payback period, it was 

necessary to establish the price of the total electrical energy that 

the system would expend. This was determined by the use of a 

differential evolution (DE) algorithm to successfully predict 

future unit electricity prices, thereby allowing the total electricity 

bill for the system to be calculated. The DE algorithm is suitable 

for a range of applications in the electrical energy sector and can, 

for example, be used to determine load estimates, which are a 

crucial consideration in this field. Eke successfully estimated 

medium-term load using the DE algorithm [15], and Wang et al. 

used the DE algorithm to predict electrical energy consumption 

[16].  

This study evaluated an automation system, consisting of an 

industrial robot and PLC, which was installed in a factory that 

manufactures side coupling globe valves (SCGV). The findings 

from this exercise were assessed and the costs of the system were 

compared with those that were incurred prior to installation. One 

of the most important aspects of this new system was the PLC, 

which, in combination with the industrial robot, enabled fast 

production. In addition, this study allowed the introduction of 

new techniques to calculate costs and determine the payback 

period. 

This paper is structured as follows: Sections 2 are concerned 

with the installation of the industrial automation system and 

application of the proposed method; and Section 3-4 examines 

the experimental results which were obtained for the installed 

system. 

2. Material and Method 

This study focused on the use of an industrial automation 

system for the manufacture of valves with side couplings. Two 

CNC machines, a 6-axis industrial robot, and a PLC were 

provided for this purpose, and communications between these 

elements were achieved by the use of digital input-output signals.  
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2.1. Industrial Robot and PLC 

An industrial robot is defined, according to ISO 8373, as a 

manipulator with three or more axes, which is programmable, 

multipurpose, and can be either wheeled or stationary [17]. The 

mobility of this manipulator varies according to its number of 

axes and features, and electrical, hydraulic, or pneumatic driver 

systems are used to power its joint movements. An industrial 

robot essentially comprises the manipulator, a teach pendant, and 

controller, while elements that remain outside the system 

boundaries of the robot are termed peripherals. The end effector, 

in this case, a standard pneumatic gripper, is used to grab the 

working parts (Figure 1). Other peripherals include sensors, 

machines, conveyor belts, and security equipment, etc. The 

controller ensures that the industrial robot works in harmony 

with the peripheral devices and performs the desired movements 

[18].  

 
Fig. 1 The Standard Pneumatic Gripper Used as an End 

Effector in this Study. 

PLCs have a microprocessor base, receive information from 

detectors in the field, and process this information as instructed. 

Consequently, they are able to control remote instrumentation 

and can be used in industrial automation systems to execute 

command and control mechanisms. In addition, PLCs are 

industrial computers that are equipped with input and output 

capabilities that enable them to communicate with separate 

devices and work in combination with SCADA [19]. The PLC 

examined in this study allowed the actions of the industrial robot 

and CNC to be synchronized, thereby allowing control of the 

hardware elements in the system. 

2.2. DE Algorithm 

The DE Algorithm was proposed by Storn and Price in 1995 

and is a population-based method that uses operators resembling 

those in genetic instructions, such as mutation, selection, and 

crossing [20]. The DE Algorithm uses the following parameters: 

population size (Np), scaling factor (F), and crossing ratio (Cr). 

The principal steps of the DE Algorithm are: 

Step 1: Determination of the initial population. 

Step 2: Evaluation of the initial population. 

Step 3: Mutation. 

Mutation is a process that adds the scaled difference of two 

random individuals to another individual that has been randomly 

selected from the population. 

𝑣𝑚,𝑡+1 = 𝑥𝑟3,𝑡 + 𝐹 × (𝑥𝑟1,𝑡 − 𝑥𝑟2,𝑡)                                        (1) 

In Equation 1,  𝑣𝑚,𝑡+1 represents the mutated individual, while 

𝑥𝑟1,𝑡 , 𝑥𝑟2,𝑡, and 𝑥𝑟3,𝑡 are randomly selected individuals from the 

population 𝑥𝑟1
≠ 𝑥𝑟2

≠ 𝑥𝑟3
≠ 𝑥𝑖). 

Step 4: Crossing. 

The value of 𝐶𝑟 determines which genes are taken from the 

new individual, due to the mutation. If a randomly-generated 

value between 0 and 1 is less than 𝐶𝑟, it is chosen from 𝑛𝑗,𝑖,𝐺+1; 

if it is greater than C_r, it is selected from the current vector. The 

aim of these operations is to ensure that a previously specified 

ratio of genes are taken from the mutated individual. The 

mathematical expression for the crossing method is: 

𝑥𝑗,𝑢,𝑡+1 = {
𝑥𝑗,𝑖,𝑡        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥𝑗,𝑚,𝑡+1 𝑖𝑓 𝑟𝑎𝑛𝑑[0,1]≤𝐶𝑟 𝑜𝑟 𝑗=𝑗𝑟𝑎𝑛𝑑
                              (2) 

In Equation 2, xu,t+1 represents the candidate individual after 

crossing, and j is the current gene index. If none of the values 

acquired for any gene are less than Cr, the current individual 

remains unchanged. In order to circumvent this situation, a 

randomly-selected gene (jrand) is updated to ensure at least one 

gene mutation occurs. 

Step 5: Choice. 

A choice is made in favor of the candidate individual or 

current individual that best fits the criteria. This practice is 

generally known as the greedy-choice method. A comparison is 

made between the current individual’s purpose function 

performance and the candidate’s solution. 

Step 6: Stopping Criterion. 

Steps 3, 4, and 5 are repeated sequentially until the stopping 

criterion is satisfied. Otherwise, the best solution is reported and 

the algorithm terminates. 

2.3. Installation of the Industrial Automation System 

The components of the industrial automation system 

installed during this study are shown in Figure 2. The system 

comprised two CNC machines, a handling station, an industrial 

robot, and PLC. The CNC machines were positioned directly 

opposite each other, with the robot installed between them, and 

the handling station was placed in front of the robot. The PLC 

controlled the hardware elements of the system and was in 

constant communication with the industrial robot. In addition to 

ensuring that the industrial robot and the CNCs worked in 

synchronization, the PLC controlled the operation of the 

handling station, while the industrial robot commanded the CNC 

machines. A program was written and uploaded to the PLC, in 

order to execute the necessary control operations. 

 
Fig. 2 Illustration of the Control Components of the System. 

Two grippers were used to exchange processed and 

unprocessed parts. The first gripper carried the completed SCGV 
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away from the CNC, while the second gripper transported the 

unprocessed part to the CNC (Figure 3). 

 

(a) Unprocessed Part. 

 

(b) Processed Part. 

Fig. 3 

Having selected appropriate grippers, it was necessary to 

design a handling station that was suitable for use with the robot 

arm. Processed parts were carried to the conveyor by the robot. 

The exchange of parts between the handling station and 

industrial robot was made possible by the use of optical 

proximity sensors, which were keyed at a frequency of 1000 Hz. 

When the part had been completed, the sensors sent a ready 

signal to the robot, which seized it using the gripper. Figure 4 

depicts the position of the sensors on the handling station, while 

Figure 5 shows the use of the gripper to seize a part. 

 
Figure 4. Handling Station 

Sensors. 

 
Figure 5. Gripper 

Receiving a Part. 

In order to ensure that the actions of the handling station and 

CNC machines were coordinated, it was necessary to use a PLC 

with a sufficient number of inputs and outputs. The PLC was 

required to control the handling station, CNC gates, and mirrors, 

and the manufacturer’s proprietary ladder programming language 

was used to ensure this functionality was satisfied. In addition to 

being operated via the industrial robot, the CNC machine gates 

and mirrors were also controlled by the PLC. Manual operation 

was therefore possible when the industrial robot was switched 

off. When the system starts up, the industrial robot initially takes 

the unprocessed part from the handling station (Figure 6 (a)) and 

then hands it to the CNC for processing, while simultaneously 

taking the completed part away from the machine (Figure 6 (b) - 

(c)). Lastly, the robot places the processed part on the conveyor. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6 Industrial Robot Actions. 

Control of the CNC machine’s gates was switched from 

manual to automatic using dual pneumatic valves, a 40 x 40 x 

600 mm piston, and magnetic sensors, which operated at a 

switching frequency of 5000 Hz (Figure 7). 

 

(a) 

 

(b) 

Fig. 7 (a) Piston. (b) Dual Pneumatic Valve. 

Finally the industrial robot was programmed with its integrated 

programming language, which resembled C, to ensure system 

stability. 

2.4. Electricity Price Prediction Using the DE Algorithm 

In order to observe the system’s efficiency and determine the 

payback period, it was necessary to estimate the unit price of 

electricity in the following years. Since electricity prices depend 

on a multitude of parameters, they can be highly variable over a 

period of time. It was therefore necessary to adopt the use of 

robust and reliable methods, through the use of smart systems, to 

provide suitable forecasts. Although there are no documented 

studies concerning the calculation of unit electricity prices, 

numerous enquiries have been carried out into the estimation of 

future energy demand. Many nature-inspired algorithms have 

been used for this purpose and these include a number of 

computational methods, such as the genetic algorithm [21, 22], 

particle swarm optimization [23, 24], ant colony optimization 

[25], artificial bee colony optimization [26], the DE algorithm 

[27], and various hybrid techniques [28]. Studies have also been 

undertaken with regard to the estimation of electricity generation 

and consumption [29-31]. This study adopted the use of the DE 

algorithm, which, in addition to offering efficient performance 

and being easy to apply, was based on the work of Beskirli et al. 

[27], who proposed its use for energy demand estimation in 

preference to other nature-inspired methods. 

Four economic criteria were considered when estimating 

energy demand: gross domestic product (GDP), population, and 

values of imports and exports. [23-27]. These parameters, 

together with electricity generation and consumption, directly 

influence unit electricity prices. Table 1 contains values for these 

6 criteria between 1995 and 2015 [29]. 
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Table 1. Unit electricity price (kWh), GDP, population, values of imports and exports, electricity production and electricity 

consumption for Turkey between 1995 and 2015. 

      Name and number of variables 

      1 2 3 4 5 6 

Year 
Unit Price 

(kWh) 

GDP 

($10^9) 

Population 

(10^6) 

Import 

($10^9) 

Export 

($10^9) 

Electricity 

production 

(10^9) 

Electricity 

consumption 

(10^9) 

1995 0.20 168.08 58.48 35.71 21.64 86.25 67.39 

1996 0.36 181.07 59.42 43.63 23.22 94.86 74.16 

1997 0.71 188.73 60.37 48.56 26.26 103.30 81.89 

1998 1.14 270.94 61.32 45.92 26.97 111.02 87.71 

1999 1.94 247.54 62.28 40.67 26.59 116.44 91.20 

2000 3.43 265.38 63.24 54.50 27.78 124.92 98.30 

2001 4.72 196.73 64.19 41.40 31.33 122.73 97.07 

2002 10.62 230.49 65.14 51.55 36.06 129.40 102.95 

2003 12.00 304.90 66.08 69.34 47.25 140.58 111.77 

2004 11.22 390.38 67.00 97.54 63.17 150.70 121.14 

2005 11.22 481.49 67.90 116.77 73.48 161.96 130.26 

2006 10.00 526.42 68.76 139.58 85.54 176.30 143.07 

2007 9.39 648.75 69.59 170.06 107.27 191.56 155.14 

2008 14.37 742.09 70.44 201.96 132.03 198.42 161.95 

2009 14.15 616.70 71.33 140.93 102.14 194.81 156.89 

2010 15.31 731.60 72.32 185.54 113.88 211.21 172.05 

2011 15.31 773.97 73.40 240.84 134.91 229.40 186.10 

2012 15.81 786.28 74.56 236.54 152.47 239.50 194.92 

2013 18.16 823.04 75.78 251.66 151.81 240.15 198.05 

2014 18.16 799.36 77.03 242.17 157.62 251.96 207.38 

2015 19.28 719.62 78.27 207.23 143.84 261.78 217.31 

 

Examination of Table 1 indicates that, although electricity 

generation and consumption have steadily increased over the 

years, there are periods of time when electricity unit prices have 

stayed relatively constant, or even slightly declined, prior to 

subsequent increases. In general, GDP and the values of imports 

have risen steadily between 1995 and 2013, although they have 

fallen in the last two years of the period considered. 

Two separate models, one linear, the other quadratic, were 

implemented to estimate energy or electricity demand [23, 25-

27]. Of these, the quadratic model proved to be much more 

efficient and was preferred for this study. The quadratic equation 

for four variables can be expressed as follows: 

𝐸𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 = 𝑤1 + 𝑤2𝑋1 + 𝑤3𝑋2 + 𝑤4𝑋3 + 𝑤5𝑋4 +

𝑤6𝑋1𝑋2 + 𝑤7𝑋1𝑋3 + 𝑤8𝑋1𝑋4 + 𝑤9𝑋2𝑋3 + 𝑤10𝑋2𝑋4 +

𝑤11𝑋3𝑋4 + 𝑤12𝑋1
2 + 𝑤13𝑋2

2 + 𝑤14𝑋3
2 + 𝑤15𝑋4

2                  (3) 

The parameters 𝑋1, 𝑋2, 𝑋3, 𝑋4 represent GDP, population, 

values of imports, and values of exports, respectively, while 𝑤1, 

𝑤15 are their corresponding weights. Equation 3 is formulated 

for 4 variables, and if this number increases, the formula must be 

changed accordingly. For 4 variables, there are 15 weights (also 

the dimensions of the problem); when there are 5 variables there 

are 21 weights; and 6 variables require 28 weights. The accuracy 

of the prediction is verified by the purpose function shown in 

Equation 4. 

𝑚𝑖𝑛𝑓(𝑣) = ∑ (𝐸𝑟
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑅

𝑟=1 − 𝐸𝑟
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

)2                          (4) 

𝐸𝑟
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  and 𝐸𝑟

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 are the observed and predicted unit 

electricity prices, respectively, and R is the year in which the 

observation occurs. The main objective is to find the weights 

which correspond to the 𝑚𝑖𝑛𝑓(𝑣) value for each year [27]. The 

smaller 𝑓(𝑣) is, the more accurate the estimate for a given year 

is. 

3. Results 

In this study, experimental testing was carried out using a PC 

equipped with an i5-6400 central processing unit (CPU), an 

AMD Radeon R7-200 graphics processing unit (GPU), and 8 

gigabytes (GB) of random-access memory (RAM). The 

Industrial Automation System was realized in firm facilities. The 

experimental results were separated into three parts; an 
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evaluation of the utility of the system, unit electricity price 

estimates, and cost analysis and payback period calculations. 

3.1. Analysis of the Industrial Automation System Output 

A significant increase in production was noted after the 

industrial robot and PLC had been installed. Prior to automation, 

the daily production output, between 8 a.m. and 6 p.m., was an 

average of 400 units, while after installation the output had risen 

to an average quantity of 585 units. If the system was allowed to 

run round the clock, this output jumped to around 1400 units. 

Previously, daily production was limited to approximately 8 

hours, after the workers’ lunch breaks and recess times had been 

taken into account. Following automation, continuous production 

was possible on a 24-hour basis, and this was the most 

significant benefit to result from installation of the system. 

The system provides an additional advantage in that the PLC 

can allow manual production, if required. Machining is only 

possible with the use of the industrial robot; however, manual 

production is only possible if the PLC and robot are active. 

3.2. Future Projections of Unit Electricity Price 

The data presented in Table 1, over a 21 year period, was used 

for the estimation of electricity unit prices, using the DE 

algorithm. In this analysis, F was taken to be 0.5, while Cr and 

Np were set to values of 0.9 and 100, respectively. The 

maximum number of function evaluations was specified as 

5x105. The variables GDP, population, and values of imports 

and exports were initially tested as stand-alone criteria; 

electricity generation and consumption were then tested in 

combination with the other parameters (Table 2). The quadratic 

form given in Equation 3 was rearranged in accordance with the 

number of variables used. 

 

The DE algorithm was run using variables that were chosen for 

4 different scenarios, and, after 10 trials, the best results were 

selected for use in this study. Table 2 gives the weights and 

errors for the 4 variables used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparisons of Coefficients and Relative Errors. 

 Selected Variables 

Coefficients 1,2,3,4 1,2,3,4,5 1,2,3,4,6 1,2,3,4,5,6 

w1 10.00000 -9.17532 9.62941 -8.48483 

w2 -0.24023 0.09704 3.32920 -2.61183 

w3 -1.29403 -9.99305 1.60644 9.02448 

w4 -3.00539 2.19926 -4.12544 -8.70575 

w5 6.02331 -4.09795 -6.21791 -1.76599 

w6 0.00453 3.31954 -6.13156 9.94205 

w7 0.00122 -0.00483 -0.08804 -7.33863 

w8 0.00204 -0.01348 -0.00783 -0.01581 

w9 0.04775 0.00536 -0.02306 -0.03232 

w10 -0.09946 -0.00096 0.02342 0.21898 

w11 -0.00991 -0.03412 0.15556 0.49497 

w12 -0.00041 0.14561 0.20481 -0.54486 

w13 0.01937 -0.15470 0.04591 -0.29004 

w14 -0.00037 0.06002 0.04389 0.43933 

w15 0.00681 0.01262 -0.07044 1.65158 

w16 - -0.05923 -0.05802 -1.34516 

w17 - 0.00168 0.00228 0.58050 

w18 - 0.24909 0.01065 1.91664 

w19 - -0.00033 0.01433 -2.07848 

w20 - -0.03886 0.03802 -2.73528 

w21 - 0.03174 0.01783 2.86035 

w22 - - - -1.90207 

w23 - - - -0.01904 

w24 - - - -0.55196 

w25 - - - -0.17802 

w26 - - - -0.85209 

w27 - - - -0.38560 

w28 - - - 2.64912 

Error Rate 33.21 9.79 21.83 3016.10 

Examination of Table 2 reveals that the best electric unit price 

estimation, with a 9.79 error rate, resulted from the combination 

of variables 1, 2, 3, 4, and 5. When electricity generation and 

consumption were both included in the calculations, the error 

rate for the estimate became significantly higher in relation to 

other conditions. Incremental increases in the error value 

corresponded to higher fitting values, which are the product of a 

square function [27]. Future projections relied on the 

combination of GDP, population, values of imports, and values 

of exports.  

Figure 8 compares the estimates obtained for variables 1, 2, 3, 

4, and 5, with the values observed between 1995 and 2015. The 

results show that, in general, the estimations were very close to 

the actual values, and it can be concluded that the proposed 

model was reliable and fit for purpose. This is particularly true 

when examining the findings for 2000, 2007, and 2009; although 

some disparity is evident for 2002 and 2003. 
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Fig. 8 

Comparison of Observed and Estimated Electricity Unit Prices. 

 

Three different scenarios were prepared for the estimation of 

electricity unit prices in Turkey, between 2016 and 2035. 

Scenario 1: Between 2016-2035, the following were assumed: 

a mean GDP growth rate of 3%, a population growth rate of 1%, 

an import growth rate of 3%, and a 5% increase in electricity 

production and values of exports. 

Scenario 2: Between 2016-2035, the following were assumed: 

a mean GDP growth rate of 4%, a population growth rate of 2%, 

an import growth rate of 4%, and a 5% increase in electricity 

production and values of exports. 

Scenario 3: Between 2016-2035, the following were assumed: 

a mean GDP growth rate of 6%, a population growth rate of 4%, 

an import growth rate of 6%, and a 7% increase in electricity 

production and values of exports. Table 3 contains future 

projections that were obtained for each scenario, using the 

weight values acquired from the DE algorithm. These scenarios 

were determined by considering low, normal, and high levels of 

increase in the appropriate variables. Examination of the findings 

reveals that Scenario 1 resulted in the highest level of agreement 

between the estimations and actual figures, from 2016 to 2018. 

The rapid increase in unit price observed for Scenario 2 and less 

inflationary trends of Scenarios 1 and 3 are illustrated in Figure 

9. It can be seen that after 2022, the estimates obtained for 

Scenario 3 were initially smaller than those of the other data sets; 

after 2030, however, they quickly increased and went on to 

exceed the values derived for Scenario 1. The results show that 

the estimated figures for Scenarios 2 and 3 continued to increase 

over time, while the values obtained for Scenario 1 fell over the 

last two years of the time frame. 

 

 
 

Fig. 9 Future Projections of Electricity Unit Price for Scenarios 1-3. 
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3.3. Systems Costs and Profit Analysis 

Future projections of the electricity unit price were used to 

carry out a cost and profit analysis, and the following tariffs were 

added to these values: a 40% distribution charge for unilateral 

industry groups, a 1% energy fund, a 5% municipal consumption 

tax (MCT), and 18% value added tax (VAT). Table 3 shows the 

resulting estimates for all three scenarios. 

Table 3. Electricity Prices Estimates Including Tax (Turkish 

kurus). 

 Scenarios 

Year 1 2 3 

2019 39.36 64.54 105.85 

2020 42.94 70.42 115.49 

2021 47.23 77.46 127.04 

2022 52.23 85.66 140.48 

2023 57.89 94.93 155.69 

2024 64.14 105.19 172.52 

2025 70.89 116.27 190.68 

2026 78.00 127.93 209.80 

2027 85.28 139.86 229.37 

2028 92.48 151.67 248.73 

2029 99.28 162.83 267.04 

2030 105.30 172.69 283.21 

2031 110.04 180.46 295.95 

2032 112.89 185.14 303.64 

2033 113.14 185.56 304.31 

2034 109.92 180.26 295.63 

2035 102.16 167.54 274.76 

Two different modes of operation were examined during this 

study. In the first of these (Mode a), it was assumed that the new 

system would work continuously for 24 hours; in the second 

mode (Mode b), it was assumed that work would only take place 

between the hours of 8 a.m. and 6 p.m. The total energy costs of 

the system were calculated for both operating modes, using the 

previous cost estimates with taxes (Table 4). In addition, the 

ticket prices of the control elements of the system were included, 

and the average power consumption of these components was 

taken as 5.5 kW and multiplied by the electricity prices including 

tax. The total number of working days was assumed to be 260, 

allowing for weekends, and the results were multiplied by this 

figure in order to calculate the annual energy costs of the system. 

Table 4. Total Energy Costs of the System for Various 

Scenarios and Operating Modes (103 Turkish lira). 

 Scenarios/ Operating Modes 

 1 2 3 

Year a b a b a b 

2019 13.51 5.63 22.15 9.23 36.33 15.14 

2020 14.74 6.14 24.17 10.07 39.63 16.51 

2021 16.21 6.75 26.59 11.08 43.60 18.17 

2022 17.93 7.47 29.40 12.25 48.21 20.09 

2023 19.87 8.28 32.58 13.58 53.43 22.26 

2024 22.01 9.17 36.10 15.04 59.21 24.67 

2025 24.33 10.14 39.90 16.63 65.44 27.27 

2026 26.77 11.15 43.90 18.29 72.00 30.00 

2027 29.27 12.20 48.00 20.00 78.72 32.80 

2028 31.74 13.22 52.05 21.69 85.37 35.57 

2029 34.07 14.20 55.88 23.28 91.65 38.19 

2030 36.14 15.06 59.27 24.69 97.20 40.50 

2031 37.76 15.74 61.93 25.81 101.57 42.32 

2032 38.74 16.14 63.54 26.48 104.21 43.42 

2033 38.83 16.18 63.68 26.53 104.44 43.52 

2034 37.72 15.72 61.87 25.78 101.46 42.27 

2035 35.06 14.61 57.50 23.96 94.30 39.29 

It was assumed that workers would be paid the minimum 

wage. Since accurate forecasts for the inflation rate were critical 

for reliable estimates, appropriate data was obtained from the 

Central Bank of Turkey. After installation, labor costs were 

largely replaced by the energy costs of the system, and the 

difference between them was multiplied by 260 to give the 

profits shown. 

The price increases for SCGVs were determined in accordance 

with the inflation rate forecasts. SCGV unit prices were 

multiplied by the average daily production figure of 400 and 

number of working days (260) to obtain the annual income prior 

to installation. The corresponding revenue after installation was 

calculated in a similar fashion, and daily production estimates of 

1400 and 585 units were assumed for Modes a and b, 

respectively. 

Table 5 presents the cumulative total profit for each scenario 

and operating mode over the period in question. It should be 

noted that the manufacturer paid an initial system installation 

cost of 42,000 euros. 
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Table 5. Cumulative Total Profit After Installation of the System (103 Turkish lira). 

 Scenarios 

  1 2 3 

Years a b a b a b 

2019 403.40 93.43 394.75 89.82 380.57 83.92 

2020 847.03 196.02 828.96 188.49 799.31 176.14 

2021 1334.62 308.47 1306.17 296.61 1259.51 277.17 

2022 1870.22 431.47 1830.30 414.83 1764.83 387.55 

2023 2458.33 565.80 2405.70 543.87 2319.37 507.90 

2024 3104.08 712.50 3037.36 684.69 2927.93 639.10 

2025 3813.16 872.67 3730.86 838.38 3595.89 782.14 

2026 4591.86 1047.59 4492.43 1006.16 4329.36 938.22 

2027 5447.20 1238.67 5329.04 1189.43 5135.25 1108.69 

2028 6386.96 1447.47 6248.49 1389.77 6021.39 1295.15 

2029 7419.85 1675.81 7259.57 1609.03 6996.71 1499.50 

2030 8555.56 1925.74 8372.15 1849.32 8071.35 1723.99 

2031 9804.89 2199.54 9597.31 2113.05 9256.87 1971.20 

2032 11179.85 2499.80 10947.47 2402.98 10566.37 2244.19 

2033 12693.86 2829.43 12436.62 2722.25 12014.77 2546.47 

2034 14361.85 3191.69 14080.47 3074.45 13619.02 2882.17 

2035 16200.49 3590.27 15896.68 3463.68 15398.43 3256.08 
Initial installation cost was 42,000 euros (222,306 TL, according to exchange rate of 01.06.18). 

Figure 10 shows the profit graphs for the scenarios and 

operating modes in question. It can be seen that if the automated 

system commenced operation in 2019, it would become 

profitable within 2-3 years, assuming 8 a.m. to 6 p.m. working. 

However, if the system was operated on a 24 hour basis, it would 

become profitable within the first year. Although theoretically 

possible, producers prefer to avoid continuous production due to 

the attendant reduction in machine service life. 

 
Fig. 10 Profit Graph of the System. 

4. Discussion and Conclusion 

This study considered the installation of an industrial 

automation system which produced SCGVs. One of the 

innovations that were done in this study is that the Industrial 

Automation System computes the time to return to profitability 

by using artificial intelligence techniques. In contrast to many 

other systems, a PLC was used in addition to an industrial robot 

and, in order to accurately calculate the costs of the installed 

system to the producer, a DE algorithm was used to estimate 

future electricity unit prices in Turkey. Thus the total energy cost 

was calculated and compared with the labor costs prior to 

installation. In the light of this study, the system was expected to 

become profitable within 2.5 years and return considerable gains 

thereafter. 

The use of a PLC provides significant advantages, namely: the 

ability of the system to operate manually, providing continuous 

production, and the option to procure cheaper robots without 

additional features. Furthermore, the resulting simplicity of the 

robot software increases the usability of the system. In summary, 

the installation of this automated system resulted in increased 

production and higher levels of efficiency and flexibility. 

In the future, it may be possible to achieve greater efficiency 

by reducing energy expenditure. The electric energy used by the 

system could be supplied from renewable energy sources, and 

the system could be made more economical. Moreover, the use 

of a wireless communication feature could increase the usability 

of the system by enabling control over a remote computer. 
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