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Abstract 

This study presents computational method to examine the displacement and stress distribution within an elastic rod made of different 

materials. Steel, aluminum alloys and titanium alloys have been widely used in many engineering fields such as automotive, aerospace, 

energy and medical applications. Hence, dynamic displacement and stress distributions in elastic rods manufactured by these materials 

has a crucial importance. In order to obtain displacement and stress, wave propagation problem is modeled based on one dimensional 

(1-D) wave equation. Boundary conditions are assumed as fixed-free, and elastic rod is subjected to tip displacement at free end, initially. 

Analytical solution is performed by means of separation of variables, and natural frequencies and displacement distributions are found. 

Computational method is developed based on the discretization of wave equation in space and time parameters utilizing explicit scheme. 

Displacement and stress distribution within the elastic rod is obtained computationally. Analytically and computationally obtained 

results are compared, and excellent agreement is achieved. Then, parametric analyses are conducted to examine the influences of time, 

the level of tip load and material type on displacement and stress distributions. It is observed that developed computational method is 

fast and reliable in accurate determination of displacement and stress within elastic rod made of various kinds of materials. 

Keywords: Longitudinal wave, Elastic rod, Analytical method, Explicit method, Stress distribution.   

İlk Uç Yer değiştirmesine Maruz Kalan Elastik Çubukta Gerilme 

Dağılımı 

Öz 

Bu çalışma, farklı malzemelerden yapılmış bir elastik çubuk içerisindeki yer-değiştirme ve gerilme dağılımlarını incelemek için 

hesaplamalı bir yöntem sunmaktadır. Çelik, alüminyum alaşımları ve titanyum alaşımları otomotiv, havacılık, enerji ve tıbbi 

uygulamalar gibi birçok mühendislik alanında yaygın olarak kullanılmaktadır. Bu nedenle, bu malzemelerden imal edilen elastik 

çubuklarda dinamik yer-değiştirme ve gerilme dağılımları büyük önem taşımaktadır. Yer-değiştirme ve gerilmeyi elde etmek için dalga 

yayılım problemi tek boyutlu (1-D) dalga denklemi esas alınarak modellenmiştir. Sınır koşulları sabit-serbest olarak kabul edilmiştir ve 

elastik çubuk başlangıçta serbest uçta uç yer-değiştirmesine maruz bırakılmıştır. Analitik çözüm, değişkenlerin ayrılması yoluyla 

gerçekleştirilir ve doğal frekanslar ve yer-değiştirme dağılımları bulunur. Hesaplamalı yöntem açık (explicit) şema kullanılarak uzay ve 

zaman parametrelerinde dalga denkleminin ayrıklaştırılmasına dayalı olarak geliştirilmiştir. Elastik çubuk içindeki yer-değiştirme ve 

gerilme dağılımı hesaplamalı olarak elde edilir. Analitik ve hesaplamalı olarak elde edilen sonuçlar karşılaştırılır ve mükemmel bir 

uyum sağlanır. Daha sonra, zaman, uç yük seviyesi ve malzeme tipinin yer-değiştirme ve gerilme dağılımlarına olan etkisini incelemek 

için parametrik analizler yapılır. Geliştirilen hesaplamalı yöntemin farklı tür malzemelerden imal edilmiş elastik çubukta yer-değiştirme 

ve gerilme dağılımlarının doğru şekilde belirlenmesinde hızlı ve güvenilir olduğu gözlemlenmiştir. 
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1. Introduction 

Bars and rods are widely used in industry as machine 

components such as wire rods, connecting rods, crankshafts, 

turbine shafts. Therefore, dynamic stress response of these 

components are significant in design process. Steels AISI 1006, 

AISI 1020 steels are used in panels in automobiles, camshafts, 

pins, axles and light duty gears. Ti6Al4V is lightweight and strong 

material which is very suitable in the utilization of jet engines, gas 

turbines and many airframe components. (Inagaki et al., 2014; 

Boyer, 1996; Singh et al., 2017; Uhlmann et al., 2015). However, 

marine, automotive, energy and medical industries have interested 

this alloy during the last century. Al alloy 6061 is used in 

automotive steering knuckles (Jeon et al., 2018) since it was 

reported that it reduced the vehicle weight (Sharma et al., 2011; 

Vijayarangan et al., 2013). The behavior of the stress waves 

within the material is important in the aspect of dynamic material 

response. Elastic waves and vibrations of thin rods were examined 

(Prescott, 1942). The propagation of longitudinal waves along 

cylindrical bars was studied analytically by Kolsky (1954). 

Hutchinson (1972) and Hutchinson (1980) investigated vibrations 

of finite length rod and solid cylinder. A series solution was 

developed for the longitudinal vibration of elastically restrained 

rods (Xu et al., 2019). Yang et al. (2021) conducted an analytical 

work based on Laplace transformation to find propagation of 

stress pulses in a Rayleigh-Love elastic rod. Solution of wave 

problems using analytical methods is generally laborious and 

time-consuming.  

This study shows the efficiency of the computational method 

based on explicit scheme for longitudinal wave propagation 

problems in elastic rods. Dynamic stress distribution is calculated 

through the use  of higher order finite difference formula, and 

obtained displacement and stress results display a high degree of 

accuracy with analytically or theoretically obtained results. 

Parametric studies are conducted to observe the effect of time, tip 

displacement and material type on displacement and dynamic 

stress behavior. 

2. Problem Model and Formulation 

The general schematic of the addressed problem is depicted by 

Fig. 1. Elastic rod with a constant circular cross-section has a 

length L and subjected to initial tip displacement 0u  at the right 

end. x  axis indicates the longitudinal direction. The left end is 

clamped, hence elastic rod is under fixed-free boundary 

conditions. The right end of the bar is always stress-free while 

interior sections expose to stress sue to wave propagation. E  and 
  respectively show the elastic modulus and the mass density of 

the material.  

 

Fig. 1 Elastic rod subjected to initial tip displacement. 

The longitudinal propagation of the wave within the elastic rod is 

modelled based on the one-dimensional (1D) wave propagation 

equation. This equation involves space and time variables as: 
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The analytical solution of this 1D partial differential equation is 

performed by using separation of variables technique as follows: 
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When solutions given by Eq. (6) and Eq. (7) is combined, 

following general solution is obtained. 
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1,D 2 ,D 3D and
4D are unknown constants to be determined from 

boundary and initial conditions. Since (0, ) 0,u t 
3D and 4D are 

zero. Hence, solution becomes as: 
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When stress-free end boundary condition is applied 

( , ) 0,xu L t   the following equation is obtained. 
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The natural frequencies of the bar is calculated using following 

formula: 
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2 0,nD                                                                               (14) 

 

Unknown coefficients are determined and general solution is 

obtained as: 
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The computational method is developed based on the explicit 

scheme. The governing partial differential equation given by Eq. 

(1) is discretised in space and time. 
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Eq. (16) can be written in a more compact form by introducing 

the Courant number as c t x     (Cangellaris, 1993). 
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The proper solution can only be generated with convenient 

selection of space and time parameters which should satisfy the 

von Neumann stability analysis such as: 
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If condition provided by Eq. (18) is not satisfied, no proper 

solution can be generated. Boundary condition at fixed-end 

requires: 
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Boundary condition at stress-free end is applied using central 

difference as follows: 
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where 0C   due to the since stress-free condition. At each time 

step, following equation should be calculated due to the specified 

boundary conditions. Space steps and time steps used in explicit 

scheme are displayed in Fig. 2. x  and t  show the space and 

time steps, respectively. Calculation of displacement 
1

iu  is 

marked with box with red line. 
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Fig. 2 Schematics of the explicit scheme for space and time 

variables. 

Initial conditions are applied and following starter equation is 

obtained. 

   1 2 0 2 0 0

1 1

1
1 .

2
i i i i iu t g u u u                                 (22) 

Since no velocity is defined within the rod initially, 0.ig    

Stress within the elastic rod is calculated using Hooke’s law as 

follows: 

 

.xE                                                                                   (23) 

  

where x u x    . Initial theoretical stress in the elastic rod 

subjected to tip displacement
0u can be calculated using: 
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The term u x   is calculated using higher order forward, centred 

and backward finite difference formulations, and computational 

stresses are expressed as: 
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3. Results and Discussion  

In this section, results are generated to examine the influence 

of time, level of tip deflection and material type on displacement 

and stress distributions. AISI 1006 (CD), AISI 1020 (CD), 

Ti6Al4V and Al alloy 6061 were utilized in longitudinal wave 

propagation analysis. Table 1 shows material properties (elastic 

modulus and mass density) for these materials with constituent 

elements as well (Matweb, 2021). It is observed that the elastic 

modulus for AISI 1006 (CD) is the highest while elastic modulus 

of the Al alloy 6061 is the lowest. Elastic modulus for the AISI 

1020 (CD) steel is less than that of AISI 1006 (CD) steel since 

Carbon composition is increased 0.17-0.23% for this material. 

Table 2 indicates wave propagation speeds for different 

materials utilized in wave propagation and stress analysis in the 

elastic rod. 

Fig. 3 illustrates the mode shapes of the fixed-free elastic rod. 

While generating mode shapes, Eq. (6) is used. Maximum 

deflection is seen at Mode 1 at the free end of the rod. As Mode 

number is increased to 2, 3, 4, 5,…, etc. deflection tend to 

decrease within the rod. The natural frequencies are generated for 

Ti6Al4V rod based on Eq. (11), and these frequencies are 
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provided in Table 3. Natural frequencies are increasing for higher 

mode numbers.  First natural frequencies for AISI 1006 (CD), 

AISI 1020 (CD), Al alloy 6061 are 8035.4 Hz, 7636.4 Hz, 7940 

Hz, respectively. The lowest natural frequency is observed for 

AISI 1020 (CD) steel.  

Table 1. Material properties. 

Material 

Elastic 

Modulus 

(GPa) 

Density 

[kg/m3] Constituents 

AISI 1006 

(CD) 
206 

 

 

7872 

<=0.08% C 

99.43-99.75% Fe 

0.25-0.40% Mn 

<=0.040% P 

<=0.050% S 

AISI 1020 

(CD) 
186 

 

 

7870 

0.17-0.23% C 

99.08-99.53% Fe 

0.30-0.60% Mn 

<=0.040% P 

<=0.050% S 

Ti6Al4V 113.8 

 

 

 

4430 

<=0.08% C 

<=0.015% H 

<=0.040% Fe 

<=0.030% N 

87.725-91% Ti 

3.5-4.5% V 

Others <=0.30% 

Al alloy 

6061  
69.0 

 

 

2700 

96.15-98.61% Al 

0.040-0.35% Cr 

0.15-0.40% Cu 

<=0.70% Fe 

0.80-1.2% Mg 

 

Table 2. Longitudinal wave propagation speeds for various 

materials. 

Material Wave speed c [m/s] 

AISI 1006 (CD)  5115.5 

AISI 1020 (CD) 4861.5 

Ti6Al4V 5068.4 

Al alloy 6061 5055.3 

 

Table 3. Natural frequencies for Ti6Al4V elastic rod. 

Mode no Frequency [Hz] 

1 7961.39 

2 23884.18 

3 39806.97 

4 55729.76 

5 71652.55 

   

Longitudinal wave propagates from the free end towards the 

fixed end of rod. The length of the rod is assumed as 1 .L m

This wave reaches the fixed end at specified time named as 

reflection time rt . When longitudinal wave hits the fixed end, it 

reflects from this fixed end and propagates back to the free-end. 

The reflection time can simply be found by, 

 

.r

L
t

c
                                                                               (28) 

 

 Fig. 4 depicts the displacement distribution in the elastic rod 

made of Ti6Al4V for various times corresponds to before 

reflection  2rt , reflection  rt  and after reflection  3 2rt .  

 

Fig. 3 Mode shapes of the elastic rod. 

 

 

 

Fig. 4 Displacement distribution in Ti6Al4V rod for various 

time, 0 1 ,u mm  (a) / 2,rt t  (b) ,rt t (c) 3 / 2.rt t  

a) 

b) 

c) 
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Black solid line shows the displacement distribution obtained by 

analytical solution while green dot points indicate displacement 

distribution acquired by computational method. It can obviously 

seen that results obtained by two different methods exhibit high 

level of accuracy, that implies the power of computational method 

on wave propagation analysis. Fig. 4(a) and Fig. 4(c) shows 

displacements before reflection and after reflection, respectively. 

Slight amount of difference occur between analytical and 

computational results only in reflection time  rt  as seen in Fig. 

4(b) due to the participation of rounding errors at that time. 

 

Fig. 5(a) illustrates the displacement distribution within the 

Ti6Al4V rod for various levels of the initial tip displacement. 

Time is set to 2rt t  which shows the wave propagation before 

the reflection. Displacement level becomes the half of the applied 

initial tip displacement in the middle of the rod  2 .L  It can be 

inferred from Fig. 5(a) that computational result display a high 

degree of accuracy with analytical result for various levels of 

initial tip displacement. Fig. 5(b) demonstrates the dynamic stress 

distribution obtained computationally in Ti6Al4V rod by red dot 

points at time 2rt t  (before reflection). The black solid line in 

Fig. 5(b) indicates theoretical initial stress within the Ti6Al4V rod 

according to the formula given in Eq. (24). Hence these stresses 

are 113.8 MPa, 227.8 MPa and 569 MPa for tip displacements 

0 1 ,u mm   0 2u mm and 0 5 ,u mm respectively. Longitudinal 

wave propagation starts from free-end at 0t   and when time 

become 2,rt t  this wave stands in the middle of the rod  2 .L  

Therefore, dynamic stress tend to zero  0   after 0.5 .x m  

Between the interval of 0 0.5 ,x m  stresses are not zero and 

again theoretically obtained initial stress and computationally 

acquired dynamic stress display a high level of accuracy. Fig.  6 -  

Fig. 9 show stress distribution in AISI 1006 (CD), AISI 1020 

(CD), Ti6Al4V, Al alloy 6061 rod, respectively. Black solid line 

shows the theoretical stress initially and blue dot points show 

dynamic stresses at initial time 0 .iu  In these figures, red dotted 

lines demonstrate dynamic stress distribution obtained by 

developed computational method. 

 

 

 

Fig. 5 (a) Displacement, (b) Stress distribution in Ti6Al4V rod 

for various values of tip displacements, 0 1 ,u mm 0 2 ,u mm

0 5 .u mm  

0 5u mm   

0 2u mm   

0 1u mm   

0 5u mm   

0 2u mm   

0 1u mm   

 

  

Fig. 6 Dynamic stress distribution in AISI 1006 (CD) steel rod for various values time 0 1 ,u mm   

 (a) 0 ,t s (b) / 2,rt t (c) ,rt t (d) 3 2 .rt t  

 

a) 

b) 

a) b) 

c) d) 
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Fig. 7 Dynamic stress distribution in AISI 1020 (CD) steel rod for various values time 0 1 ,u mm  (a) 0 ,t s (b) / 2,rt t  

(c) ,rt t (d) 3 2 .rt t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Dynamic stress distribution in Steel-1006 (CD) rod for various values time, (a) (b)  (c) (d) 

 

  

  

Fig. 8 Dynamic stress distribution in Ti6Al4V (Grade5) rod for various values time 0 1 ,u mm  (a) 

0 ,t s (b) / 2,rt t  (c) ,rt t (d) 3 2 .rt t  

 

 

 

 

 

 

a) b) 

c) d) 

a) b) 

c) d) 
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4. Discussions 

Structural steel AISI 1006 (CD), AISI 1020 (CD), Ti6Al4V 

and Aluminium alloys such as Al 6061 are widely used in many 

engineering fields such as mechanical, automotive, aerospace and 

energy. Therefore, dynamic response of these materials has a 

considerable importance in mechanical assemblages. Problem is 

handled considering elastic rod with uniform cross-section made 

of different materials. Longitudinal wave propagation is modelled 

using one-dimensional (1D) wave propagation equation. 

Boundary and initial conditions are determined. In order to find 

dynamic displacement and stress distribution, wave equation is 

solved by means of analytical and computational methods. 

Computational method is developed based on discretization of the 

PDE with explicit scheme. Analytically and computationally 

developed results exhibit a very good agreement, which shows 

accuracy and reliability of the computational method. Then, 

parametric analyses are carried out to assess the effects of time, 

level of tip load and material type on dynamic displacement and 

stress behaviour.  

 Wave propagation speed is the minimum for the AISI 

1020 (CD) steel while it is maximum for AISI 1006 (CD) 

steel. Natural frequencies are: 

       1020( ) 6061 6 4 1006( )AISI CD Al Ti Al V AISI CD        

 Increase in the initial tip displacement leads to increase in 

the dynamic stress distribution.  

 Before the reflection of the wave at 2,rt t  dynamic 

stress is positive within  0, 2 ,L  and it is zero in 

 2, .L L  

 At the reflection time ,rt t stress is zero throughout the 

rod. Very small rises and drops occur due to the rounding 

errors of the computational method. However, it can be 

acceptable.  

 After the reflection of the wave at 3 2,rt t  dynamic 

stress is negative within  0, 2 ,L  and it is zero in 

 2, .L L  

 The level of dynamic stress is obtained as: 

    6061 6 4 1020( ) 1006( )Al Ti Al V AISI CD AISI CD       

5. Conclusions 

The following main conclusions can be drawn from this study:  

 Developed computational method based on explicit 

scheme is observed fast and reliable in determination of 

dynamic displacement and stresses distribution within 

elastic rod made of various materials. 

 Analytical solution for wave propagation problems may 

not easily be found for machine parts with non-uniform 

cross-section and non-homogenous boundary conditions. 

Developed computational technique can be used to find 

dynamic response of machine components made of 

different materials under various boundary and initial 

conditions.  
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