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Abstract

This study presents computational method to examine the displacement and stress distribution within an elastic rod made of different
materials. Steel, aluminum alloys and titanium alloys have been widely used in many engineering fields such as automotive, acrospace,
energy and medical applications. Hence, dynamic displacement and stress distributions in elastic rods manufactured by these materials
has a crucial importance. In order to obtain displacement and stress, wave propagation problem is modeled based on one dimensional
(1-D) wave equation. Boundary conditions are assumed as fixed-free, and elastic rod is subjected to tip displacement at free end, initially.
Analytical solution is performed by means of separation of variables, and natural frequencies and displacement distributions are found.
Computational method is developed based on the discretization of wave equation in space and time parameters utilizing explicit scheme.
Displacement and stress distribution within the elastic rod is obtained computationally. Analytically and computationally obtained
results are compared, and excellent agreement is achieved. Then, parametric analyses are conducted to examine the influences of time,
the level of tip load and material type on displacement and stress distributions. It is observed that developed computational method is
fast and reliable in accurate determination of displacement and stress within elastic rod made of various kinds of materials.

Keywords: Longitudinal wave, Elastic rod, Analytical method, Explicit method, Stress distribution.

flk Uc¢ Yer degistirmesine Maruz Kalan Elastik Cubukta Gerilme
Dagilmi

Oz

Bu calisma, farkli malzemelerden yapilmis bir elastik ¢ubuk icerisindeki yer-degistirme ve gerilme dagilimlarini incelemek igin
hesaplamali bir yontem sunmaktadir. Celik, aliiminyum alagimlari ve titanyum alagimlar1 otomotiv, havacilik, enerji ve tibbi
uygulamalar gibi bircok miihendislik alaninda yaygin olarak kullanilmaktadir. Bu nedenle, bu malzemelerden imal edilen elastik
gubuklarda dinamik yer-degistirme ve gerilme dagilimlari biiyiik 6nem tagimaktadir. Yer-degistirme ve gerilmeyi elde etmek igin dalga
yayilim problemi tek boyutlu (1-D) dalga denklemi esas alinarak modellenmistir. Sinir kosullar1 sabit-serbest olarak kabul edilmistir ve
elastik gubuk baslangigta serbest ugta u¢ yer-degistirmesine maruz birakilmigtir. Analitik ¢6ziim, degiskenlerin ayrilmasi yoluyla
gerceklestirilir ve dogal frekanslar ve yer-degistirme dagilimlari bulunur. Hesaplamali yontem agik (explicit) sema kullanilarak uzay ve
zaman parametrelerinde dalga denkleminin ayriklastirilmasina dayali olarak gelistirilmistir. Elastik ¢cubuk i¢indeki yer-degistirme ve
gerilme dagilimi hesaplamali olarak elde edilir. Analitik ve hesaplamali olarak elde edilen sonuclar karsilastirilir ve mitkemmel bir
uyum saglanir. Daha sonra, zaman, ug yiik seviyesi ve malzeme tipinin yer-degistirme ve gerilme dagilimlarina olan etkisini incelemek
icin parametrik analizler yapilir. Gelistirilen hesaplamali yontemin farkli tiir malzemelerden imal edilmis elastik gubukta yer-degistirme
ve gerilme dagilimlarinin dogru sekilde belirlenmesinde hizl1 ve giivenilir oldugu gézlemlenmistir.

Anahtar Kelimeler: Boyuna dalga, Elastik ¢ubuk, Analitik yontem, A¢ik yontem, Gerilme dagilimu.
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1. Introduction

Bars and rods are widely used in industry as machine
components such as wire rods, connecting rods, crankshafts,
turbine shafts. Therefore, dynamic stress response of these
components are significant in design process. Steels AISI 1006,
AISI 1020 steels are used in panels in automobiles, camshafts,
pins, axles and light duty gears. Ti6Al4V is lightweight and strong
material which is very suitable in the utilization of jet engines, gas
turbines and many airframe components. (Inagaki et al., 2014;
Boyer, 1996; Singh et al., 2017; Uhlmann et al., 2015). However,
marine, automotive, energy and medical industries have interested
this alloy during the last century. Al alloy 6061 is used in
automotive steering knuckles (Jeon et al., 2018) since it was
reported that it reduced the vehicle weight (Sharma et al., 2011;
Vijayarangan et al., 2013). The behavior of the stress waves
within the material is important in the aspect of dynamic material
response. Elastic waves and vibrations of thin rods were examined
(Prescott, 1942). The propagation of longitudinal waves along
cylindrical bars was studied analytically by Kolsky (1954).
Hutchinson (1972) and Hutchinson (1980) investigated vibrations
of finite length rod and solid cylinder. A series solution was
developed for the longitudinal vibration of elastically restrained
rods (Xu et al., 2019). Yang et al. (2021) conducted an analytical
work based on Laplace transformation to find propagation of
stress pulses in a Rayleigh-Love elastic rod. Solution of wave
problems using analytical methods is generally laborious and
time-consuming.

This study shows the efficiency of the computational method
based on explicit scheme for longitudinal wave propagation
problems in elastic rods. Dynamic stress distribution is calculated
through the use of higher order finite difference formula, and
obtained displacement and stress results display a high degree of
accuracy with analytically or theoretically obtained results.
Parametric studies are conducted to observe the effect of time, tip
displacement and material type on displacement and dynamic
stress behavior.

2. Problem Model and Formulation

The general schematic of the addressed problem is depicted by
Fig. 1. Elastic rod with a constant circular cross-section has a
length L and subjected to initial tip displacement u, at the right
end. x axis indicates the longitudinal direction. The left end is
clamped, hence elastic rod is under fixed-free boundary
conditions. The right end of the bar is always stress-free while
interior sections expose to stress sue to wave propagation. E and
£ respectively show the elastic modulus and the mass density of

the material.
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Fig. 1 Elastic rod subjected to initial tip displacement.
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The longitudinal propagation of the wave within the elastic rod is
modelled based on the one-dimensional (1D) wave propagation
equation. This equation involves space and time variables as:

2 2
p@ u(x,t) _E o°u(x,t)

> =, 0<x<L, t20, 1)

ot OX

_o ulLY _, 50
u(o,t) =0, o 0, t=0, 2)
ux,0)= () =u, - 0<x=L 3
u(x0=g(x)  0<x<L @)

The analytical solution of this 1D partial differential equation is
performed by using separation of variables technique as follows:

where ¢ = \/E
o)
X (x) =C,sin(4Ax) +C, cos(Ax), (6)
T (t) = C, sin(Act) + C, cos(Act), @)

When solutions given by Eg. (6) and Eqg. (7) is combined,
following general solution is obtained.
u(x,t) = D, sin(4Ax) cos(Act)
+ D, sin(Ax)sin(Act)
+ D, cos(Ax) cos(Act)
+ D, sin(Ax)sin(Act).

®)

D,, D,, D, and D, are unknown constants to be determined from

boundary and initial conditions. Since U(0,t)=0, D, and D, are
zero. Hence, solution becomes as:

u(x,t) = D, sin(4Ax) cos(Act)

9

+ D, sin(Ax)sin(Act). ©

When stress-free  end boundary condition is applied
u,(L,t) =0, the following equation is obtained.

zn:%, N=¥123,.. (10)

The natural frequencies of the bar is calculated using following
formula:

_ c(2n-1)x

w, , N=F1,23,... (11)
2L
2% x . (nxx
D, =—|u,—sin| — |dx, 12
w =] [ZL] (12)
4 . (nrx 2 nz
D, =2u,| —sin| — |-—cos| — | |, 13
i O(r]z;zz ( 2 ] Nz ( 2 D (13)
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D,, =0, (14)

Unknown coefficients are determined and general solution is
obtained as:

N
u(x,t) =D Dy, sin(4,x)cos(4,ct). (15)
n=1
The computational method is developed based on the explicit
scheme. The governing partial differential equation given by Eqg.
(1) is discretised in space and time.
j+1

i+ i j+ i i
u'" =2u’ +u, :czu‘ —2u, +uH’ (16)

(At)° (Ax)’
Eq. (16) can be written in a more compact form by introducing
the Courant number as & = c At/Ax (Cangellaris, 1993).

ult =—u 20— a®) ! + ot (U, +u ] ) 17

The proper solution can only be generated with convenient
selection of space and time parameters which should satisfy the
von Neumann stability analysis such as:

a=Atoq, (18)
AX

If condition provided by Eq. (18) is not satisfied, no proper
solution can be generated. Boundary condition at fixed-end
requires:

u,) =0. (19)

Boundary condition at stress-free end is applied using central
difference as follows:

Uy,,' =2CAX+U, . (20)

where C =0 due to the since stress-free condition. At each time
step, following equation should be calculated due to the specified
boundary conditions. Space steps and time steps used in explicit
scheme are displayed in Fig. 2. Ax and At show the space and

time steps, respectively. Calculation of displacement u' is
marked with box with red line.

u ™t =—u " +2(1-a?)uy’

+a” (20, +2CAX). @)

1, = 3A¢

&

Time Marching

Fig. 2 Schematics of the explicit scheme for space and time
variables.
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Initial conditions are applied and following starter equation is
obtained.

1
ul =Atg, +(1—a2)ui° +§a2 (v’ + uHO). (22)
Since no velocity is defined within the rod initially, g, =0.

Stress within the elastic rod is calculated using Hooke’s law as
follows:

o =Ee,.

(23)

where &, =ou/ox . Initial theoretical stress in the elastic rod
subjected to tip displacement u, can be calculated using:

u, E

O, il — .
theoretical
L

(24)

The term ou/ox is calculated using higher order forward, centred

and backward finite difference formulations, and computational
stresses are expressed as:

i
o, E%
OoX 25)
[ -u,’ +4u’ —3u,’
2AX ’
I _E o,
' ox
i i i j (26)
-E “Uipp +8ui+1 _8ui—l +U,
12Ax ’
o) = E au,,’!
o @7)
_E 3u,’ —4u,_' +u,_,’
2AX '

3. Results and Discussion

In this section, results are generated to examine the influence
of time, level of tip deflection and material type on displacement
and stress distributions. AISI 1006 (CD), AISI 1020 (CD),
Ti6Al4V and Al alloy 6061 were utilized in longitudinal wave
propagation analysis. Table 1 shows material properties (elastic
modulus and mass density) for these materials with constituent
elements as well (Matweb, 2021). It is observed that the elastic
modulus for AISI 1006 (CD) is the highest while elastic modulus
of the Al alloy 6061 is the lowest. Elastic modulus for the AISI
1020 (CD) steel is less than that of AISI 1006 (CD) steel since
Carbon composition is increased 0.17-0.23% for this material.

Table 2 indicates wave propagation speeds for different
materials utilized in wave propagation and stress analysis in the
elastic rod.

Fig. 3 illustrates the mode shapes of the fixed-free elastic rod.
While generating mode shapes, Eq. (6) is used. Maximum
deflection is seen at Mode 1 at the free end of the rod. As Mode
number is increased to 2, 3, 4, 5,..., etc. deflection tend to
decrease within the rod. The natural frequencies are generated for
Ti6AI4V rod based on Eq. (11), and these frequencies are
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provided in Table 3. Natural frequencies are increasing for higher
mode numbers. First natural frequencies for AISI 1006 (CD),
AISI 1020 (CD), Al alloy 6061 are 8035.4 Hz, 7636.4 Hz, 7940
Hz, respectively. The lowest natural frequency is observed for
AISI 1020 (CD) steel.

Table 1. Material properties.

Density
[kg/m?]

Elastic
Modulus
(GPa)

Material Constituents

<=0.08% C
99.43-99.75% Fe
0.25-0.40% Mn
<=0.040% P
<=0.050% S
0.17-0.23% C
99.08-99.53% Fe
0.30-0.60% Mn
<=0.040% P
<=0.050% S
<=0.08% C
<=0.015% H
<=0.040% Fe
<=0.030% N
87.725-91% Ti
3.5-45% V
Others <=0.30%
96.15-98.61% Al
0.040-0.35% Cr
0.15-0.40% Cu
<=0.70% Fe
0.80-1.2% Mg

AISI 1006

(CD) 206 7872

AISI 1020

(CD) 186 7870

Ti6AlI4V 113.8 4430

Al alloy

6061 69.0 2700

Table 2. Longitudinal wave propagation speeds for various

materials.
Material Wave speed ¢ [m/s]
AISI 1006 (CD) 5115.5
AlSI 1020 (CD) 4861.5
Ti6AI4V 5068.4
Al alloy 6061 5055.3

Table 3. Natural frequencies for Ti6Al4V elastic rod.

Mode no Frequency [Hz]
1 7961.39
2 23884.18
3 39806.97
4 55729.76
5 71652.55

Longitudinal wave propagates from the free end towards the
fixed end of rod. The length of the rod is assumed as L =1m.

This wave reaches the fixed end at specified time named as
reflection time t,. When longitudinal wave hits the fixed end, it

reflects from this fixed end and propagates back to the free-end.
The reflection time can simply be found by,

(28)
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Fig. 4 depicts the displacement distribution in the elastic rod
made of Ti6AI4V for various times corresponds to before

reflection (t, /2), reflection (t,) and after reflection (3t, /2).

Mode Shapes

0.001

0.0008 |

0.0006 [

0.0004 [

Displacement [m]

0.0002

-0.0002
a

x[m]

Fig. 3 Mode shapes of the elastic rod.
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Fig. 4 Displacement distribution in Ti6Al4V rod for various
time, u, =1mm, (@) t=t, /2, (b) t=t,,(c) t=3t /2.
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Black solid line shows the displacement distribution obtained by
analytical solution while green dot points indicate displacement
distribution acquired by computational method. It can obviously
seen that results obtained by two different methods exhibit high
level of accuracy, that implies the power of computational method
on wave propagation analysis. Fig. 4(a) and Fig. 4(c) shows
displacements before reflection and after reflection, respectively.
Slight amount of difference occur between analytical and

computational results only in reflection time (t,) as seen in Fig.
4(b) due to the participation of rounding errors at that time.

Fig. 5(a) illustrates the displacement distribution within the
Ti6Al4V rod for various levels of the initial tip displacement.
Timeissetto t=t,/2 which shows the wave propagation before
the reflection. Displacement level becomes the half of the applied
initial tip displacement in the middle of the rod (L/2). It can be
inferred from Fig. 5(a) that computational result display a high
degree of accuracy with analytical result for various levels of
initial tip displacement. Fig. 5(b) demonstrates the dynamic stress
distribution obtained computationally in Ti6Al4V rod by red dot
points at time t=t, /2 (before reflection). The black solid line in
Fig. 5(b) indicates theoretical initial stress within the Ti6Al4V rod
according to the formula given in Eq. (24). Hence these stresses
are 113.8 MPa, 227.8 MPa and 569 MPa for tip displacements
U, =1mm, u, =2mmand u, =5mm, respectively. Longitudinal
wave propagation starts from free-end at t=0 and when time
become t =t, /2, this wave stands in the middle of the rod (L/2).

Therefore, dynamic stress tend to zero (o =0) after x=0.5m.

Between the interval of 0<x<0.5m,stresses are not zero and

again theoretically obtained initial stress and computationally
acquired dynamic stress display a high level of accuracy. Fig. 6 -
Fig. 9 show stress distribution in AISI 1006 (CD), AISI 1020

a) -

220

stress[MPa]

200

ess{MPa)

st

(CD), Ti6Al4V, Al alloy 6061 rod, respectively. Black solid line
shows the theoretical stress initially and blue dot points show

dynamic stresses at initial time u,”. In these figures, red dotted

lines demonstrate dynamic stress distribution obtained by
developed computational method.

Uy :Smm%l

Disp ufmm]

400 |

stress{MPa]
8

m)
Fig. 5 (a) Displacement, (b) Stress distribution in Ti6Al4V rod
for various values of tip displacements, u, =1mm, u, =2mm,
U, =5mm.
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sqm]
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-6~ Sirsss (dynamic@iinal e}

stressMPa]

Fig. 6 Dynamic stress distribution in AlSI 1006 (CD) steel rod for various values time u, =1mm,
(@) t=0s,(b)t=t, /2,(c) t=t,(d) t=3/2t,.
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Fig. 8 Dynamic stress distribution in Ti6Al4V (Gradeb) rod for various values time u, =1mm, (a)
t=0s,(b) t=t /2, (c) t=t,(d) t=3/2t,.
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Fig. 9 Dynamic stress distribution in Al6061 Alloy rod for various values time u, =1mm, (a) t = 0s,
(b) t=t, /2, (c) t=t,(d) t=3/2t,.

4. Discussions

Structural steel AISI 1006 (CD), AISI 1020 (CD), Ti6Al4V
and Aluminium alloys such as Al 6061 are widely used in many
engineering fields such as mechanical, automotive, aerospace and
energy. Therefore, dynamic response of these materials has a
considerable importance in mechanical assemblages. Problem is
handled considering elastic rod with uniform cross-section made
of different materials. Longitudinal wave propagation is modelled
using one-dimensional (1D) wave propagation equation.
Boundary and initial conditions are determined. In order to find
dynamic displacement and stress distribution, wave equation is
solved by means of analytical and computational methods.
Computational method is developed based on discretization of the
PDE with explicit scheme. Analytically and computationally
developed results exhibit a very good agreement, which shows
accuracy and reliability of the computational method. Then,
parametric analyses are carried out to assess the effects of time,
level of tip load and material type on dynamic displacement and
stress behaviour.

e Wave propagation speed is the minimum for the AISI

1020 (CD) steel while it is maximum for AISI 1006 (CD)
steel. Natural frequencies are:

Opisi1020(cp) < Puigosr < Prisaiav < @ ais11006(CD)

e Increase in the initial tip displacement leads to increase in
the dynamic stress distribution.

e Before the reflection of the wave at t=t, /2, dynamic
stress is positive within [0,L/2], and it is zero in
[L/2,L].

e At the reflection time t =t,, stress is zero throughout the
rod. Very small rises and drops occur due to the rounding

e-ISSN: 2148-2683

errors of the computational method. However, it can be
acceptable.
o After the reflection of the wave at t=23t, /2, dynamic

stress is negative within [0,L/2], and it is zero in
[L/2,L].
e  The level of dynamic stress is obtained as:

O neos1 < Orisaiav < Oaisinozocp) < O Als11006(cD)

5. Conclusions

The following main conclusions can be drawn from this study:
e Developed computational method based on explicit
scheme is observed fast and reliable in determination of
dynamic displacement and stresses distribution within
elastic rod made of various materials.

e Analytical solution for wave propagation problems may
not easily be found for machine parts with non-uniform
cross-section and non-homogenous boundary conditions.
Developed computational technique can be used to find
dynamic response of machine components made of
different materials under various boundary and initial
conditions.
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