Comparison of Some Numerical Approaches for Determination of Dynamic Characteristics in Beam and Plate Elements

Mustafa Tolga Yavuz ${ }^{1 *}$, Ibrahim Ozkol ${ }^{2}$
$\mathbf{1}^{* *}$ Istanbul Technical University, Department of Aeronautical Engineering, İstanbul, Turkey, (ORCID: 0000-0001-7728-3713), yavuzmusta@itu.edu.tr
${ }^{2}$ Istanbul Technical University, Department of Aeronautical Engineering, İstanbul, Turkey, (ORCID: 0000-0002-9300-9092), ozkol@itu.edu.tr

(1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021)
(DOI: 10.31590/ejosat.1011242)
ATIF/REFERENCE: Yavuz, M. T., Ozkol, I. (2021). Comparison of Some Numerical Approaches for Determination of Dynamic Characteristics in Beam and Plate Elements. European Journal of Science and Technology, (28), 1454-1468.

Abstract

In the last few decades, many numerical methods have been developed and employed to solve for various types of linear and nonlinear equations due to challenges in the aspect of the implementation of governing equations and boundary conditions, computation time, algorithm complexity, accuracy, convergency, stability of the solution and so on. Of the numerical methods in the open literature, differential quadrature (DQM), differential transform (DTM), and finite difference (FDM) methods are expressed briefly with their algorithms and compared to each other for the modal analysis of beam and plate elements. For simplicity, shear strains effects are neglected for the chosen structural elements, and plate element is reduced to one-dimensional case up to chosen simply-supported boundary condition. Under these assumptions, computed non-dimensional natural frequencies by applying concerned methods are tabulated, and mode shapes are plotted. To understand the strength and accuracy of employed methods, numerical results in the high vibration modes are investigated, and it is seen that DTM gives faster and more accurate solutions while the results of DQM depend on chosen grid distribution and has less accurate than DTM. However, the ease of implementation and accurate results for multidimensional cases are pros properties of the DQM.

Keywords: Dynamic Characteristics, Differential Quadrature, Differential Transform, Euler Beam, Finite Difference, Kirchhoff Plate.

Kiriş ve Plak Elemanlarda Dinamik Karakteristiklerin Belirlenmesi için Kullanılan Bazı Sayısal Yaklaşımların Karşılaştırılması

Abstract

Öz Son yıllarda, temel denklemlerin ve sınır koşullarının kodlanması, hesaplama süresi ve algoritma karmaşıklığı azaltmak, çözümün doğruluğunu artırmak ve hızlı yakınsamasını sağlamak, çözümün kararlılığı artırmak vb. nedenlerden ötürü çeşitli türdeki doğrusal ve doğrusal olmayan denklemleri çözebilmek için birçok sayısal yöntem geliştirilmiştir. Bu çalı̧̧ada, literatürde sıkça kullanılan sayısal yöntemlerden; diferansiyel kareleme (DKY), diferansiyel dönüşüm (DDY) ve sonlu farklar (SFY) yöntemleri algoritmaları ile kısaca anlatılmış ve kiriş ve plakanın modal analizi için uygulanarak sonuçları birbirleriyle karşlaştrıılmıştır. Seçilen yapısal elemanlarda kesme gerinmesi etkileri ihmal edilmiş, plaka elemanlar ise basit mesnetli sınır koşulu kullanılarak tek boyutlu duruma indirgenmiştir. Bu varsayımlar altında, anlatılmakta olan sayısal yöntemler uygulanarak boyutsuz doğal frekanslar hesaplanarak tablolaştrırımış ve mod şekilleri çizdirilmiş. Kullanılan yöntemlerin gücünü ve doğruluğunu anlamak için, yüksek titreşim modlarında sayısal sonuçlar irdelenmiş ve DDY'nin daha hızlı ve daha doğru çözümler verdiği, DQM'nin sonuçlarının ise seçilen düğüm noktaları dağılımına bağlı olduğu ve dolasyısıyla DDY'den daha az doğru olduğu görülmüştür. Ancak, uygulama kolaylığı ve çok boyutlu durumlar için doğru sonuçlar DKY'nin olumlu özellikleridir. Anahtar Kelimeler: Dinamik Karakteristikler, Diferansiyel Kareleme, Diferansiyel Dönüşüm, Euler Kiriş, Kirchhoff Plaka, Sonlu Farklar.

[^0]
1. Introduction

Solving partial and ordinary differential equations with satisfactory accuracy in structural mechanics or other fields of engineering is always a challenge for engineers in the last few decades. Therefore, numerous global and local numerical methods such as Adomian Decomposition, Differential Quadrature, Differential Transform, Finite Difference, Mesh Free Galerkin, Dynamic Stiffness, Transfer Matrix, Discrete Singular Convolution, Fourier Series, Rayleigh-Ritz, and ChebyshevWavelet, etc. have been developed to solve a variety of complicated engineering problems in the literature. Of these numerical approaches, Bellman et al. (1972) firstly introduced the differential quadrature method (DQM) to solve various nonlinear partial differential equations accurately by transforming them into a set of algebraic expressions, and many researchers contributed to the development of this method in the following years. In this technique, approximate the derivatives of a differential function at a grid point are expressed by using weighting coefficients, and then weighted coefficients of all grid points in the discretized domain are summed to find a weighted linear sum of the function. For many problems discussed in the papers (Civan and Sliepcevich, 1984; Wang and Bert, 1993; Wang et al., 1993; Du et al., 1994; Du et al., 1995; Malik and Bert, 1996; Shu and Du, 1997; Tornabene et al., 2009; Arikoglu and Ozkol, 2012; Tornabene et al., 2015; Yavuz and Ozkol, 2021), the technique gives satisfactory results in the case of chosen well-optimized spaces between grid points and well-determined weighting coefficients for suitable approximation functions. Ease of implementation of linear/nonlinear boundary conditions, less expensive computation methodology, low memory requests, simple algorithm scheme, solvability of complex geometries is a few of the prominent features.

The differential transformation method (DTM) is another technique frequently used in computational mechanics, which is first introduced through Zhou's circuit analysis studies (1986). By using this technique, the governing differential equations are transformed into recurrence relations with the help of a differential transformation table, and boundary conditions are stated as algebraic equations. Then, semi-analytical and numerical solutions based on Taylor series expansion are obtained for interested differential equations. In recent years, voluminous studies, especially related to vibration analysis of onedimensional structures (Malik and Dang, 1998; Malik and Allali, 200; Chen and Ho, 1996; Chen and Ho, 1999 Yeh et al., 2006; Yalcin et al., 2009; Jang et al., 2001; Arikoglu and Ozkol, 2010), have been published due to promising highly accurate or exact results in a short time.

The last method presented in this study is the finite difference method (FDM), which is the oldest -but still very usefulnumerical method for the solution of differential equations. In this technique, differential equations and boundary conditions are stated as finite differences at a set of interconnected nodes within the computational domain. Similar to DQM , governing differential equations are expressed by a set of simultaneous algebraic equations, so the solution can be calculated easily by the computers.

The objective of this study is to present a benchmark between the concerned method used in the determination of dynamic characteristics of structural elements before solving more
complicated engineering problems and share the algorithm schemes of these methods.

The study is organized as follows. In section 2, the governing differential equations for beam and plate elements with no shear stress assumption are expressed. In Section 3, numerical methods used in the modal analysis with the algorithms and discretized differential equations up to the concerning methods are given. In section 4, mode shapes and non-dimensional natural frequencies of the structural elements are presented. Ultimately, the effect of boundary conditions, aspect ratio on the frequencies are investigated, and methods are compared with each other in the aspect of error and computation time.

2. Governing Differential Equations

In this section, the governing differential equations and boundary conditions for classical beam and plate theory are given in a non-dimensional form. Under these theories, it is assumed that beam and plate have no shear strains, are made of homogenous material, and have plane symmetry after deformation.

2.1. Euler-Bernoulli Beam

In one dimensional case, the Euler-Bernoulli beam model is preferred due to being the simplest beam model in the literature and giving reasonable results to demonstrate one-dimensional application. The mathematical model of the beam for free vibration can be given as.

$$
\begin{equation*}
\rho A \frac{\partial^{2} w(x, t)}{\partial t^{2}}+E I \frac{\partial^{4} w(x, t)}{\partial x^{4}}=0 \tag{1}
\end{equation*}
$$

In a non-dimensional form, the governing differential equation of the Euler-Bernoulli beam with uniform cross-section and length L can be obtained by separating Equation (1) into two ODEs and given for free harmonic vibration as

$$
\begin{equation*}
\frac{d^{4} w(x)}{d x^{4}}-\Omega^{2} w(x)=0 \tag{2}
\end{equation*}
$$

where x is the non-dimensional coordinate along the axis of the beam, $w(x)$ is non-dimensional deflection, and Ω is the nondimensional frequency of vibration. The boundary conditions (BCs) at the edges of the beam may be one of the following; clamped (C), simply-supported (S), and free (F). These conditions in non-dimensional coordinates for the edges $x=0$, and $x=1$ can be given as

Table 1. Boundary conditions at the edges of the beam

$B C s$	Edges	Boundary Equations	
Clamped	$x=0,1$	$w=0$,	$\frac{d w}{d x}=0$
Simply- supported	$x=0,1$	$w=0$,	$\frac{d^{2} w}{d x^{2}}=0$
Free	$x=0,1$	$\frac{d^{2} w}{d x^{2}}=0$,	$\frac{d^{3} w}{d x^{3}}=0$

2.2. Kirchoff-Love Plate

In two dimensional case, the simplest plate model is Kirchoff-Love or classical plate theory. The mathematical model of the thin rectangular plate for free vibration can be given as

$$
\begin{equation*}
\rho h \frac{\partial^{2} w(x, y, t)}{\partial t^{2}}+D \nabla^{4} w(x, y, t)=0 \tag{3}
\end{equation*}
$$

The governing differential equation of the plate in Equation (3) can be obtained by using the separation of variables method in a nondimensional form, and it can be given as

$$
\begin{equation*}
\frac{\partial^{4} w(x, y)}{\partial x^{4}}+2 \lambda^{2} \frac{\partial^{4} w(x, y)}{\partial x^{2} \partial y^{2}}+. \lambda^{4} \frac{\partial^{4} w(x, y)}{\partial y^{4}}-\Omega^{2} w=0 \tag{4}
\end{equation*}
$$

where x and y are the non-dimensional coordinates, $w(x, y)$ is nondimensional deflection, $\lambda=a / b$ is the length ratio, and Ω is the non-dimensional frequency of vibration. In nondimensional coordinates, the boundary conditions at the edges of the plate are presented as

Table 2. Boundary conditions at the edges of the plate

BCs	Edges	Boundary Equations
Clamped	$x=0,1$	$w=0, \frac{\partial w}{\partial x}=0$
	$x=0,1$	$w=0, \frac{\partial w}{\partial y}=0$
	$y=0,1$	$w=0, \frac{\partial^{2} w}{\partial x^{2}}=0$
Free	$x=0,1$	$\frac{\partial^{2} w}{\partial x^{2}}+v \lambda^{2} \frac{\partial^{2} w}{\partial y^{2}}=0$,
		$\frac{\partial^{3} w}{\partial y^{3}}+(2-v) \lambda^{2} \frac{\partial^{3} w}{\partial x \partial y^{2}}=0$
	$y=0,1$	$\lambda^{2} \frac{\partial^{2} w}{\partial y^{2}}+v \frac{\partial^{2} w}{\partial x^{2}}=0$,
		$\lambda^{2} \frac{\partial^{3} w}{\partial y^{3}}+(2-v) \frac{\partial^{3} w}{\partial x^{2} \partial y}=0$

3. Numerical Approaches

In this part of the study, concerned numerical methods are briefly discussed, and numerical solutions of beam and plate elements are given.

3.1. Differential Quadrature Method

In the differential quadrature method, values of approximate derivatives at any location of mesh are computed by summing linear weighted coefficients as follows

$$
\begin{gather*}
\left.\frac{\partial^{n} w(x, y)}{\partial x^{n}}\right|_{\substack{x=x_{i}, y=y_{j}}}=\sum_{k=1}^{N_{x}} A_{i k}^{(n)} w\left(x_{k}, y_{j}\right) \tag{5}\\
\left.\frac{\partial^{m} w(x, y)}{\partial y^{m}}\right|_{\substack{x=x_{i}, y=y_{j}}}=\sum_{l=1}^{N_{y}} B_{j l}^{(m)} w\left(x_{i}, y_{l}\right) \tag{6}\\
\left.\frac{\partial^{n+m} w(x, y)}{\partial x^{n} \partial y^{m}}\right|_{\substack{x=x_{i}, y=y_{j}}}=\sum_{k=1}^{N_{x}} A_{i k}^{(n)} \sum_{l=1}^{N_{y}} B_{j l}^{(m)} w\left(x_{k}, y_{l}\right) \tag{7}
\end{gather*}
$$

where first-order weighted coefficients are computed by Shu's approach (Shu, 2000) as

$$
\begin{align*}
& A_{i k}^{(1)}= \begin{cases}\frac{\prod_{h=1, h \neq i}^{N_{x}}\left(x_{i}-x_{h}\right)}{\left(x_{i}-x_{k}\right) \prod_{h=1, h \neq k}^{N_{x}}\left(x_{k}-x_{h}\right)}, & i \neq k \\
-\sum_{k=1, k \neq i}^{N_{x}} A_{i k}^{(n)}, & i=k\end{cases} \tag{8}\\
& B_{j l l}^{(1)}= \begin{cases}\prod_{h=1, h \neq j}^{N_{y}}\left(y_{j}-y_{h}\right) & j \neq l \\
\left(y_{j}-y_{l}\right) \prod_{h=1, h \neq l}^{N_{v}}\left(y_{l}-y_{h}\right) & \\
-\sum_{l=1, l \neq i}^{N_{v}} B_{j l}^{(n)},\end{cases} \tag{9}
\end{align*}
$$

To find the weighted coefficients of the higher-order or hybrid derivatives, the following matrix multiplications can be done

$$
\begin{gather*}
A^{(a)}=A^{(b)} A^{(c)}, \quad a=b+c, \quad b, c \in Z^{+} \tag{10}\\
B^{(d)}=B^{(e)} B^{(f)}, \quad d=e+f, \quad e, f \in Z^{+} \tag{11}\\
C^{(g)}=A^{(h)} B^{(i)}, \quad g=h+i, \quad h, i \in Z^{+} \tag{12}
\end{gather*}
$$

To obtain better results, the grid spacing of mesh can be done denser on boundaries by using Chebyshev-Gauss-Lobatto (CGL) grid distribution.

3.1.1. Application of DQM to Beam Element

As known, the DQM is a numerical computation technique based on discretization. Therefore, the equation of motion (EOM) can be discretized by using uniform or nonuniform (CGL) grid distribution. In this way, the continuous expression in Equation (2) turns into a combination of approximated functional values at grid points given in Equation (13).

$$
\begin{equation*}
w^{(4)}\left(x_{i}\right)-\Omega^{2} w\left(x_{i}\right)=0 \tag{13}
\end{equation*}
$$

Using the differential quadrature method, the discretized EOM can be written as

$$
\begin{equation*}
w^{(4)}\left(x_{i}\right)-\Omega^{2} w\left(x_{i}\right)=0 \tag{14}
\end{equation*}
$$

In matrix form, discretized expression can be rewritten as

$$
\begin{equation*}
\left[c_{i j}^{(4)}-\Omega^{2} I\right]_{N \times N}\left[w\left(x_{j}\right)\right]_{N \times 1}=0 \tag{15}
\end{equation*}
$$

The discretized boundary conditions of the beam at the edges are presented in Table 3. To implement the boundary conditions on the discretized EOM, the direct substitution of boundary conditions into the discrete governing equation in Equation (15)

Table 3. Discretized BCs at the edges of the beam

BCs		Boundary Equations
C	$i=1$	$w_{1}=0, \sum_{j=1}^{N} c_{1 j}^{(1)} \cdot w\left(x_{j}\right)=0$
	$i=N$	$w_{N}=0, \sum_{j=1}^{N} c_{N j}^{(1)} \cdot w\left(x_{j}\right)=0$
	$i=1$	$w_{1}=0, \sum_{j=1}^{N} c_{1 j}^{(2)} \cdot w\left(x_{j}\right)=0$
	$i=N$	$w_{N}=0, \sum_{j=1}^{N} c_{N j}^{(2)} \cdot w\left(x_{j}\right)=0$
F	$i=1$	$\sum_{j=1}^{N} c_{1 j}^{(2)} \cdot w\left(x_{j}\right)=0, \sum_{j=1}^{N} c_{1 j}^{(3)} \cdot w\left(x_{j}\right)=0$
	$i=N$	$\sum_{j=1}^{N} c_{N j}^{(2)} \cdot w\left(x_{j}\right)=0, \sum_{j=1}^{N} c_{N j}^{(3)} \cdot w\left(x_{j}\right)=0$

3.1.2. Application of DQM to Plate Element

To illustrate the two-dimensional application of DQM, free vibration analysis of the thin rectangular plate under Kirchhoff's assumptions is considered. Differently from the one-dimensional case, there are used two different weighted coefficients to the directions, because of different sizes and directions of grid distributions. These coefficients can be expressed as

$$
\begin{equation*}
\left.\frac{\partial^{r} w}{\partial x^{r}}\right|_{x=x_{i}}=\sum_{k=1}^{N} A_{i k}^{(r)} w_{k j},\left.\frac{\partial^{s} w}{\partial y^{s}}\right|_{y=y_{j}}=\sum_{l=1}^{N} B_{j l}^{(s)} w_{i l} \tag{16}
\end{equation*}
$$

Using the differential quadrature method, the EOM in Equation (4) can be discretized as

$$
\begin{align*}
& \sum_{k=1}^{N} A_{i k}^{(4)} w_{k j}+2 \beta^{2} \sum_{l=1}^{M} B_{j l}^{(2)} \sum_{k=1}^{N} A_{i k}^{(2)} w_{k l}+\ldots \tag{17}\\
& \beta^{4} \sum_{l=1}^{M} B_{j l}^{(4)} w_{i l}=\Omega^{2} w_{i j}
\end{align*}
$$

The discretized boundary conditions of the plate at the edges are presented in Table 4.

Table 4. Discretized BCs at the edges of the plate

$B C s$	Boundary Equations
C	$w_{1, j}=\sum_{k=1}^{N} A_{1, k}^{(1)} w_{k, j}=0, w_{N, j}=\sum_{k=1}^{N} A_{N, k}^{(1)} w_{k, j}=0$
	$w_{i, 1}=\sum_{k=1}^{N} B_{1, k}^{(1)} w_{i, k}=0, w_{i, M}=\sum_{k=1}^{N} B_{M, k}^{(1)} w_{i, k}=0$
S	$w_{1, j}=\sum_{k=1}^{N} A_{1, k}^{(2)} w_{k, j}=0, w_{N, j}=\sum_{k=1}^{N} A_{N, k}^{(2)} w_{k, j}=0$
	$w_{i, 1}=\sum_{k=1}^{N} B_{1, k}^{(2)} w_{i, k}=0, w_{i, M}=\sum_{k=1}^{N} B_{M, k}^{(2)} w_{i, k}=0$
F	$\begin{aligned} & \sum_{k=1}^{N} A_{1 k}^{(2)} w_{k j}+v \lambda^{2} \sum_{l=1}^{M} B_{j l}^{(2)} \sum_{k=1}^{N} A_{i k}^{(2)} w_{k l}=0, \\ & \sum_{k=1}^{N} A_{1 k}^{(3)} w_{k j}+(2-v) \lambda^{2} \sum_{l=1}^{M} B_{j l}^{(2)} \sum_{k=1}^{N} A_{1 k}^{(1)} w_{k l}=0 \end{aligned}$
	$\begin{aligned} & \sum_{k=1}^{N} A_{N, k}^{(2)} w_{k, j}+v \lambda^{2} \sum_{k=1}^{N} A_{j k}^{(2)} w_{k 1}=0, \\ & \sum_{k=1}^{N} A_{N, k}^{(3)} w_{k, j}+(2-v) \lambda^{2} \sum_{l=1}^{M} B_{j l}^{(2)} \sum_{k=1}^{N} A_{N k}^{(1)} w_{k l}=0 \end{aligned}$
	$\begin{aligned} & \lambda^{2} \sum_{k=1}^{N} B_{1 k}^{(2)} w_{i k}+v \sum_{k=1}^{N} A_{i k}^{(2)} w_{k 1}=0, \\ & \lambda^{2} \sum_{k=1}^{N} B_{1 k}^{(3)} w_{i k}+(2-v) \sum_{l=1}^{M} B_{j l}^{(1)} \sum_{k=1}^{N} A_{1 k}^{(2)} w_{k l}=0 \end{aligned}$
	$\begin{aligned} & \lambda^{2} \sum_{k=1}^{N} B_{M, k}^{(2)} w_{i, k}+v \sum_{k=1}^{N} A_{i k}^{(2)} w_{k 1}=0 \\ & \lambda^{2} \sum_{k=1}^{N} B_{M, k}^{(3)} w_{i, k}+(2-v) \sum_{l=1}^{M} B_{j l}^{(1)} \sum_{k=1}^{N} A_{i k}^{(2)} w_{k l}=0 \end{aligned}$

3.2. Differential Transform Method

In the differential transform method (DTM), the $k^{\text {th }}$ derivative of function $w(x)$ is defined as

$$
\begin{equation*}
W(k)=\frac{1}{k!}\left[\frac{d^{k} w(x)}{d x^{k}}\right]_{x=x_{0}} \tag{18}
\end{equation*}
$$

where $W(k)$ is the transformed function of $w(x)$. Also, the inverse differential transform of the $W(k)$ function is defined as

$$
\begin{equation*}
w(x)=\sum_{k=0}^{\infty}\left(x-x_{0}\right)^{k} W(k) \tag{19}
\end{equation*}
$$

According to definitions given above, any function can be written as Taylor series expansion

$$
\begin{equation*}
w(x)=\sum_{k=0}^{\infty} \frac{\left(x-x_{0}\right)^{k}}{k!}\left[\frac{d^{k} w(x)}{d x^{k}}\right]_{x=x_{0}} \tag{20}
\end{equation*}
$$

From these definitions, fundamental theorems of DTM can be proved, which are given in Table 5. The algorithm flowchart of DTM is given in Figure 2.

Figure 2. DTM algorithm's flowchart

Table 6. Fundamental Operations (Hatami, 2017)

Original Function	Transformed Function
$f(x)=g(x) \pm h(x)$	$F(k)=G(k) \pm H(k)$
$f(x)=c g(x)$	$F(k)=\delta(k-n)=\left\{\begin{array}{l}1, k=n \\ 0, k \neq n\end{array}\right.$
$f(x)=x^{n}$	$F(k)=\frac{a^{k}}{k!} \sin \left(\frac{\pi}{2} k+b\right)$
$f(x)=\sin (a x+b)$	$F(k)=\frac{(k+n)!}{k!} G(k)$
$f(x)=\frac{d^{n} g(x)}{d x^{n}}$	$F(k)=\sum_{l=0}^{k} G(l) H(k-l)$

3.2.1. Application of DTM to Beam Element

Using the transform rules given in Table 6, the equation of motion in Equation (2) can be transformed into the following recurrence relation,

$$
\begin{equation*}
W(k+4)=\frac{\Omega^{2}}{(k+4)(k+3)(k+2)(k+1)} W(k) \tag{21}
\end{equation*}
$$

The boundary conditions are transformed into algebraic equations about a point $\mathrm{x}_{0}=0$ by using definitions of transformation technique in Equations (18) and (19), and presented in Table 7.

Table 7. Transformed BCs for the beam

$\boldsymbol{B C} \boldsymbol{s}$	$x=0$	$x=1$
	$W(0)=0$,	$\sum_{k=0}^{N} W(k)=0$,
	$W(1)=0$	$\sum_{k=0}^{N} k W(k)=0$
	$W(0)=0$,	$\sum_{k=0}^{N} W(k)=0$,
	$W(2)=0$	$\sum_{k=0}^{N} k(k-1) W(k)=0$
		$\sum_{k=0}^{N} k(k-1) W(k)=0$,
F	$W(3)=0$	$\sum_{k=0}^{N} k(k-1)(k-2) W(k)=0$

By substituting algebraic equations defined for boundary conditions into recurrence relation given in Equation (21), the solution can be found.

3.2.2. Application of DTM to Plate Element

Due to difficulties in obtaining simplified recurrence relations between boundary conditions and governing differential equations, the equation of motion (EOM) in Equation (4) is reduced to one-dimensional expression for simply-supported boundaries at both ends of the plate as following [16]

$$
\begin{equation*}
\frac{\partial^{4} w}{\partial y^{4}}-2 \varphi \frac{\partial^{2} w}{\partial y^{2}}-\psi w(y)=0 \tag{22}
\end{equation*}
$$

where $\varphi=\left(\frac{\sigma \pi}{\lambda}\right)^{2}, \quad \psi=\frac{\Omega^{2}}{\lambda^{4}}-\left(\frac{\sigma \pi}{\lambda}\right)^{4}$
For the reduced governing equation, the boundary conditions of the plate are given in Table 8. According to these BCs, the solution is found by using DTM.

Table 8. BCs for the plate along $y=0$, and $y=1$ sides [16]

BCs	Boundary Equations
Clamped	$w(y)=0, \frac{d w(y)}{d y}=0$
Simply- supported	$w(y)=0, \frac{d^{2} w(y)}{d y^{2}}=0$
Free	$\frac{d^{2} w(y)}{d y^{2}}-\alpha w(y)=0, \alpha=v\left(\frac{\sigma \pi}{\lambda}\right)^{2}$
$\frac{d^{3} w(y)}{d y^{3}}-\beta \frac{d w(y)}{d y}=0, \beta=(2-v)\left(\frac{\sigma \pi}{\lambda}\right)^{2}$	

Using the transformation rules given in Table 6, the equation of motion in Equation (22) can be transformed into the following equation,

$$
\begin{equation*}
\frac{(h+4)!}{h!} W(h+4)-\frac{2 \varphi(h+2)!}{h!} W(h+2)-\psi W(h)=0 \tag{22}
\end{equation*}
$$

The boundary conditions are transformed into algebraic equations about a point y_{0} by using definitions of a transformation technique, which are presented in Table 9.

Table 9. Transformed BCs for the plate [16]

$\boldsymbol{B C}$	$y=0$	$y=1$
C	$W(0)=0, W(1)=0$	$\sum_{h=0}^{M} W=0, \sum_{h=0}^{M} h W=0$
S	$W(0)=0, W(2)=0$	$\sum_{h=0}^{M} W=0, \sum_{h=0}^{M} h(h-1) W=0$
	$2 W(2)-\alpha W(0)=0$	$\sum_{h=0}^{M}\{h(h-1)-\alpha\} W=0$
F	$6 W(3)-\beta W(1)=0$	$\sum_{h=0}^{M}\{h(h-1)(h-2)-\beta\} W=0$

In a similar way to the solution of the beam, the solution can be found for S-F, C-C, C-S, S-S, C-F, and F-F boundary conditions along y sides. To simplify the EOM of the plate, the boundaries along x sides are assumed as simply-supported boundaries so that the partial differential equation of EOM in Equation (4) can be reduced to the ordinary differential equation.

3.3. Finite Difference Method

Stating approximate derivatives by the means of finite differences is the key point of the finite difference method (FDM), which is given for one-dimensional case as follow

$$
\begin{equation*}
\left(\frac{d w}{d x}\right)_{i}=\lim _{\Delta x \rightarrow 0} \frac{w_{i+1}-w_{i}}{\Delta x} \approx \frac{w\left(x_{i}+\Delta x\right)-w\left(x_{i}\right)}{\Delta x}=\frac{\Delta w_{i}}{h} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{d w}{d x}\right)_{i}=\lim _{\Delta x \rightarrow 0} \frac{w_{i}-w_{i-1}}{\Delta x} \approx \frac{w\left(x_{i}\right)-w\left(x_{i}+\Delta x\right)}{\Delta x}=\frac{\nabla w_{i}}{h} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{d w}{d x}\right)_{i}=\lim _{\Delta x \rightarrow 0} \frac{w_{i+1}-w_{i-1}}{2 \Delta x} \approx \frac{w\left(x_{i}+\Delta x\right)-w\left(x_{i}-\Delta x\right)}{2 \Delta x} \tag{25}
\end{equation*}
$$

where forward, backward, and central differences are given, respectively. i denotes any arbitrary point on the curve, Δ forward difference operator, and ∇ backward difference operator. Of them, the central difference gives a more accurate approximation of derivatives due to grid points symmetrically distributed around the x_{i}. Therefore, structural elements are solved by using central difference and the following algorithm in Figure 3.

Figure 3. FDM algorithm's flowchart

3.3.1. Application of FDM to Beam Element

Using the finite difference method, the discretized EOM for the beam can be written as

$$
\begin{equation*}
\frac{w_{i+2}-4 w_{i+1}+6 w_{i}-4 w_{i-1}+w_{i-2}}{(\Delta x)^{4}}-\Omega^{2} w_{i}=0 \tag{26}
\end{equation*}
$$

Similarly, the boundary conditions are written via central difference, and implement into Equation (26) by updating stencil points.

3.3.1. Application of FDM to Plate Element

The discretized EOM of the thin isotropic rectangular plate for transverse vibration is expressed as follows

$$
\begin{align*}
& \frac{w_{i+2, j}-4 w_{i+1, j}+6 w_{i, j}-4 w_{i-1, j}+w_{i-2, j}}{(\Delta x)^{4}}+\ldots \\
& 2 \lambda^{2} \frac{w_{i+1, j+1}-2 w_{i, j+1}+w_{i-1, j+1}-2 w_{i+1, j}}{(\Delta x)^{2}(\Delta y)^{2}}+\ldots \tag{27}\\
& 2 \lambda^{2} \frac{4 w_{i, j}-2 w_{i-1, j}+w_{i+1, j-1}-2 w_{i, j-1}+w_{i-1, j-1}}{(\Delta x)^{2}(\Delta y)^{2}}+\ldots \\
& \lambda^{4} \frac{w_{i, j+2}-4 w_{i, j+1}+6 w_{i, j}-4 w_{i, j-1}+w_{i, j,-2}}{(\Delta y)^{4}}-\Omega^{2} w_{i, j}=0
\end{align*}
$$

Similarly, the boundary conditions are written via central difference, and implement into Equation (26) by updating algebraic equations in the matrix form.

4. Results and Discussion

To determine the dynamic characteristics of one and twodimensional structural elements, mesh-free methods i.e. DQM and DTM, and meshed method i.e. FDM are employed, and then numerical solutions are compared for different boundary conditions, aspect ratios, term sizes used in computations, and absolute errors in this study. Meanwhile, short formulations of the methods and governing differential equations are given, and algorithm schemes of the employed methods are presented in Figures 1-3. Furthermore, convergence analysis in Figure 4 is given for different methods to understand which method is more efficient for computer memory usage, faster, and so on. Ultimately, non-dimensional natural frequencies for the beam and plate elements are tabulated, and the mode shapes are plotted in Figures 5-6.

In the last few years, DQM and DTM are two of the popular mesh-free methods attracting the interest of many researchers. On the other hand, FDM is one of the oldest but still useful global methods. In all methods, the governing differential equations of structural elements are transformed into algebraic equations, and then written in matrix format. Discretized boundary conditions according to concerning methods' algorithm are implemented to the system matrix by updating the rows. The difference between them is the approximation methodology to derivative terms. In Table 10, the non-dimensional natural frequencies of the beam are presented. According to this table, DTM gives the closest solution to analytical results in [26], so the absolute error of DTM is smaller than other two methods. According to boundaries at the ends of the beam, the highest non-dimensional natural frequencies are seen C-C and F-F boundaries, which are equal to each other, but mode shapes of them are different as seen in Figure 5. In two
dimensional case, the effect of aspect ratio and boundary conditions are investigated. Up to the increasing aspect ratio in Table 11, the non-dimensional natural frequencies increase. Similarly, the smallest absolute error is seen for the solution realized by DTM for the special case mentioned above. Finally, convergence analysis in high mode is realized to understand which method is faster and needs less memory requirement. To results in Figure 6, DTM is the fastest method.

Figure 4. Convergence analysis of the non-dimensional natural frequencies of various beam elements for the $9^{\text {th }}$ mode.

Figure 5. Mode shapes of the beam elements for different boundary conditions

Table 10. Nondimensional natural frequencies of the beam elements for different boundary cases

Boundary Conditions	Clamped-Clamped					Simply Supported-Simply Supported				
	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \\ \hline \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \end{aligned}$	FDM	DTM	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \\ & \hline \end{aligned}$	FDM	DTM
Mode										
$1^{\text {st }}$	22,3733	22,3733	22,3733	22,3732	22,3733	9,8696	9,8696	9,8696	9,8696	9,8696
$2^{\text {nd }}$	61,6728	61,6728	61,6728	61,6723	61,6728	39,4784	39,4784	39,4784	39,4783	39,4784
$3^{\text {rd }}$	120,9034	120,9034	120,9034	120,9015	120,9034	88,8264	88,8264	88,8264	88,8258	88,8264
$4^{\text {th }}$	199,8594	199,8607	199,8594	199,8547	199,8594	157,9137	157,9141	157,9137	157,9116	157,9137
$5^{\text {th }}$	298,5555	298,3357	298,5555	298,5455	298,5555	246,7401	246,6215	246,7399	246,7350	246,7401
$6^{\text {th }}$	416,9908	413,7238	416,9894	416,9720	416,9908	355,3058	353,2592	355,3022	355,2952	355,3058
$7^{\text {th }}$	555,1652	557,6415	555,1977	555,1330	555,1652	483,6106	491,1128	483,7155	483,5911	483,6106
$8^{\text {th }}$	713,0789	557,6415	713,3467	713,0269	713,0791	631,6547	491,1128	632,5268	631,6214	631,6546
$9^{\text {th }}$	890,7318	628,9425	889,0825	890,6522	890,7296	799,4380	560,2755	793,1577	799,3846	799,4388
$10^{\text {th }}$	1088,1239	628,9425	1077,2822	1088,0070	1088,0228	986,9604	560,2755	955,8531	986,8791	986,9305

Boundary Conditions	Clamped-Simply Supported					Clamped-Free				
	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \end{aligned}$	FDM	DTM	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \\ & \hline \end{aligned}$	FDM	DTM
Mode										
$1^{\text {st }}$	15,4182	15,4180	15,4182	15,4182	15,4182	3,5160	3,5158	3,5160	3,5172	3,5160
$2^{\text {nd }}$	49,9648	49,9649	49,9649	49,9646	49,9649	22,0345	22,0345	22,0345	22,0418	22,0345
$3^{\text {rd }}$	104,2477	104,2477	104,2477	104,2465	104,2477	61,6972	61,6972	61,6972	61,7174	61,6972
$4^{\text {th }}$	178,2697	178,2699	178,2697	178,2665	178,2697	120,9019	120,9016	120,9019	120,9409	120,9019
$5^{\text {th }}$	272,0310	271,8292	272,0307	272,0237	272,0310	199,8595	199,8459	199,8594	199,9226	199,8595
$6^{\text {th }}$	385,5314	383,7956	385,5299	385,5171	385,5314	298,5555	300,0946	298,5655	298,6472	298,5555
$7{ }^{\text {th }}$	518,7711	516,2124	518,8931	518,7456	518,7711	416,9908	429,3601	417,1064	417,1145	416,9908
$8^{\text {th }}$	671,7499	516,2124	672,2265	671,7079	671,7499	555,1652	429,3601	553,1932	555,3233	555,1652
$9^{\text {th }}$	844,4680	603,9060	837,7557	844,4023	844,4714	713,0789	591,1642	702,9631	713,2723	713,0796
$10^{\text {th }}$	1036,9253	603,9060	1018,5084	1036,8272	1036,7831	890,7318	591,1642	933,4812	890,9598	890,7162

Boundary Conditions	Simply Supported-Free					Free-Free				
	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \end{aligned}$	FDM	DTM	Blevins	$\begin{array}{r} \text { DQM } \\ \text { (Uniform) } \end{array}$	$\begin{aligned} & \text { DQM } \\ & \text { (CGL) } \end{aligned}$	FDM	DTM
Mode										
$1^{\text {st }}$	15,4182	15,4182	15,4182	15,4233	15,4182	22,3733	22,3733	22,3733	22,3882	22,3733
$2^{\text {nd }}$	49,9649	49,9649	49,9649	49,9814	49,9649	61,6728	61,6776	61,6728	61,7138	61,6728
$3^{\text {rd }}$	104,2477	104,2476	104,2477	104,2817	104,2477	120,9034	120,9028	120,9034	120,9833	120,9034
$4^{\text {th }}$	178,2697	178,2605	178,2697	178,3269	178,2697	199,8594	199,8309	199,8592	199,9903	199,8594
$5^{\text {th }}$	272,0310	272,3689	272,0339	272,1162	272,0310	298,5555	302,1213	298,5756	298,7489	298,5555
$6^{\text {th }}$	385,5314	411,3388	385,6189	385,6487	385,5314	416,9908	427,4586	417,2233	417,2570	416,9908
$7^{\text {th }}$	518,7711	411,3388	518,1270	518,9234	518,7711	555,1652	440,5495	551,3529	555,5138	555,1653
$8^{\text {th }}$	671,7499	529,8806	663,0258	671,9389	671,7499	713,0789	440,5495	692,6267	713,5178	713,0791
$9^{\text {th }}$	844,4680	529,8806	849,2064	844,6937	844,4697	890,7318	593,5509	962,1214	891,2676	890,7264
$10^{\text {th }}$	1036,9253	626,7816	1039,1441	1037,1862	1036,9181	1088,1239	593,5509	962,1214	1088,7614	1086,1715

Table 11. Nondimensional natural frequencies of the plate elements for different boundary cases and aspect ratios

Boundary Conditions Aspect Ratio		S-S-S-S					S-C-S-C					S-C-S-S				
		a/b					a/b					a/b				
		$2 / 5$	2/3	1.0	3/2	5/2	$2 / 5$	2/3	1.0	3/2	5/2	2/5	2/3	1.0	3/2	5/2
Mode																
$1^{\text {st }}$	Leissa	11,4487	14,2561	19,7392	32,0762	71,5564	12,1347	17,3730	28,9509	56,3481	145,4839	11,7502	15,5783	23,6463	42,5278	103,9227
	DQM	11,4487	14,2561	19,7392	32,0762	71,5546	12,1347	17,3730	28,9509	56,3481	145,4839	11,7502	15,5783	23,6463	42,5278	103,9227
	FDM	11,4426	14,2484	19,7285	32,0589	71,5159	12,1347	17,3730	28,9509	56,3481	145,4839	11,7502	15,5783	23,6463	42,5278	103,9227
	DTM	11,4487	14,2561	19,7392	32,0762	71,5546	12,1347	17,3730	28,9509	56,3481	145,4839	11,7502	15,5783	23,6463	42,5278	103,9227
$2^{\text {nd }}$	Leissa	16,1862	27,4156	49,3480	61,6850	101,1634	18,3647	35,3445	54,7431	78,9836	164,7387	17,1872	31,0724	51,6743	69,0031	128,3382
	DQM	16,1862	27,4156	49,3480	61,6850	101,1634	18,3647	35,3445	54,7431	78,9836	164,7387	17,1872	31,0724	51,6743	69,0031	128,3382
	FDM	16,1672	27,3723	49,2574	61,5877	101,0448	18,3647	35,3445	54,7431	78,9836	164,7387	17,1872	31,0724	51,6743	69,0031	128,3382
	DTM	16,1862	27,4156	49,3480	61,6850	101,1634	18,3647	35,3445	54,7431	78,9836	164,7387	17,1872	31,0724	51,6743	69,0031	128,3382
$3^{\text {rd }}$	Leissa	24,0818	43,8649	49,3480	98,6960	150,5115	27,9657	45,4294	69,3270	123,1719	202,2271	25,9171	44,5644	58,6464	116,2671	172,3804
	DQM	24,0818	43,8649	49,3480	98,6960	$150,5115$	27,9657	45,4294	69,3270	123,1719	202,2271	25,9171	44,5644	58,6464	116,2671	$172,3804$
	FDM	$24,0075$	$43,7772$	$49,2574$	$98,4987$	$150,0467$	$27,9657$	$45,4294$	$69,3270$	$123,1719$	$202,2271$	$25,9171$	$44,5644$	$58,6464$	$116,2671$	$172,3804$
	DTM	$24,0818$	43,8649	49,3480	98,6960	150,5115	27,9657	45,4294	69,3270	123,1719	202,2271	25,9171	44,5644	58,6464	116,2671	172,3804
$4^{\text {th }}$	Leissa	35,1358	49,3480	78,9568	111,0330	219,5987	40,7500	62,0544	94,5853	146,2677	261,1053	37,8317	55,3926	86,1345	120,9956	237,2502
	DQM	35,1358	49,3480	78,9568	111,0330	219,5987	40,7500	62,0544	94,5853	146,2677	261,1052	37,8317	55,3926	86,1345	120,9956	237,2502
	FDM	34,9126	49,1509	78,7862	110,5896	218,2038	40,7500	62,0544	94,5853	146,2677	261,1053	37,8317	55,3926	86,1345	120,9956	237,2502
	DTM	35,1358	49,3480	78,9568	111,0330	219,5987	40,7500	62,0544	94,5853	146,2677	261,1053	37,8317	55,3926	86,1345	120,9956	237,2502
$5^{\text {th }}$	Leissa	41,0576	57,0244	98,6960	128,3049	256,6097	41,3782	62,3131	102,2162	170,1112	342,1442	41,2070	59,4627	100,2698	147,6353	320,7921
	DQM	41,0576	57,0244	98,6960	128,3049	256,6097	41,3782	62,3131	102,2162	170,1112	342,1470	41,2070	59,4627	100,2698	147,6353	320,7921
	FDM	40,9714	56,9011	98,2593	128,0276	256,0712	41,3782	62,3131	102,2162	170,1112	342,1456	41,2070	59,4627	100,2698	147,6353	320,7921
	DTM	41,0576	57,0244	98,6960	128,3049	256,6097	41,3782	62,3131	102,2162	170,1112	342,1442	41,2070	59,4627	100,2698	147,6353	320,7921
$6^{\text {th }}$	Leissa	45,7950	78,9568	98,6960	177,6529	286,2185	47,0009	88,8047	129,0955	189,1219	392,8746	46,3620	83,6060	113,2281	184,1006	322,9642
	DQM	45,7950	78,9568	98,6960	177,6529	286,2185	47,0009	88,8047	129,0955	189,1219	392,8746	46,3620	83,6060	113,2281	184,1006	322,9672
	FDM	45,6960	78,6798	98,2593	177,0295	285,6000	47,0009	88,8047	129,0955	189,1219	392,8746	46,3620	83,6060	113,2281	184,1006	322,9657
	DTM	45,7950	78,9568	98,6960	177,6529	286,2185	47,0009	88,8047	129,0955	189,1219	392,8746	46,3620	83,6060	113,2281	184,1006	322,9642
$7^{\text {th }}$	Leissa	49,3480	80,0535	128,3049	180,1203	308,4251	56,1782	94,2131	140,2045	212,8169	415,6906	52,9007	88,4384	133,7910	193,8025	346,7382
	DQM	$49,3485$	80,0534	128,3049	180,1203	$308,4283$	$56,1782$	94,2131	$140,2045$	212,8169	$415,6906$	$52,9014$	88,4384	$133,7910$	$193,8025$	$346,7382$
	FDM	$48,8119$	79,4430	$127,7881$	$178,7467$	$305,0742$	$56,1782$	$94,2131$	$140,2045$	$212,8169$	$415,6906$	$52,9010$	88,4384	$133,7910$	193,8025	$346,7382$
	DTM	49,3480	80,0535	128,3049	180,1203	308,4251	56,1782	94,2131	140,2045	212,8169	415,6906	52,9007	88,4384	133,7910	193,8025	346,7382
$8^{\text {th }}$	Leissa	53,6906	93,2129	128,3049	209,7291	335,5665	56,6756	97,4254	154,7757	276,0012	444,9682	54,8720	93,6758	140,8456	243,4964	391,0659
	DQM	53,6906	93,2129	128,3049	209,7291	335,5665	56,6758	97,4254	154,7757	276,0047	445,0107	54,8720	93,6758	140,8456	243,4964	391,0659
	FDM	53,5363	92,7791	127,7881	208,7530	334,6019	56,6757	97,4254	154,7757	276,0030	444,9894	54,8720	93,6758	140,8456	243,4964	391,0659
	DTM	53,6906	93,2129	128,3049	209,7291	335,5665	56,6756	97,4254	154,7757	276,0012	444,9682	54,8720	93,6758	140,8456	243,4964	391,0659

Table 11. Nondimensional natural frequencies of the plate elements for different boundary cases and aspect ratios (cont')

Boundary Conditions Aspect Ratio		S-C-S-F					S-S-S-F					S-F-S-F				
		a/b					a/b					a/b				
		2/5	2/3	1.0	3/2	5/2	2/5	2/3	1.0	3/2	5/2	2/5	2/3	1.0	3/2	5/2
$1^{\text {st }}$	Leissa	10,1888	10,9752	12,6874	16,8225	30,6277	10,1259	10,6712	11,6845	13,7111	18,8009	9,7600	9,6983	9,6314	9,5582	9,4841
	DQM	10,1485	10,9011	12,5569	16,6003	30,2740	10,0889	10,6083	11,5816	13,5359	18,4640	9,7280	9,6507	9,5676	9,4777	9,3879
	FDM	10,1686	10,9381	12,6221	16,7114	30,4508	9,7277	10,0728	11,8270	23,9206	63,5380	9,8829	9,9988	10,2012	10,4804	10,1883
	DTM	10,1888	10,9752	12,6874	16,8225	30,6277	10,1259	10,6712	11,6845	13,7111	18,8009	10,0378	10,3469	10,8348	11,4830	10,9887
$2^{\text {nd }}$	Leissa	13,6036	20,3355	33,0651	45,3024	58,0804	13,0570	18,2995	27,7563	43,5723	50,5405	11,0368	12,9813	16,1348	21,6192	33,6228
	DQM	13,5500	20,2229	32,8924	44,9543	57,3722	13,0087	18,1977	27,5917	43,2840	49,9897	10,9589	12,8314	15,8799	21,2000	32,8788
	FDM	13,5768	20,2792	32,9788	45,1284	57,7263	12,0663	17,0357	28,1930	56,2547	92,0352	10,7866	12,4334	15,2098	20,3168	32,6301
	DTM	13,6036	20,3355	33,0651	45,3024	58,0804	13,0570	18,2995	27,7563	43,5723	50,5405	10,6142	12,0355	14,5397	19,4336	32,3814
$3^{\text {rd }}$	Leissa	20,0971	37,9552	41,7019	61,0178	105,5470	18,8390	33,6974	41,1967	47,8571	100,2321	15,0626	22,9535	36,7256	38,7214	38,3629
	DQM	20,0296	37,8421	41,4952	60,7948	104,6398	18,7755	33,5854	41,0126	47,6284	99,4954	14,9557	22,7458	36,4173	38,5132	38,0701
	FDM	20,0634	37,8987	41,5986	60,9063	105,0934	17,4793	32,3386	41,6736	79,3076	124,4366	15,1461	23,1100	36,9313	40,1830	41,4213
	DTM	20,0971	37,9552	41,7019	61,0178	105,5470	18,8390	33,6974	41,1967	47,8571	100,2321	15,3365	23,4742	37,4453	41,8528	44,7725
$4^{\text {th }}$	Leissa	29,6219	40,2717	63,0148	92,3073	149,4569	27,5580	40,1307	59,0655	81,4789	110,2259	21,7064	39,1052	38,9450	54,8443	75,2037
	DQM	29,5515	40,1378	62,7128	91,7877	149,1969	27,4891	40,0055	58,7953	81,0037	109,9391	21,5778	38,9939	38,7925	54,1434	73,8562
	FDM	29,5867	40,2047	62,8638	92,0475	149,3269	26,0747	38,9956	59,8569	107,4724	132,8902	21,5319	39,4607	39,6754	52,2596	70,5994
	DTM	29,6219	40,2717	63,0148	92,3073	149,4569	27,5580	40,1307	59,0655	81,4789	110,2259	21,4860	39,9276	40,5583	50,3758	67,3425
$5^{\text {th }}$	Leissa	39,6382	49,7317	72,3976	93,8293	173,1060	39,3377	48,4082	61,8606	92,6925	147,6317	31,1771	40,3560	46,7381	65,7922	86,9684
	DQM	39,5521	49,5704	72,2579	93,3642	172,0157	39,2712	48,2611	61,7156	92,2784	146,8273	31,0433	40,1448	46,3264	65,3906	86,4624
	FDM	39,5952	49,6511	72,3278	93,5968	172,5608	37,7263	46,7280	62,8647	118,6069	174,0607	31,1908	40,0804	45,3157	65,9847	90,8630
	DTM	39,6382	49,7317	72,3976	93,8293	173,1060	39,3377	48,4082	61,8606	92,6925	147,6317	31,3384	40,0161	44,3050	66,5788	95,2636
$6^{\text {th }}$	Leissa	42,2425	64,1889	90,6114	141,7834	182,8110	39,6118	57,5929	90,2941	124,5635	169,1026	39,2387	42,6847	70,7401	87,6262	130,3576
	DQM	42,1763	64,0914	90,3100	141,1038	182,0009	39,5285	57,4931	90,0123	124,3978	168,1679	39,1623	42,4333	70,1583	87,2832	128,5459
	FDM	42,2094	64,1402	90,4607	141,4436	182,4059	38,5982	56,2897	91,2438	173,1190	207,0340	39,3938	41,9350	71,1953	89,2697	123,6711
	DTM	42,2425	64,1889	90,6114	141,7834	182,8110	39,6118	57,5929	90,2941	124,5635	169,1026	39,6252	41,4367	72,2323	91,2562	118,7962
$7^{\text {th }}$	Leissa	42,9993	67,8993	103,1617	149,6055	235,0155	42,6964	64,7281	94,4837	132,8974	203,7304	40,5035	54,2400	75,2834	103,9665	155,3211
	DQM	42,9233	67,6895	102,8104	149,4512	233,7042	42,6245	64,5319	94,1471	132,2895	202,5149	40,3561	53,9117	75,0180	103,0219	154,5960
	FDM	42,9613	67,7944	102,9860	149,5284	234,3599	41,5187	62,2175	95,9204	177,4279	240,7948	40,1528	54,4897	74,9561	101,3541	155,5274
	DTM	42,9993	67,8993	103,1617	149,6055	235,0155	42,6964	64,7281	94,4837	132,8974	203,7304	39,9495	55,0678	74,8941	99,6863	156,4589
$8^{\text {th }}$	Leissa	49,5740	89,3571	111,8964	162,2413	260,6371	48,7745	89,1859	108,9185	158,9180	257,4791	43,6698	66,2301	87,9867	105,1608	156,1248
	DQM	49,4798	89,1464	111,5334	161,6387	259,3490	48,6852	88,9607	108,5875	158,4272	256,3328	43,5425	66,0428	87,7363	104,2345	155,6431
	FDM	49,5269	89,2518	111,7149	161,9400	259,9930	46,8259	86,1713	110,1721	195,0900	283,7807	43,5460	66,2422	88,7866	105,2666	160,1529
	DTM	49,5740	89,3571	111,8964	162,2413	260,6371	48,7745	89,1859	108,9185	158,9180	257,4791	43,5495	66,4417	89,8370	106,2987	164,6628

Figure 6. Mode shapes of the plate elements for SSSS and SSSF boundary conditions

Figure 6. Mode shapes of the plate elements for SCSS and SCSC boundary conditions (cont')

Figure 6. Mode shapes of the plate elements for SCSF and SFSF boundary conditions (cont')

4. Conclusion

This paper has computed the dynamic characteristics of the Euler-Bernoulli beam and Kirchhoff-Love plate by employing different numerical methods. Of these methods, DTM converges to analytical results faster than the other two methods for simplysupported boundary conditions. Also, it can be seen from Tables 10 and 11 that absolute error is smaller than other methods. On the other hand, the term size of DQM is smaller than FDM (see Figure 4), so it converges faster than FDM. In other words, it is computationally more efficient due to its small term size and requires less computer memory than FDM. As a result, DTM can be preferred for any type of one-dimensional differential equation. On the other hand, DQM can be preferred for multi-dimensional engineering problems, complicated geometries.

5. Acknowledgements

The authors would like to thank Prof. Dr. Guven Komurgoz from the Department of Electrical Engineering in Istanbul Technical University for suggestions and discussions, and would also like to thank Res. Asst. Ahmet Gokay Ozturk from the Department of Aeronautical Engineering in Istanbul Technical University for endless help during the preparation of this study.

References

Bellman, R., Kashef, B.G., Casti, J. (1972). Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Journal of Computational Physics, 10, 40-52.
Civan, F., Sliepcevich, C.M. (1984). Differential Quadrature for Multidimensional Problems. Journal of Mathematical Analysis and Applications, 101, 423-443.
Wang, X., Bert, W. (1993). A new approach in Applying Differential Quadrature to Static and Free Vibrational Analyses of Beams and Plates. Journals of Sound and Vibration, 162, 566-572.
Wang, X., Bert, C.W., Striz, A.G. (1993). Differential Quadrature Analysis of Deflection, Buckling, and Free Vibration of Beams and Rectangular Plates. Computers and Structures, 48, 473-479.
Du, H., Lim, M. K., Lin, R. M. (1994). Application of Generalized Differential Quadrature Method to Structural Problems. International Journal of Numerical Methods in Engineering, 37, 1881-1896.
Du, H., Lim, M. K., Lin, R. M. (1995). Application of Differential Quadrature to Vibration Analysis. Journal of Sound and Vibration, 181, 279-293.
Malik, M., Bert, C. W. (1996). Implementing Multiple Boundary Conditions in the DQ Solution of Higher Order PDEs: Application to Free Vibration of Plates. International Journal for Numerical Methods in Engineering, 39, 1237-1258.
Bert, C.W., Malik, M. (1996). Semianalytical Differential Quadrature Solution for Free Vibration Analysis of Rectangular Plates. AIAA Journal, 34(3), 601-606.
Shu, C., Du, H. (1997). Implementation of Clamped and Simply Supported Boundary Conditions in The GDQ Free Vibration Analysis of Beams and Plates. International Journal of Solid Structures, 34(7), 819-835.

Tornabene, F., Viola, E., Inman, D. J. (, 2009). 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. Journal of Sound and Vibration, 328 (3), 259-290.
Arikoglu, A., Ozkol, I. (2012). Vibration Analysis of Composite Sandwich Plates by the Generalized Differential Quadrature Method. AIAA Journal, 50 (3), 620-630.
Tornabene, F., Fantuzzi, N., Bacciocchi, M., Dimitri, R. (2015). Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method. Thin Walled Structures, 97, 114-129.
Yavuz, M. T., Ozkol, I. (2021). Free Vibration Analysis of a Rotating Double Tapered Beam with Flexible Root via Differential Quadrature Method. Aircraft Engineering and Aerospace Technology, 93(5), 900-914.
Zhou, J. K. (1986). Differential Transformation and Its Application for Electrical Circuits. Huazhong University Press, Wuhan, China.
Malik, M., Dang, H. H. (1998). Vibration Analysis of Continuous Systems by Differential Transformation. Applied Mathematics and Computation, 96, 17-26.
Malik, M., Allali., M. (2000). Characteristic Equations of Rectangular Plates by Differential Transformation. Journal of Sound and Vibration, 233(2), 359-366.
Chen, C. K., Ho, S. H. (1996). Application of Differential Transformation Method to Eigenvalue Problems. Applied Mathematics and Computation, 79, 173-188.
Chen, C. K., Ho, S. H. (1999). Solving Partial Differential Equations by Two Dimensional Differential Transform Method. Applied Mathematics and Computation, 106, 171179.

Yeh, Y. L., Jang, M. J., Wang, C. C. (2006). Analyzing the free vibrations of a plate using finite difference and differential Transformation Method. Applied Mathematics and Computation, 178, 493-501.
Yalcin, S., Arikoglu, A., Ozkol, I. (2009).Free Vibration Analysis of Circular Plates by Differential Transformation Method. Applied Mathematics and Computation, 212, 377-386.
Jang, M. J., Chen, C. L., Liu, Y. C. (2001). Two-dimensional Differential Transform for Partial Differential Equations. Applied Mathematics and Computation, 123, 109-122.
Arikoglu, A., Ozkol, I. (2010). Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method. Composite Structures, 92 (12), 3031-2039.
Shu, C. (2000). Differential Quadrature and Its Application in Engineering. Springer.
Hatami, M., Ganji, D. D., Sheikholesmani, M. (2017). Differential Transformation Method for Mechanical Engineering Problems. Academic Press.
Blevins, R. D. (2001). Formulas for natural frequency and mode shape. Krieger Publishing.
Leissa, A.W. (1973). The Free Vibration of Rectangular Plates. Journal of Sound and Vibration, 31(3), 257-293.

[^0]: * Corresponding Author: yavuzmusta@itu.edu.tr

