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FIXED POINT RESULTS FOR PATA CONTRACTION ON A
METRIC SPACE WITH A GRAPH AND ITS APPLICATION

MARYAM RAMEZANI AND ASMA ARIAN

Abstract. Let (X, d) be a metric space endowed with a graph G such that
the set V (G) of vertices of G coincides with X. We define the notion of Pata-
G-contraction type maps and obtain some fixed point theorems for such map-
pings. This extends and subsumes many recent results which were obtained for
other contractive type mappings on a partially ordered metric space. As an ap-
plication, we present theorem on the convergence of successive approximations
for some linear operators on a Banach space.

1. Introduction

Let f be a selfmap of a metric space (X, d). Following Petrusel and Rus [14],
we say that f is a Picard operator (abbr., PO) if f has a unique fixed point x∗

and limn→∞ fnx = x∗ for all x ∈ X and is called a weakly Picard operator (abbr.
WPO) if the sequence (fnx)n∈N converges, for all x ∈ X and the limit (which may
depends on x) is a fixed point of f . Let (X, d) be a metric space. Let ∆ denote
the diagonal of the Cartesian product X × X. Consider a directed graph G such
that the set V (G) of its vertices coincides with X, and the set E(G) of its edges
contains all loops, i.e., E(G) ⊇ ∆. We assume G has no parallel edges, so we can
identify G with the pair (V (G), E(G)). Moreover, we may treat G as a weighted
graph (see [5, 11]) by assigning to each edge the distance between its vertices. By
G−1 we denote the conversion of a graph G, i.e., the graph obtained from G by
reversing the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

The letter G̃ denotes the undirected graph obtained fromG by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ as a directed graph
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for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1). (1)

We call (V
′
, E

′
) a subgraph of G if V

′ ⊆ V (G), E
′ ⊆ E(G) and for any edge

(x, y) ∈ E′
, x, y ∈ V ′

. Now we recall a few basic notions concerning the connectivity
of graph. All of them can be found, e.g., in [5]. If x and y are vertices in a graph
G, then a path in G from x to y of length N (N ∈ N ∪ {0}) is a sequence (xi)

N
i=0

of N + 1 vertices such that

x0 = x, xN = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , N.

A graph G is connected if there is a path between any two vertices. G is weakly
connected if G̃ is connected. If G is such that E(G) is symmetric and x is symmetric
and x is a vertex in G, then the subgraph Gx consisting of all edges and vertices
which are contained in some path beginning at x is called the component of G
containing x. In this case V (Gx) = [x]G, where [x]G is the equivalence class of the
following relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

Clearly, Gx is connected.

Definition 1. [2] We say that a mapping f : X → X is a Banach G-contraction
or simply a G-contraction if f preserves edges of G, i.e.,

∀x, y ∈ X ((x, y) ∈ E(G) implies (fx, fy) ∈ E(G)),

and f decreases weights of edges of G in the following way:

∃α ∈ (0, 1) , ∀x, y ∈ X ((x, y) ∈ E(G) implies d(fx, fy) ≤ αd(x, y)).

For more details, we refer the reader to the papers [1, 3, 12].

2. Iterations and fixed points of Pata-G-contractions

Throughout this section we assume that (X, d) is a metric space, and G is a
directed graph such that V (G) = X and E(G) ⊇ ∆. The set of all fixed point of a
mapping f is denoted by Fixf .
Recently Pata in [13] introduced a fixed point theorem with weaker hypotheses
than those of the Banach contraction principle with an explicit estimate of the
convergence rate. This idea was developed by [11, 9, 7, 6, 4].
The aim of this paper is to introduce Pata-G-contractions and obtain results on

the existence of a fixed point for single-valued mappings in metric spaces (X, d) by
following the technique of Pata [13].
Selecting an arbitrary x0 ∈ X we denote

‖ x ‖= d(x, x0) for all x ∈ X.
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Let ψ : [0, 1]→ [0,∞) is an increasing function vanishing with continuity at zero.

Also consider the vanishing sequence depending on α ≥ 1, wn(α) = (
α

n
)α

n∑
k=1

ψ(
α

k
).

Definition 2. We say that a mapping f : X → X is a Pata-G-contraction if f
preserves edges of G, i.e.,

∀x, y ∈ X((x, y) ∈ E(G) implies (fx, fy) ∈ E(G)), (2)

and f decreases weights of edges of G in the following way:

d(fx, fy) ≤ (1− ε)d(x, y) + Λεαψ(ε)[1 + ‖x‖+ ‖y‖]β . (3)

That inequality is satisfied for every ε ∈ [0, 1] and every x, y ∈ X. also let Λ ≥ 0,
α ≥ 1 and β ∈ [0, α] be fixed constants.

Example 3. Any constant function f : X → X is a Pata-G-contraction since E(G)
contains all loops. (In fact, E(G) must contain all loops if we wish any constant
function to be Pata-G-contraction.)

Example 4. Let � be a partial order in X. Define the graph G1 by
E(G1) := {(x, y) ∈ X ×X : x � y}.

Example 5. Let X = {0, 1, 2, 3} and the Euclidean metric d(x, y) = |x−y|, ∀x, y ∈
X. The mapping f : X → X, fx = 0, for x ∈ {0, 1} and fx = 1, for x ∈ {2, 3} is
a Pata-G-contraction where G = {(0, 1); (0, 2); (2, 3); (0, 0); (1, 1); (2, 2); (3, 3)}.
Proposition 6. If a mapping f : X → X is such that (2) (resp., (3)) holds, then
(2)(resp. (3)) is also satisfied for graphs G−1 and G̃. Hence, if f is a Pata-G-
contraction, then f is both a Pata-G−1-contraction and a Pata-G̃-contraction.

Proof. This is an obvious consequence of symmetry of d and (1).

Example 7. Let � be a partial order in X. Set
E(G2) := {(x, y) ∈ X ×X : x � y or y � x}.

In particular, for this graph (1.2) holds if f is monotone with respect to the order.
Moreover, if f satisfies (3) with G := G1 from Example 4, then by proposition 6,
(3) holds with G := G2 since G2 = G̃1.

Our first result shows that the convergence of successive approximations for
Pata G-contractions is closely related to the connectivity of a graph. Also, we say
sequences (xn)n∈N and (yn)n∈N elements of X, are Cauchy equivalent if each of
them is a Cauchy sequence and d(xn, yn)→ 0.

Lemma 8. Let f : X → X be a Pata-G-contraction. Then given x ∈ X and
y ∈ [x]G̃, there exist constants N(x, y) ∈ N and C(x, y) ∈ R that N(x, y) is number
edges that there is from x to y, such that

d(fnx, fny) ≤ N(x, y)C(x, y)wn(α).
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Proof. Step1: Let x ∈ X and y ∈ [x]G̃. Then there is a path (z0i )
N(x,y)
i=0 in G̃

from x to y, i.e., z00 = x, z0N(x,y) = y. we introduce the sequences

zni = fnz0i and c
n
i = ‖fnz0i ‖ = (fnz0i , z

0
i ) for all i = 1, . . . , N(x, y).

For all i ∈ {1, 2, . . . , N(x, y)}, the sequence ‖fnz0i ‖ = cni is bounded.
Starting from x, Exploiting the inequalities

d(fn+1z0i , f
nz0i ) ≤ (1− ε)d(fnz0i , f

n−1z0i ) + Λεαψ(ε)[1 + ‖fnz0i ‖+ ‖fn−1z0i ‖]β .
Since (2) is true for all ε ∈ [0, 1], we put ε = 0. Then we have the following relations

d(fn+1z0i , f
nz0i ) ≤ d(fnz0i , f

n−1z0i ) ≤ . . . ≤ d(fz0i , z
0
i ) = c1i .

By triangle inequality, we have

d(fnz0i , z
0
i ) ≤ d(fnz0i , z

1
i ) + d(z1i , z

0
i ),

d(fnz0i , z
1
i ) ≤ d(fnz0i , f

n+1z0i ) + d(fn+1z0i , z
1
i ).

We deduce the bound

cni = d(fnz0i , z
0
i ) ≤ d(fn+1z0i , z

1
i ) + 2c1i for i = 1, . . . , N(x, y),

therefore, as β ≤ α, we infer from (2) that

cni ≤ (1− ε)cni + Λεαψ(ε)[1 + cni + c0i ]
β + 2c1i

≤ (1− ε)cni + aεαψ(ε)(cni )α + b,

for some a, b > 0. Accordingly,

εcni ≤ aεαψ(ε)(cni )α + b.

If there is a subsequence cnιi → ∞, the choice ε = ει = (1+b)
cnιi

leads to the contra-
diction

1 ≤ a(1 + b)αψ(ει)→ 0.

Step2: put C(x, y) = supn∈N Λ[1 + ‖cn1‖+ ‖cn2‖+ . . .+ ‖cnN(x,y)‖]β <∞. We prove
following

d(fnx, fny) ≤ N(x, y)C(x, y)wn(α) for all n ∈ N.

By induction on n, we show the sequence pin = nαd(fnz0i , f
nz0i−1) ≤ C(x, y)ααΣnk=1ψ(αk )

where i ∈ {1, 2, . . . , N(x, y)}. for n = 1,

pi1 = d(fz0i , fz
0
i−1) ≤ (1− ε)d(z0i−1, z

0
i ) + Λεαψ(ε)[1 + ‖z0i−1‖+ ‖z0i ‖]β ,
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for all ε ∈ [0, 1]. By putting ε = 1, we have

pi1 ≤ Λεαψ(ε)[1 + ‖z0i−1‖+ ‖z0i ‖]β

which implies
pi1 ≤ C(x, y)ααψ(α).

So, we have

pin = nαd(fnz0i , f
nz0i−1) ≤ nα(1− ε)d(fn−1z0i , f

n−1z0i−1) + C(x, y)εαψ(ε),

choosing at each n

ε = 1− (
n

n+ 1
)α ≤ α

n+ 1
,

pin ≤ (n− 1)αd(fn−1z0i , f
n−1z0i−1) + C(x, y)ααψ(

α

n
),

we end up with

pin+1 ≤ pin + C(x, y)ααψ(
α

n+ 1
).

Since pi0 = 0, this gives

pin ≤ C(x, y)αα
n∑
k=1

ψ(
α

k
),

and a final division by nα will do. Now, since i ∈ {1, 2, . . . , N(x, y)}, by triangle
inequality, we have

d(fnx, fny) ≤ N(x, y)C(x, y)wn(α).

Theorem 9. Let (X, d) be a metric space endowed with a graph G and f : X → X
be a Pata-G-contraction such that the graph G is weakly connected. For all x, y ∈ X,
the sequences (fnx)n∈N and (fny)n∈N are Cauchy equivalent.

Proof. Let f be a Pata-G-contraction, m be fixed and x, y ∈ X. By hypothesis
[x]G̃ = X, so fmx = xm ∈ [x]G̃. By Lemma 8, we get

d(xn, xn+m) = d(fnx, fnmx) ≤ N(x, xm)C(x, xm) wn(α),

as n → ∞, d(fnx, fnxm) → 0. This show that sequence (fnx)n∈N is Cauchy. So
since y ∈ [x]G̃, Lemma 8 yields

d(fnx, fny) ≤ N(x, y)C(x, y)wn(α).

As n → ∞, d(fnx, fny) → 0. Thus sequence (fny)n∈N is Cauchy and (fnx)n∈N,
(fny)n∈N are Cauchy equivalent.
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Corollary 10. Let (X, d) be complete. The following statement are equivalent:
(i) G is weakly connected;
(ii) for any Pata-G-contraction f : X → X, there is x∗ ∈ X such that limn→∞ fnx =
x∗ for all x ∈ X.
Proposition 11. Assume that f : X → X is a Pata-G-contraction such that for
some x0 ∈ X, fx0 ∈ [x0]G̃. Let G̃x0 be the component of G̃ containing x0. Then
[x0]G̃ is f -invariant and f |[x0]G̃ is a Pata-G̃x0-contraction. Moreover, if x, y ∈ [x0]G̃
then (fnx)n∈N and (fny)n∈N are Cauchy equivalent.

Proof. Let x ∈ [x0]G̃. Then there is a path (xi)
N
i=0 in G̃ from x0 to x, i.e.,

xN = x and (xi−1, xi) ∈ E(G̃) for i = 1, . . . , N . By Proposition 6, f is a Pata-G̃-
contraction which yields (fxi−1, fxi) ∈ E(G̃) for i = 1, . . . , N , i.e., (fxi)

N
i=0 is a

path in G̃ from fx0 to fx. Thus fx ∈ [fx0]G̃. Since, by hypothesis, fx0 ∈ [x0]G̃,
i.e., [fx0]G̃ = [x0]G̃, we infer fx ∈ [x0]G̃. Thus [x0]G̃ is f -invariant.
Now let (x, y) ∈ E(G̃x0). This means there is a path (xi)

N
i=0 in G̃ from x0 to y such

that xN−1 = x. Let (yi)
M
i=0 be a path in G̃ from x0 to fx0. Repeating the argument

from the first part of the proof, we infer (y0, y1, . . . , yM , fx1, . . . , fxN ) is a path in
G̃ from x0 to fy; in particular, (fxN−1, fxN ) ∈ E(G̃x0), i.e., (fx, fy) ∈ E(G̃x0).
Moreover, since E(G̃x0) ⊆ E(G̃) and f is a Pata-G̃-contraction, we infer (3) holds
for the graph G̃x0 . Thus f |[x0]G̃ is a Pata-G̃x0 -contraction.
Finally, in view of Theorem 9, the second statement follows immediately from the
first one since G̃x0 is connected.

Theorem 12. Let (X, d) be a complete metric space endowed with a graph G and
f : X → X be a Pata-G-contraction. Let Xf := {x ∈ X : (x, fx) ∈ E(G)}. We
have the following property:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,
Then there is a subsequence (xkn)n∈N with (xkn , x) ∈ E(G) for n ∈ N. (4)

Then the following statements hold.
1o cardF ixf = card{[x]G̃ : x ∈ Xf}.
2o For any x ∈ Xf , f |[x]G̃ is a PO.
3o If X

′
:= ∪{[x]G̃ : x ∈ Xf}, then f |X′ is a WPO.

4o If f ⊆ E(G), then f is a WPO.

Proof. We begin with point 20. Let x ∈ Xf , then fx ∈ [x]G̃, so by Proposition
11, if y ∈ [x]G̃, then (fnx)n∈N and (fny)n∈N are Cauchy equivalent. By complete-
ness, (fnx)n∈N converges to some x∗ ∈ X. Clearly, also limn→∞ fny = x∗. Since
(x, fx) ∈ E(G), (2) yields

(fnx, fn+1x) ∈ E(G) for n ∈ N. (5)
By (4), there is a subsequence (fknx)n∈N such that (fknx, x∗) ∈ E(G) for n ∈ N.
Hence and by (5), we infer (x, fx, f2x, . . . , fk1x, x∗) is a path in G (hence also in
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G̃) from x to x∗, i.e., x∗ ∈ [x]G̃. Moreover, by (3), we have

d(fkn+1x, fx∗) ≤ (1− ε)d(fknx, x∗) + Cεαψ(ε) for n ∈ N,
holds for all ε ∈ [0, 1], put ε = 0, so

d(fkn+1x, fx∗) ≤ d(fknx, x∗).

Hence, letting n tend to ∞ we conclude x∗ = fx∗. Thus f |[x]G̃ is a PO.
Now 3o is an easy consequence of 2o. To show 4o observe that f ⊆ E(G) means
Xf = X. This yields X

′
= X, so f is a WPO in view of 3o.

To prove 1o, consider a mapping π define by

π(x) := [x]G̃ for all x ∈ Fix f.

It suffi ces to show π is a bijection of Fixf onto C := {[x]G̃ : x ∈ Xf}. since
E(G) ⊇ ∆, we infer Fixf ⊆ Xf which yields π(Fixf) ⊆ C. On the other hand, if
x ∈ Xf , then by 2o, limn→∞ fnx ∈ [x]G̃ ∩ Fixf which implies π(limn→∞ fnx) =
[x]G̃. Thus f is a surjection of Fixf onto C. Now, if x1, x2 ∈ Fixf are such that
π(x1) = π(x2), i.e., [x1]G̃ = [x2]G̃, then x2 ∈ [x1]G̃, so by 20,

lim
n→∞

fnx2 ∈ [x1]G̃ ∩ Fixf = {x1},

i.e., x1 = x2 since fnx2 = x1. Consequently, f is injective. Thus 1o is proved.

Remark 13. If we assume that a graph G is such that E(G) is a quasi-order (i.e.,
it is transitive), then (4) is equivalent to the following:

for any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈ N,
Then (xn, x) ∈ E(G) for n ∈ N. (6)

Proposition 14. If E(G) is a quasi-order and given x ∈ X, the set {y ∈ X :
(x, y) ∈ E(G)} is closed, then (X, d,G) has property (6).

Proof. Let (xn)n∈N be such that (xn, xn+1) ∈ E(G) for n ∈ N and xn → x. By
transitivity, given n ∈ N,

xm ∈ {y ∈ X : (xn, y) ∈ E(G)} for m ≥ n.

Letting m tend to ∞, in view of the hypothesis we get (xn, x) ∈ E(G).

3. Application: A generalization of the Kelisky-Rivlin theorem

In 1967, Kelisky and Rivlin defined the Bernstein operator Bn(n ∈ N) on the
space C[0, 1] by

(Bnϕ)(t) :=

n∑
k=0

ϕ(
k

n
)

(
n

k

)
tk(1− t)n−k,
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for all ϕ ∈ C[0, 1], t ∈ [0, 1] (see [5]). They proved that each Bernstein operator Bn
is a WPO. Moreover,

lim
j→∞

(Bjnϕ)(t) = ϕ(0) + (ϕ(1)− ϕ(0))t,

for all ϕ ∈ C[0, 1], t ∈ [0, 1] and n ≥ 1, where {Bjn}j≥1 is the sequence of the
iterates of Bn. In 2008, a simple proof of the Kelisky-Rivlin theorem was given by
Rus with the help of some trick with the Contraction Principle (see[6]). For more
details about Kelisky-Rivlin theorem, we refer the reader to the paper [11].
Our purpose here is to show that the Bernstein operator Bn is a Pata-G-

contraction for some graph G such that Bn ⊆ E(G), and hence, in view of theorem
12, Bn is a WPO.

Theorem 15. Let X be a Banach space and X0 a closed subspace of X. Let T :
X → X be a linear operator(not necessarily continuous on X) such that ‖T |X0

‖ < 1.
If the corresponding field I − T is such that (I − T )(X) ⊆ X0, then T is a WPO.
Moreover, CardFixT = CardX \X0. and

(x+X0) ∩ FixT = { lim
n→∞

Tnx} for x ∈ X.

Proof. Define the following graph G : V (G) := X and for x, y ∈ X,
(x, y) ∈ E(G) if x− y ∈ X0.

Clearly, E(G) is an equivalence relation; in particular, E(G) ⊇ ∆ and by symmetry,
G̃ = G. We show Theorem 12 as an application here. First we prove T is a Pata-
G-contraction. Let x, y ∈ E(G), i.e., x− y ∈ X0. Then we have

Tx− Ty = (y − Ty)− (x− Tx) + (x− y) ∈ X0,

since, by hypothesis, y − Ty, x− Tx ∈ X0. Thus (Tx, Ty) ∈ E(G) and moreover,

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖T |X0
‖‖x− y‖.

Since ‖T |X0
‖ < 1, we infer T is a G-contraction.

By using [section 3 of [13]], we have

‖Tx− Ty‖ ≤ (1− ε)‖x− y‖+ Λε1+γ [1 + ‖x‖+ ‖y‖], ∀γ > 0,

where α = β = 1, ψ(ε) = εγ and

Λ = Λ(γ, λ) =
γγ

(1 + γ)1+γ
1

(1− λ)γ
.

So, we infer T is a Pata-G-contraction.
Observe that given x ∈ X,

{y ∈ X : (x, y) ∈ E(G)} = x+X0.

Since X0 is closed, so is x+X0. Thus Proposition 14 implies (X, d,G) has property
(6) since, in particular, E(G) is a quasi-order. Now condition (I − T )(X) ⊆ X0
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means (x, Tx) ∈ E(G) for x ∈ X, i.e., T ⊆ E(G). So Theorem 12 imply T is a
WPO. Moreover, since E(G̃)(= E(G)) is transitive, we infer that given x ∈ X,

[x]G̃ = {y ∈ X : (x, y) ∈ E(G)} = x+X0.

Hence and by Theorem 12 (1o),

cardF ixT = card{x+X0 : x ∈ XT } = cardX \X0,

since XT = X. Finally, Theorem 12 (2o) yields the last statement of the thesis.
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