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Abstract: 

The global marine industry is transitioning to smart ships where navigation, maintenance, and operations are done 

autonomously. Integrating autonomy into already complex ships presents many challenges, including identifying 

faults and taking corrective actions. These actions are key components in a Self-Adaptive Health Monitoring (SAHM) 

system which aims to maintain ship operations. The challenge lies in the failure state space’s extraordinary size 

which current methods aren’t capable of dealing with. Diagnosis has been achieved for smaller scale systems such 

as NASA deep space probes, but the complexity of a probe is equivalent to a ship’s single small sub-system. The 

authors combine recent advancements in statistical physics and multi-agent-based reinforcement learning to 

address the scale issue and enable crewless vessels. Statistical physics works to extract information about objects 

through tensor networks, combining physical and logical representations of objects. By combining a sequence of 

contractions, an ensemble of data about the physical system can be constructed quickly. To demonstrate the 

proposed method, the algorithm is applied to a modified version of the N-Queens problem which contains 

operational decision making, geometrical constraints, and a scalable problem. The authors then apply an already 

proven method to the modified version of the N-Queens problem and compare the results. The tensor network 

enables agents to handle state space explosion by decoupling the system’s complexity from decision making. 
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1. INTRODUCTION 

Within recent years, the global marine industry has begun transitioning to smart ships [1], [2]. Smart 

ships refer to ships where systems and functionalities, which were previously done manually, are replaced 

with autonomous counterparts [3]. The ultimate goal is to incorporate autonomy in all aspects of the 

functionality of a ship, including navigation, maintenance, and operations, so that there is a transition 

toward a crewless vessel [4]. However, a variety of challenges arise resulting from the interdependencies 

between existing ship systems and their integration with state-of-the-art autonomous systems [5]. For 

these systems to function without direct human intervention, these autonomous systems must be 

capable of identifying when faults occur and then taking corresponding corrective actions to remedy 

those faults [6]. These are key components in a Self-Adaptive Health Monitoring (SAHM) system which 

aims to maintain ship operation and functionality autonomously [7], [8]. SAHM systems consist of two 

major components: prognosis and diagnosis. In this context, prognosis can be defined as determining if 

a fault in a system has occurred [9]. Then, given a fault, perform diagnosis to determine the cause of the 

fault and take a corrective action [10]. Diagnosis can be generalized by a three step-process [11]. First, 

examine the system to develop hypotheses for the fault’s existence. Second, determine if the hypothesis 

is correct. Finally, take a nondestructive corrective action to either remedy the fault, repair the system, 

or determine a strategy for graceful degradation. On crewed vessels, this process is done by a human, 

but on crewless vessels, there is no one on board to perform these measures. Therefore, some other 

agent needs to take control of the diagnostic process. On a crewless ship, this agent can be a computer 

agent that interacts with and can modify the various interconnected systems. SAHM systems work 

autonomously to extend the effective operation lifespan of a system in a process called graceful 

degradation [12]. The DARPA No Manning Required Ship (NOMARS) project presents a concept of a 

crewless vessel that utilizes a SAHM system to maintain ship operations while away from port for 

extended periods of time [13]. Regardless of the SAHM strategy used, the major challenge in designing 

SAHM systems for smart ships lies in the size of the state space of possible failures [14]. With each 

additional system, the number of potential faults scales exponentially, with the total number of possible 

failures being on the scale of 2500, which is more than the number of atoms in the universe [14]. Current 

methods are not capable of handling a state space of this scale [15], [16]. Therefore, an obvious research 

opportunity lies in figuring out how to deal with an extraordinarily large state space. Diagnosis has been 

achieved in the past in NASA’s deep space probes [17]. They created a SAHM system that was capable 

of a graceful degradation of the space probe’s operations. However, a space probe is equivalent to a 

single, small sub-system in a modern ship in terms of complexity. By combining many sub-systems into 

systems and then further into a full ship, the complexity of the ship increases exponentially [18]. The 

increased complexity of ships and the subsequent integration of autonomous systems results in 

unknown and complex faults, also known as emergent faults. A SAHM system must be capable of 

handling emergent faults. However, the designer will have difficulty using current and prior methods 

since those methods reconcile with the state space’s size. Therefore, the authors are looking into a new 

method to aid the designer in handling the state space to enable crewless vessels. 

The research presented attempts to resolve the state space scaling issue by combining recent 

advancements in statistical physics with multi-agent-based reinforcement learning in order to enable 

crewless vessels and smart ships. Statistical physics uses tensor networks [19] to extract information 

about objects from systems [20]. Tensor networks form one of the essential building blocks of statistical 

physics and drive much of its research. In recent work by Klishin et al., tensor networks are used to bridge 

the gap between the physical and logical constraints on a system [21]. By contracting a constructed 

tensor network, information about the system is extracted that respects both the geometric constraints 

and the logical architecture of a system. As a result, by performing a series of contractions with slight 

modifications to the environment before each contraction, an ensemble of data about the system can 

be rapidly created independent of the scale of the system. Autonomous agents can use the tensor 
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network to both query actions to see their effect before they are taken and to build an ensemble of 

experiences from which they can learn. Multiagent based reinforcement learning consists of several 

agents working cooperatively or competitively within an environment with a task in mind [22]. For each 

action the agent takes, they are given a reward based on how well the action taken moves the agent 

towards its goal. As simulations take place, the agents gain knowledge and improve their performance. 

The proposed method combines both statistical physics and multiagent reinforcement learning to learn 

the ship’s environment. The data gained and the relationships learned can aid the designer by 

discovering emergent relationships and faults between various systems and components. 

This paper is presented in the following sections. In section 2, background information and related work 

is presented and discussed. Section 3 discusses the proposed method and section 4 presents the case 

study. Section 5 discusses the results and finally, section 6 discusses future work. 

 

2. BACKGROUND 

The following subsections provide the necessary foundation required to describe the proposed method. 

Specifically, this section covers diagnosis, state spaces, statistical physics, and reinforcement learning. 

2.1. Fault Diagnosis 

Faults can be viewed as states of a system. The state of a system consists of the values of variables that 

persist temporally from time step to time step [23]. The corresponding state space of a system contains 

all possible states of the system [24]. It follows that a failure state is a state in which unique values of 

components indicate the failure of a part of the system. When a system can be modeled by states, failure 

states represent possible system faults. Faults are broadly classified into 4 main categories: known 

knowns, known unknowns, unknown knowns, and unknown unknowns [25]. Known knowns are faults 

that are known, understood, and can be planned around. Typically, these faults are classified using 

methods such as Failure Mode and Effects Analysis (FMEA), where a system is thoroughly examined and 

known faults with components and their interdependencies are discretely expressed [26]. Unknown 

knowns are faults that are known, but the consequence and occurrence are not understood. Known 

unknowns are faults that haven’t been discovered, but the risk of them occurring is known. Information 

about known unknown and unknown known faults is typically found through modeling and machine 

learning techniques, thus allowing the designer to plan around them. Some examples of this include the 

use of neural networks in power systems [27] and wind turbines [28]. However, unknown unknowns, also 

referred to as emergent faults, are the most difficult type of fault to work with since the designer is 

neither aware, nor understands the reason for these faults. Their respective failure states haven’t been 

observed. Emergent faults are difficult to find but their states can be found through enough simulation 

[29], [30]. Faults can be further broken down into simple and complex faults, where simple faults have a 

single hypothesis of the fault’s cause and complex faults have multiple hypotheses of the fault’s cause. 

Complex faults are typically harder to identify as the fault’s failure state has multiple connected states 

that each could be the state of the system prior to the fault. If the fault has been observed (known), then 

diagnosis becomes a case of evaluating the hypotheses. However, if the complex fault has not been 

observed (unknown), then it becomes much more difficult to develop hypotheses for an unobserved 

failure state. It is also not understood how to take a non-destructive corrective action. Compounding 

upon this difficulty is the fact that modern ships’ failure state space is on the scale of 2500 [14] and the 

time required to identify both simple and complex emergent fault failure states is prohibitively long. 

Given that a fault has occurred, fault diagnosis is a 3 step process [11]. First, hypotheses about the cause 

of the fault are developed. Then, the hypotheses are verified until the correct reason is found. Finally, 

take a corrective action to remedy the fault. Typically, a worker performs all 3 steps manually, but 
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advances in technology have allowed for parts of the process to be automated [31]–[33]. Modern fault 

diagnosis has two main approaches. The first is to use prior knowledge to identify known failure states 

of the system. This typically takes the form of Failure Mode and Effects Analysis (FMEA) [26] and Fault 

Tree Analysis (FTA) [34]. The second approach is to use simulation [35] and basic machine learning 

methods such as neural networks and Support Vector Machines (SVMs) to determine the causes of 

known failure states [33], [36]. In both approaches, the first two steps of the diagnostic process are 

replaced, but a worker is still required to perform the corrective action. On a crewless vessel, since no 

one is on board, the corrective action must be taken by a computer. 

NASA encountered a similar problem in the 1990s on its deep space probes. They designed a SAHM 

method to maintain the operation of the probe and to allow the systems to gracefully degrade [17]. 

However, since the scale of products like the NASA probes are equivalent to a single small ship sub-

system, their techniques fail to deal with the large scale of ships. 

2.2. Statistical Physics 

Statistical physics uses statistical methods to describe physical problems in areas such as 

thermodynamics, superfluidity, and quantum statistics [37]. Two of the main information structures used 

are partition functions and tensor networks [38]. 

A partition function is encoded with information about a system. Given an objective function O(α), where 

α represents the state of the system, and coefficients λi representing design pressure, the partition 

function Z is written as in (1). While knowing the partition function is useful, finding its value can be 

difficult and hard to work with. However, by taking its derivative, statistical relationships and information 

about the system it represents can be extracted. An example of this is that statistical averages are 

encoded in the derivatives of the partition function when taken with respect to λi. As a result, partition 

functions can provide context and information about a system in a relatively straightforward way. 

𝒵 = ∑𝑒−∑ 𝜆𝑖𝒪𝒾(𝛼)𝑖

𝛼

 (1) 

Tensor networks are another key information structure in statistical physics. Tensor networks are made 

up of a network of tensors with contractions between them. A tensor is an algebraic object that is used 

to represent the relationships between other objects. In physics, these relationships are related to 

physical relationships, such as stress forces on an object. In a mathematical sense, a tensor is a ”series of 

numbers labeled by N indexes, with N called the order of the tensor” [39]. For example, a scalar is a 0th 

order tensor, a vector is a 1st order tensor, and a matrix is a 2nd order tensor. A contraction between 

two tensors is the summation over a shared index. For example, given two second-order tensors Aij and 

Bki, contraction between them results in a new tensor: 

𝐴𝑖𝑗𝐵𝑘𝑖 = 𝐴1𝑗𝐵𝑘1 + 𝐴2𝑗𝐵𝑘2 + ⋯+ 𝐴1𝑛𝐵𝑘𝑛 = 𝐶𝑗𝑘 (2) 

Note that in (2), there are left over indices that have not been contracted over. These are known as free 

indices. From these operations, tensor networks are a representation of a series of contractions between 

a number of tensors. In a tensor network, the order of contractions does not affect the output value of 

the contraction. However, choosing an efficient contraction ordering is crucial to reducing the 

computation time and space required to contract the network, both of which can increase exponentially 

depending on the chosen contraction order [40], [41]. Figure 1 shows an example of a simple tensor 

network consisting of 5 tensors (nodes) and 5 contractions (edges) between the tensors. 
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Figure 1: Tensor Network of 5 tenors and 5 contractions. Created by the authors. 

In Klishin et al., they integrate the logical architecture of a system with the corresponding physical 

architecture into a single tensor network that, when contracted, evaluates the partition function of the 

system [21]. This partition function is constructed as in (1) with design objective O(α). The effective 

design objective function 𝒪ℯ𝒻𝒻  is written in (3). The physical architecture dictates where every unit {𝑥𝑖⃗⃗⃗  } 

can be placed and the corresponding function 𝑓(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ; θ) determines the entries of the coupling tensors 

within the tensor network. Additional parameters θ can be passed into the function depending on the 

situation to affect the weight of any aspect of the effective design objective function. 

𝜆𝒪ℯ𝒻𝒻(𝑥 ) = ∑𝐴𝑖𝑗

𝑖𝑗

𝑓(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗; 𝜃) (3) 

The partition function can then be factorized into (4). From this form, one can construct a tensor network 

that represents the combined logical and physical system. 

𝒵(𝜃) = ∑∏𝑒−𝑓(𝑥𝑖⃗⃗  ⃗,𝑥𝑗⃗⃗⃗⃗ ;𝜃)

𝑖<𝑗{𝑥 }

 (4) 

The tensor network can then be further modified with 3 types of actions: attaching an external leg, 

attaching an anchor, and modifying a tensor coupling. Appending an external leg onto a tensor causes 

the corresponding object not to disappear when the network is contracted. The resulting contraction 

when an external leg is attached onto the tensor corresponding to the object 𝑥𝑖⃗⃗⃗   results in an 

unnormalized probability distribution over all available physical locations for that object. Attaching an 

anchor represents decisions that have already been made about the location of a specific object, thus 

fixing the location of 𝑥𝑖⃗⃗⃗  . Other objects cannot be in the location where another object has been anchored. 

The resulting contraction of the tensor network is then described as a conditional contraction on the 

fixed location of 𝑥𝑖⃗⃗⃗  . The final type of action, the modified coupling, modifies the coupling between two 

objects and then traces its effect back into the partition function. An example of a modified coupling is 

the suppression of weights corresponding to a specific region to create a zone where no objects can be 

located. One can create an ensemble of different scenarios about the combined logical and physical 

system by adding and removing external legs, modifying anchors, and modifying tensor couplings. The 

resulting contractions of the network then provide an ensemble of usable data that can provide context 

and information to the overall system. Contraction time and space requirements are dictated by the size 

of the number of edges that need to be contracted over and their density [40]. The difficulty of 

contraction stems from the selection of an edge contraction order. Hyper optimized contraction 

methods result in an exponential run time of O(2E) where E is the number of edges [42]. However, by 

limiting the logical network density, the optimal contraction path becomes obvious to greedy 

contraction algorithms [39]. Therefore, the time and space requirements of tensor network contraction 

can be decoupled from the complexity of the environment. 

2.3. Reinforcement Learning 

Reinforcement learning involves an agent taking actions in an environment to maximize the cumulative 

rewards it receives [43]. One of the main algorithms utilized in reinforcement learning is Q-learning. Q-
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learning is a model-free form of learning in which the agent does not need to build a map of the 

environment [44]. The goal of Q-learning is to find an optimal policy π: 𝑆 → 𝐴 that maps the state space 

S to the action space A. The algorithm finds the optimal policy by building a function 𝑄∗: 𝑆 × 𝐴 → ℛ that 

maps the state space S and the action space A to a reward. The policy function π∗ maximizes the reward 

given as shown in (5). 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄∗ (𝑠, 𝑎) (5) 

Instead of building a Q table directly, due to the large state space, a neural network is used instead. This 

variation is called deep Q-learning (DQN) [45]. Neural networks are used to replace the Q function since 

they are universal function approximators [46]. The Q function is updated and an optimal policy is found 

by running simulations in which the agent takes actions and receives rewards. At each time step, the 

agent takes the following steps: observes its current state st, selects and performs action at, observes 

the following state 𝑠𝑡+1, receives a reward for its action rt, and updates its Q function. 

Standard Q-learning and DQN assume that only a single agent is present in the environment, but what 

if there were more than one agent? The presence of multiple agents is referred to as reinforcement 

learning with self-play or multiagent reinforcement learning [47], [48]. Within this setting, there are two 

classifications of games: competitive and cooperative. For this research, the authors look at cooperative 

games where agents share a common reward function [22]. Using this framework, the Q function and 

the reward function are identical for all agents. As a result, one can use the DQN and Q-learning 

algorithms described above. The degree of centralization of information varies depending on the design 

of the system. In a centralized setting, there is a single controller for all agents and all agents share 

observations with one another via this central controller. In a partially decentralized environment, there 

is no central controller, and agents make decisions based on the information they have. However, some 

agents may be connected to other agents through a network structure and share information. This differs 

from a fully decentralized structure where all agents act independently of each other and cannot share 

information. The varying levels of centralization present flexibility in agent design by allowing the agents 

to replicate real-world information conditions and constraints. 

 

3. METHODOLOGY 

The authors propose a new method to represent, model, and explore the ship system state space by 

combining multi-agent reinforcement with statistical physics. When designing a crewless vessel, 

integrating an already complex platform with further complex autonomous systems leads to additional 

difficulties in design. Since the size of the state space of possible failures is extremely large, it is difficult 

to explore the state space and find emergent faults resulting from the interdependencies between the 

systems. Therefore, the proposed method aims to explore the state space and find complex non-obvious 

interdependencies that exist between systems to aid the designer in a reasonable amount of time. 

The method first consists of constructing the agents that will explore the environment. The agents have 

limited knowledge about the environment since if the agents are omniscient, then there is no problem 

as the environment is fully known. However, since this is a cooperative task between agents, they have 

a centralized information structure where the observations of each agent are shared with all other 

agents. If one agent learns something about the environment, all others will become aware of it as well. 

Each agent is assigned a specific part of the ship’s environment to explore such as a component, a sub-

system, or an entire system. At each time step, the agent takes the following steps: it observes the 

environment, queries a number of possible actions, selects the best action, and observes the new state. 

Note that this is similar to the Q-learning algorithm outlined in section II-C with the only difference 

being the process of selection of an action. In the original Q-learning algorithm, the agent selects an 
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action given its current state. However, in the proposed method, the agent first queries a number of 

actions, sees their potential results, and then selects the best action among those queried. In addition, 

if none of the actions are beneficial actions, the agent may decide that the best course of action is to 

take another action that has not been queried. The agent has a limited number of queries using the 

tensor network. If the agent does not have this limit, then the agent can exhaustively search the 

environment. This is equivalent to performing an exhaustive search of the state space and as noted in 

section II-A, is not feasible due to time constraints. Algorithm 1 details a high-level version of the 

proposed method. Algorithm 1 was created by the authors. 

To query actions into the environment, the agent utilizes tensor network contractions. The agent anchors 

its position in the environment, the positions of other agents that it has knowledge of, and then contracts 

the network. The contraction evaluates the partition function encoded into the network. The partition 

function includes information that the agents learn through exploration. As time progresses in the 

simulation, the knowledge gained from previous actions helps to inform the agents about the 

consequences of future actions. 

Algorithm 2. Agent Environment Exploration 

Require: Environment Require: k,T ∈Z+ 
Require: n Agents 
    Initialize Environment 
    Initialize Agents in Environment 
    t ← 0 
    while t < T do 
  for agent in Agents do 
 agent observes its current state 
 Query k actions by agent into Environment 
 Evaluate the ensemble of action 
 Select best action from ensemble of k actions 
 end for 
 t ← t + 1 
   end while 

The authors use the framework as outlined in section 2.2 to construct the tensor network. The tensor 

network requires that certain components be set up prior to simulation to save computational time later. 

The first component to consider is the physical geometry of the environment. The environment must be 

organized into a grid-like object consisting of 1’s and 0’s where 1’s indicate valid agent positions and 

0’s indicate invalid agent positions. The valid agent positions in the environment represent the possible 

locations of the agents within their respective environments. For example, if the agent represents a valve, 

the positions might represent the degree of openness of the valve. The second component of the tensor 

network is the partition function. The partition function is evaluated by contracting the tensor network. 

The function is defined in the network using the relationship between individual spaces within the 

physical geometry of the environment. Let 𝑥𝑖⃗⃗⃗   and 𝑥𝑗⃗⃗⃗   be the positions of two agents 𝑖, 𝑗 within the 

environment. Then 𝑓(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ; θ), as used in (3), gives the relationship between the two spaces, with θ 

representing any additional parameters needed. At this point, the tensor network has enough 

information so that during the simulation, the computational time to construct the network is limited. 

However, for each query, the network must be reconstructed. For each query, the agent constructs the 

logical architecture using the available information. Call the agent who makes the query agent 𝑖. The 

authors construct a logical network in which agent 𝑖 and another agent 𝑗 have an edge between them if 

agent 𝑖 has encountered agent 𝑗. Then, the known positions of the encountered agents are anchored. 

Now, all the information needed to construct the network has been acquired: the geometry, the partition 

function, the logical network, and the anchors. The agent creates the network and then contracts it. For 

each subsequent action query at that time step, the agent updates its own position anchor and repeats 

the process to construct the logical network and anchors. In a real environment, all systems operate 

simultaneously and that is reflected in the simulation. Each agent queries and takes an action at the 

same time step. Therefore, agents, in addition to considering the other encountered agents’ current 
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positions, need to consider the other agents’ next moves as well. This adds an additional layer of depth 

to the simulation as the agents make decisions and explore the environment. 

The agent improves its decision-making capabilities by learning from its past experiences. Specifically, if 

the agent has a limited number of queries, then the agent must learn the best way to use them to 

maximize its information. Each type of agent, depending on the system the agent corresponds to, has a 

neural network from which it draws actions based on its current state. To learn the network, the agents 

employ DQN learning as described in section 2.3. By using this approach, the agent learns how use their 

limited number of queries. Initially, the DQN learning algorithm focuses on exploration by selecting 

random actions. Over time, as the network sees more data and updates, less actions are randomly 

sampled, and more are drawn directly from the network. At the end of the simulation, nearly all samples 

are sampled directly from the network. 

As the simulation progresses and the environment is explored, additional information about what the 

agents encounter is gathered and the parameters θ of the partition function are updated. These data 

help inform agents of the benefits and drawbacks of their queried actions through the tensor network. 

In addition, the agent learns from its experiences and updates its neural network through DQN. As a 

result, when the agent selects what it believes to be the best action, this action will be better informed 

than in the previous time steps. This leads to better choices, resulting in a better understood 

environment. How the agent selects the best action from the ensemble of queried actions depends on 

what system or component the agent is representing. However, each agent uses a combination of the 

result of the tensor network contraction, what the agent observes during its queries, and its own internal 

goals. By the end of the simulation, the relationships between various systems and agents are found 

through exploration of the environment, including non-obvious complex relationships between systems. 

Information about system interdependencies can be used by the designer to have a better 

understanding of the relationships that exist within the ship and enable crewless vessels. 

 

4. CASE STUDY 

In the following section, a modified version of the N-Queens problem is used to demonstrate the 

method proposed in section III. The standard N-Queens problem is a classical constraint satisfaction 

problem where given an N ×N board, place up to N queens such that no queens conflict with each other 

[49]. The N-Queens problem is modified for this demonstration where queens will only have vision one 

square out. An example of this vision is in Figure 2. While it is clear that the yellow queen conflicts with 

both the blue and red queens, the red and yellow queens are not aware of each other since their vision 

is limited to one space away. This limitation of the queen’s knowledge reflects the limited knowledge of 

agents as stipulated in the proposed method above since agents are not omniscient. 

 
Figure 2: Example of the modifications to the queens’ vision. Created by the authors. 
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For the demonstration, a single 𝑛 × 𝑛 board with 𝑛 queens was used. The board was converted into the 

physical geometric object required for the tensor network by creating an 𝑛 × 𝑛 grid of 1’s. Next, the 

partition function to be encoded into the tensor network was set up. The effective design objective 

function, which is used in the partition function, was defined as (3). The effective design objective 

function utilized the function 𝑓(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ; 𝑇) which dictates the relationship between two spaces and is 

defined in (6). The function 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑥𝑖⃗⃗⃗  , 𝑥𝑗⃗⃗⃗  ) returns true if a conflict has been registered between 

the spaces occupied by 𝑥𝑖⃗⃗⃗   and 𝑥𝑗⃗⃗⃗   and false otherwise. The parameter 𝑇 denotes the degree of impact 

conflicts have. When 𝑇 is larger, conflicts have greater weight. Initially, the partition function starts empty 

without any information about the board. Conflicts are registered in the partition function when agents 

encounter one another during action queries. The simulation algorithm is found below in Algorithm 2. 

Algorithm 2 was created by the authors. 

𝑓(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗; 𝑇) = 𝑇 × 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) (6) 

 

Algorithm 2. Modified N-Queens Problem 

Require: n,k,T ≥ 0 
Initialize Board(n,n) 
n queens ← n 
Place n queens on Board 
t ← 0 while t < T do 

     for queen in n queens do 
queen observes its current state Query k 
moves by queen on Board 
Evaluate the ensemble of moves 
Move queen to best of k moves  

     end for t ← t + 1 end while 

Queen agents have several characteristics. There are 17 possible actions they can take: move one space 

in each direction, move more than one space in each direction, and remain stationary. How far a queen 

moves when it elects to move more than one space is determined by an internal parameter called 

𝑞𝑢𝑒𝑟𝑦_𝑟𝑎𝑛𝑔𝑒 ∈ [0,1]. The larger 𝑞𝑢𝑒𝑟𝑦_𝑟𝑎𝑛𝑔𝑒 is, the farther the queen moves to perform the query. Once 

the queen has made its queries and has an ensemble of possible actions, it uses a priority list to 

determine the best action to take. The best is a move that is one space away and results in no conflicts 

with other queens. The second best is a move more than one space away with no known conflicts. Third 

is a move more than a space away that results in a conflict. Finally, the worst is a move one space away 

that results in a conflict. However, if the queen finds that all of its moves cause visible conflicts, it may 

instead choose to take another action that has not been queried. The chance that the queen chooses to 

take this alternative action is based on a parameter called 𝑚𝑜𝑣𝑒_𝑟𝑖𝑠𝑘 ∈  [0,1] where the closer the 

parameter is to 1, the more likely it is to pick another action. The reward that the queen receives is given 

by the number of known conflicts of the queen in its new location. If there are no conflicts, the reward 

is 0. With each additional conflict, the reward decreases by 1. After the queen has moved, its encounters 

and conflicts with other queens are logged into memory to update the partition function. The metric for 

success in a game is by how much the number of conflicts between queens is minimized. At the end of 

a game, the ideal result is that there are no conflicts. 
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(a) Start of query phase (b) First query 

  
(c) Second query (d) Third query 

Fig. 3: An example of a queen’s query phase. Created by the authors. 

The modified version of the N-Queens problem has the same characteristics as the diagnostic problem 

in ship design. First, there is the operational decision making. Components within a ship continuously 

update and make decisions based on their known information and current objective. These decisions 

will impact other components throughout the ship directly and indirectly. Similarly, since each queen is 

moving at each time step, each of their actions may impact all other queens. There are also geometric 

constraints on a ship. For example, certain systems cannot be located next to other systems due to 

concerns such as excess heat from one system impacting another. By the nature of the modified N-

Queens problem, there are also geometric constraints. Queens cannot conflict with each other and must 

maintain adequate spacing. When the queens move, these constraints must be taken into account. Next, 

designing a ship is a scalable problem [14]. As more components and systems are added to the ship 

design, so does the challenge of integrating them into a single platform. Similarly, the modified N-

Queens problem can be scaled in difficulty by increasing the size of the board and increasing the number 

of queens. The state space of the game for an NxN board is given by (𝑁×𝑁
𝑁

). As N increases, the state 

space grows exponentially large, similar to ships. Finally, the modified N-Queens problem replicates the 

limited information that is present inside a ship. Since each component does not know the state of every 

other component, then each component needs to use its best judgement in decisions in a decentralized 

approach. The queens also have limited knowledge since they can only see one space away from 

themselves. They have to rely on their limited information to make a decision. 

Figure 3 is an example of a query phase for the red queen. The red queen finds the blue queen on its 

first query in (b), but sees that remaining next to it will lead to a conflict. The next query (c) sees the red 

queen find a space where no other queens are, but still conflicts with the blue queen. Finally, in (d), the 

queen finds a location where there are no other queens and does not conflict with the blue queen. 

According to the priority list, the queen will select the final query as its action. 

 

5. RESULTS AND DISCUSSION 

Next, the current testing results are presented. The system was tested on 4x4, 6x6, 8x8, and 10x10 boards. 

The agents share a single neural network since they all occupy the same board and have the same shared 

goal. The neural network consists of the following layers, where the final layer is a mapping to the actions 

available to queen agents. 
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• Convolution_2D(in_channels=1, out_channels=3, kernel=(3,3), stride=1, padding=1) 

• Linear_Layer(in_dim= n2 × 3, out_dim=128) 

• Linear_Layer(in_dim=128, out_dim=64) 

• Linear_Layer(in_dim=64, out_dim=32) 

• Linear_Layer(in_dim=32, out_dim=17) 

Each agent is allowed 5 movement queries using the tensor network and each simulation is stopped 

after 50 time steps. The best parameters for query range and move risk varied based on board size, which 

are located in Table 1. T = 5 was found to be the best choice as smaller choices did not penalize conflicts 

as much as required. 

A total of 200 games were played for training on each board with discount γ = 0.999 and learning rate 

α = 10−3. Afterwards, 100 games were played using the trained network. 

Table 1: Queen agent parameters. 

Board Size query range move risk 

4x4 0.5 0.8 

6x6 0.5 0.5 

8x8 0.7 0.5 

10x10 0.9 0.3 

The results were then compared with a modification of the algorithm created by Sosic et al. [50]. Their 

work was chosen for the following reasons. First, other N-Queens algorithms rely on placing queens on 

the board one at a time and then using a method, such as backtracking, to explore the state space until 

a valid solution is found [51]. However, similar to the proposed method, Sosic et al. start with all queens 

initially placed on the board and then move them around. Second, similar limitations can be placed upon 

their algorithm that mirror the authors’ modified N-Queens environment, where agents act under limited 

information. This limitation is accomplished by only allowing the queens to have knowledge of other 

queens a single column away. Their algorithm was ran on each board for 1,000 runs each. The percentage 

of successful games and the average number of conflicts present on the board were recorded for both 

methods in Table 2. While the modified version of Sosic et al. has a perfect success rate on the 4 × 4 

board, it fails to handle the larger scales of 6 × 6 boards and above with almost a complete failure rate 

on the 10 × 10 board where it only succeeds once. This is compared to the authors’ method which is 

capable of solving each successive version of the board with slightly less ability than the prior board. 

The proposed method also results in larger numbers of conflicts between queens compared to the 

modified Sosic et al. method. From these results, the authors’ method is capable of solving smaller 

boards with its current setup, it has difficulty solving larger boards. This is most likely due to the fact that 

since queens can only see one space away, it is hard to know if a queen conflicts with another queen 

across the board. Increasing the amount of the board that the queens can see may benefit this problem. 

However, the tensor network contraction time and memory requirement will increase as a result of the 

increase in the amount of data that it needs to consider during each query. With these results, the 

authors’ method has been shown to be capable of solving the N-Queens problem and that the queen 

agents can use tensor networks to build ensembles of data to inform their decisions. 

Table 2: Success rate and average number of conflicts present on the board. 

Board Size Success Rate (%) Avg # of Conflicts 

 Proposed Method Sosic Proposed Method Sosic 

4 × 4 30 100 1.33 0 

6 × 6 24 3.4 3.25 1.67 

8 × 8 17 1.3 5.60 3.03 

10 × 10 9 0.1 7.40 4.30 
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The other key aspect of the results is that the tensor network approach decouples diagnostic decision 

making from the complexity of the environment. As the board increases in size, the size of the state 

space increases exponentially. In Sosic et al.’s modified method, their success rate decreases 

exponentially to the point where it only succeeded once out of 1,000 runs on a 10x10 board. However, 

the proposed method succeeded 9% of the time. It can be noted that as the board size increases, the 

proposed method’s success rate decreases linearly in comparison. Therefore, even as the state space 

grows exponentially, the success rate decreases linearly in comparison, thus effectively demonstrating 

that agent decision making has been decoupled from the scale of the state space. 

 

6. CONCLUSION AND FUTURE WORK 

The design of SAHM systems for crewless vessels is a challenging problem due to the size of the vessel’s 

state space. Through the method presented in this paper and its corresponding results on a modified 

version of the N-Queens problem, a tensor network-based approach has been shown to be capable of 

handling rapidly scaling environments. As the board size increases, the state space increases in size 

quickly and the modifications to the game introduce a limited information environment. Therefore, since 

the proposed method is capable of solving large 10x10 boards and Sosic et al.’s modified method failed 

to accomplish the same, the proposed method successfully decouples agent decision making from the 

scale of the environment. 

Based on these promising results for the N-Queens problem with a simple approach and model, further 

work can be done to improve the method on a larger scale by increasing the vision range of the queen 

agents and by further increasing the size of the board. Both of these options increase the complexity of 

the problem and may introduce additional computational difficulties into the problem. In addition to 

further application to the N-Queens problem, additional investigation is required to translate the 

method onto the smart ship platform and other real-world systems. 
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