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Abstract— This study focuses on controlling a quadcopter system using a steady-state visual evoked 
potential (SSVEP)-based brain-computer interface system. In the literature, researchers report the 
accuracy and information transfer rate. However, these measures do not provide sufficient information 
about the predicted and target path similarity. The drone is expected to follow a certain square-shaped 
path and return to its starting position. We calculated the final and mean distances as additional outcome 
measures using several classifiers. The results emphasize the importance of having a balanced confusion 
matrix in the performance of quadcopter control and provide a more complete picture in the evaluation 
of the quadcopter’s performance. Focusing on the relationship between classification accuracy and 
spatial deviation might create a new perspective for BCI-based control systems. 

Keywords : Unmanned Aerial Vehicles (UAV), Path following, Control, Brain-computer interface.  

 
1.Introduction 

Technological advancement in neuroscience has led to a big interest in brain-computer interfaces 
(BCIs), which have applications in different fields such as clinical medicine, military, recreation, and so 
on (Meriño et al., 2017). These systems have become more advanced with the utilization of virtual 
reality (Johnson et al., 2018)(Cattan et al., 2018)(Rutkowski, 2016), robotic devices (Bousseta et al., 
2018)(Wu et al., 2008)(Victorio Yasin et al., 2018)(Shao et al., 2020), and brain-computer 
communication devices (Milekovic et al., 2018)(Speier et al., 2016).  

As stated by the World Health Organization’s report on disability, around 15% of the world's 
population cope with disability. 2-4 percent of these people experience notable difficulties in 
functioning. A major part of these difficulties comes from muscle diseases. BCIs can aid to make life 
easier for people in such conditions and reduce the human effort for various tasks. Optimizing these 
systems could minimize human effort and speed up the processes in the following years.  

BCIs can detect the target neuronal activities from the human brain and use them to control devices 
such as computers. Our brain is as an electrical signal source and electroencephalography is the most 
common acquisition method to record these neuronal signals. It is a non-invasive technique for 
measuring electrical potentials (i.e. electroencephalogram) generated by brain electrical activity from 
electrodes placed on specific scalp locations (Shao et al., 2020).  

Electroencephalogram (EEG) is used to examine neurological activity and brain functions by 
sampling and measuring under a particular experimental protocol. In recent years, the advantages (e.g., 
easy recording, high resolution in time) of EEG helped in developing EEG-based BCI systems. With 
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proper preprocessing steps, feature extraction, and classification, a BCI transforms this activity into a 
control signal (Wu et al., 2008). 

There are different EEG paradigms used for BCIs. These paradigms can be classified as slow cortical 
potential (SCP), motor imagery (MI), oddball paradigm (P300), and steady-state visual evoked potential 
(SSVEP). SCPs are slow shifts of the EEG where the negative shifts mainly show the depolarization of 
the cortical cells, whereas positive shifts are related to cortical inhibition (Strehl et al., 2006). P300 is 
the positive deviation in the EEG around 300 ms after the stimulus onset and it is located mainly in 
central to parietal channel locations (Polich, 2007). They are observed when there are deviant stimuli 
during a series of frequently presented standard stimuli. This phenomenon is known as the oddball 
paradigm (Fabiani et al., 1981)(Hammer et al., 2018). MI depends on the sensory-motor rhythm’s 
modulations, which can be categorized as event-related synchronization (ERS) and desynchronization 
(ERD). Before and after the movement, ERD and ERS activities are lateralized, and specific brain 
patterns are generated for imagery movements. This can be used for MI-based classification (Kumar et 
al., 2017)(Thomas et al., 2013). SSVEPs are phase-locked responses from the visual cortex, generated 
by setting a person’s gaze to a flickering visual stimulus such as a flashing light (Herrmann, 2001), or a 
reversing pattern (Bakardjian et al., 2010). The signal that is recorded from the scalp under the stimuli 
has an increased amplitude at the flickering frequency and its harmonics (Mei et al., 2020). There are 
several reasons to choose SSVEP-based BCI. Currently, it is the fastest BCI paradigm which has a high 
information transfer rate (ITR), high signal-to-noise ratio (SNR), and robustness (Mei et al., 2020)(Shao 
et al., 2020). Such a robust and fast method can be used to control different systems.  

In the last few years, quadcopters have become popular as they are much more economical compared 
to other robotic systems. Even though they maintain a simple system architecture, they can be very 
handy when used correctly. There are many types of quadcopters depending on their size and shape, 
which makes their usage more common and practical for the desired operation. Quadcopters are 
appropriate for utilization in academic environments by researchers to analyze or assess innovative new 
ideas from various research topics such as real-time systems, robotics, flight control theory, and 
navigation (Rosca et al., 2018). Due to its high SNR and robustness, in this study, the control of a 
quadcopter is provided by using an SSVEP-based BCI and simulated virtually to represent the control 
process in 2D space.  

In most BCI studies, the emphasis has been on obtaining a high classification accuracy value and 
high ITR (Meriño et al., 2017)(Mei et al., 2020). However, depending on the desired outcome measure, 
some factors other than the classification accuracy can be more important. Classification accuracy is a 
critical factor most of the time, but this study shows that the desired outcome is not dependent only on 
accuracy. To emphasize this idea, a drone-based control system was selected to accomplish a two-
dimensional (2D) flight scenario. The drone is expected to follow a certain square-shaped path and return 
to its starting position. The EEG data are classified into four different classes, each representing a 
movement direction for the drone (right, left, up, down). We compared the target (i.e., square) and 
predicted flight paths using four performance measures:  

1) Overall accuracy (OA), 

2) Final distance (FD) between the predicted and the target coordinates,  

3) Mean distance (MD) between the predicted and the target coordinates, and  

4) Information transfer rate (ITR).  

These measures provide a more complete evaluation of the quadcopter’s performance. 

 

2. Methods 

2.1 Dataset 

The data used in the study were from the Tsinghua University BCI laboratory (Wang et al., 2017). 
There are 35 subjects (18 males) between 17-34 years, with a mean age: 22 years. These subjects looked 
at 40 flickering characters in a frequency range of 8-15.8 Hz. The frequency interval was 0.2 Hz. Subject 
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5 has no data, and it was neglected for this study. There were six experiment blocks, and 40 trials were 
presented randomly in each block corresponding to 40 characters. Trials begin with a red square (target 
cue). This red cue shows up for 0.5 seconds on the screen. Subjects should switch their gaze to the target 
as quickly as possible within the required period. After the cue offset, stimuli were flickering on the 
screen simultaneously for 5 s. Following the stimulus, there was a brief (0.5 s) break where the screen 
was blank before the next trial for the comfort of the subjects. Each of these trials has a total length of 6 
s. During the stimulation period, a red triangle was presented below the target to help fixate the eyes. 
For every block, subjects were requested to steer clear of eye blinks during the stimulation duration. To 
prevent eye fatigue, subjects had some rest for a couple of minutes between successive blocks.  

EEG data is obtained from a Synamps2 system (Neuroscan, Inc.). Band-pass filter of the hardware 
was set from 0.15 Hz to 200 Hz. Sampling rate was 1000 Hz. A total of 64 channels covered the entire 
scalp for all attending subjects, and they were placed according to the international 10-20 system. The 
ground was put on the halfway between FPz and Fz channels. The reference electrode was placed on 
the vertex (Cz). Impedances between the electrodes and the scalp were below 10 kΩ. The electrical line 
noise was eliminated by a notch filter adjusted for 50 Hz. Collected data were segmented into epochs of 
6 s length (-0.5 s to 5.5 s according to the stimulus onset). Afterward, the epochs are down sampled to 
250 Hz. As a result, there were 1500 time points in each trial. There exist 6 trials for each stimulation 
frequency. Therefore, each subject has 120 trials (6 trials × 5 segments × 4 classes) with a segment 
length of 1 s.  

 

2.2   EEG Preprocessing 

The EEG data trials were split into five segments, each being one second, converting the first five 
seconds of the post-stimulus stage. Nine electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) 
were selected from the parieto-occipital region. These channels were shown to be sufficient to give 
accurate results (Bin et al., 2009) and the BCI system can work in a useful yet less complex way. 
Selected four stimuli frequencies among others were 9 Hz, 11 Hz, 13 Hz, and 15 Hz. These frequencies 
were selected for control because the interval between them (2 Hz) should be high enough considering 
the frequency resolution of the segments (i.e., 1 Hz). A bandpass (0.53 – 40 Hz) Butterworth filter is 
applied to the data to filter the very low and high frequency components in the signal. After these steps, 
the data were ready for further operations. 

 

2.3    Canonical Correlation Analysis 

In this study, CCA was used as a feature extraction method. It is a statistical procedure that detects 
linear combinations between two random variables in a way that the correlation among the integrated 
variables is maximized (Hotelling, 1936). When the CCA method is used in SSVEP paradigms, 
correlation between the EEG data, and artificially generated sine-cosine harmonic signals are computed, 
and obtained correlation results are used as the features. 

In this study, obtained correlations from CCA results are indicated as R values. Since there are four 
frequencies and their second harmonics with sine and cosine values, there are multiple ‘R’ outcomes 
consisting of two different values. This makes 16 values in total, but the maximum values were taken 
from these, corresponding to 8 ‘R’ (feature) values. R1 and R5 values show the results of the first and 
second harmonic for the 9 Hz stimulus, and similarly, R2 and R6, R3 and R7, and R4 and R8 show 
canonical correlations for 11, 13, and 15 Hz stimuli, respectively. In Figure 1, R values from the CCA 
algorithm were presented with a boxplot for all 120 trials belonging to subject #1.  

As can be seen from the figure, R values that correspond to the stimulation frequencies are higher on 
average than the R values that correspond to the other frequencies. The classifiers that use these R values 
as feature vectors recognize the differences and operate accordingly. 
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2.4    Classification 

The four classes indicate four directions, class one commands the drone to go right, class two 
commands the drone to go up, class three commands the drone to go left, and finally, the fourth class 
commands the drone to go down. The whole movement process contains a total number of 120 steps 
(30 segments × 4 classes). The drone starts the movement process from an origin which is defined as 
the (0, 0) point. The first movement task is +1 pixel on the x-axis in each step for 30 steps, the second 
task is +1 pixel on the y-axis in each step for 30 steps, the third task is -1 pixel on the x-axis in each step 
for 30 steps, and the final task is -1 pixel on the y-axis for 30 steps in each step. This means the drone  

 

Figure 1. Boxplots of R values generated by CCA for different stimulation frequencies (Recorded 
from subject #1) 

will follow a square-shaped path and return to its original position, which is (0, 0), but this only happens 
in the perfect scenario with zero classification errors.  

Leave-one-out method was applied to determine classification performance which was evaluated 
using four outcome measures:  

Overall accuracy (OA): Percentage of correctly classified directions.  

Final distance (FD):  Euclidean distance between the final and the starting coordinates of the drone.  

Mean distance (MD): The average of instantaneous distances between the target and current 
coordinates of the drone. 

Information Transfer Rate (ITR): This is a common metric formulated for BCI systems (Speier et 
al., 2013). ITR converts the speed and accuracy of the specific classifier into a single metric which 
indicates the amount of information that is carried by the BCI in one unit of time (e.g. trials/min) (Ingel 
et al., 2019). ITR (bits per trial) equation is given by (Wolpaw et al., 2002): 

                                        � = ����� + ������ + (1 − �)����
���

���
    (1) 
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In (1), N: the number of targets, P: classification accuracy. To calculate the ITR in bits per min, B 
should be multiplied by the number of trials per min. In this study, there was an interval of 0.5 s for the 
cue and 0.5 s for the blank interval. As the stimuli interval is divided into segments of 1 s, the trial length 
was taken as 2 s. Therefore, the number of trials per min is determined as 30.    

Three different classifiers are used for this problem: Naïve Bayes, k-Nearest Neighbor (K-NN), and 
Decision Tree. The performance of these three classifiers was shown before in an SSVEP-based BCI 
study using CCA features (Işcan and Nikulin, 2018).  

2.4.1 Naïve Bayes: It is a simple probability-based classification method that measures a set of 
probability values obtained by calculating the frequency of each feature value in data set (Saritas, 2019). 
This algorithm is based on the Bayes Theorem and supposes that all variables are independent. The 
conditional independence supposition is infrequently accurate in real-world scenarios, so it is portrayed 
as Naïve, but the algorithm in general adapts rapidly in a diversity of controlled classification problems.  

2.4.2 K-NN: The primary idea for k-NN relies upon calculating the distances between the test and 
the training data samples and the identification of the nearest training neighbors. The test data sample is 
determined by the class of the nearest neighbor. The k value shows the number of nearest neighbors. It 
is the main parameter for the classifier that directly affects the classification accuracy (Ali et al., 2019). 

2.4.3 Decision Tree: These sequential models perform a sequence of tests, where a numeric attribute 
is compared to a threshold value, or a nominal attribute is compared to a set of possible values. The goal 
of this algorithm is to derive or reveal patterns in the data. It does as such by figuring out which tests 
best separate the instances into different classes. Finally, a tree structure is formed concerning these 
classes (Kotsiantis, 2013). 

 

2.5    Statistical Tests 

For each of the performance measures, a one-way analysis of variance (ANOVA) is performed to 
determine whether the outputs from different classifiers share a common mean or not. We also 
performed t-tests for pair-wise comparisons.  

 

2.6    The Quadcopter Model 

Quadcopters are mobile robots that can fly in 3D space. They have six degrees of freedom. The 
quadcopter model used in this project is a Parrot Mini Drone. This drone has a built-in model in 
MATLAB, Simulink. Simulink is a block diagram-based platform that allows the model-based design 
to support simulations, automatic code generations, and testing. The brain signals are processed in 
MATLAB and then implemented in Simulink to construct the BCI environment.  

The drone can move left, right, up, and down. The drone has four actuators, and these movements 
are provided by enhancing these four actuators in the desired way. In this project, the movement is 
analyzed in 2D space like a bird’s-eye view to observe the control system’s performance. Each of the 
four actuators has a motor attached to them. These motors are adjusted to spin in a suitable combination 
concerning each other, which causes the drone to accomplish the desired movement task. The opposite 
motors must spin in the same direction and opposite from the other motors to ensure that different 
motions will not affect each other. The control system must be constructed according to the desired task 
of the quadcopter, and with the help of knowledge of the system states. In this study, communication 
between the quadcopter control system and SSVEP activity is performed in MATLAB R2021b software. 

 

3 Results 

In Figures 2, 3, and 4, the pathways of the drone can be seen for the perfect classification (red square) 
scenario where the drone goes back to the initial coordinates and for the individual pathways of each 
subject (blue lines) using Naïve Bayes, Decision Tree, and K-NN classifiers, respectively. In Table 1, 
average overall accuracy (OA), mean distance (MD), and final distance (FD) values are presented.  
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Table 1. Performance measures of the classification of drone directions (mean ± standard error)  

 Naïve Bayes Decision Tree K-NN 

Overall Accuracy (%) 89.95 ± 1.62 81.76  ± 2.04 88.70  ± 1.82 

Mean Distance (pixel) 4.44  ± 0.62 6.59  ± 0.77 4.28  ± 0.61 

Final Distance (pixel) 3.80  ± 0.44 5.54  ± 0.75 5.75  ± 0.80 

ITR (bits/min) 43.07 ± 2.10 30.77 ± 2.26 39.36 ± 2.25 

 

Figure 2. Pathway of all subjects (blue lines) vs. perfect scenario (Naïve Bayes) 

 

Figure 3. Pathway of all subjects (blue lines) vs. perfect scenario (Decision Tree) 
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Figure 4. Pathway of all subjects (blue lines) vs. perfect scenario (K-NN) 

 

The distribution of overall accuracy values (%) can be observed in Figure 5 as boxplots. 

 

Figure 5. Boxplots of all 34 subjects’ overall accuracy results for Naïve Bayes, Decision Tree, and 
K-NN, respectively. 
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 The average overall accuracy (OA) ± standard error for all 34 subjects is measured as 89.95 ± 1.62, 
81.76 ± 2.04, and 88.70 ± 1.82, using Naïve Bayes, Decision Tree, and K-NN, respectively. One-way 
ANOVA showed that the differences among group means are significant (p < 0.01). Multiple 
comparisons showed that Naïve Bayes and K-NN overall accuracies were significantly higher than the 
Decision Tree with a p < 0.01 and p < 0.05, respectively. The distribution of the mean and the final 
distance values can be observed in Figure 6 and Figure 7, respectively.  

 

Figure 6. Distribution of the mean distance values across subjects for each classifier 

 

Figure 7. Distribution of the final distance values across subjects for each classifier 
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The mean distance (MD) ± standard error in pixels for all 34 subjects is measured as 4.44 ± 0.62, 
6.59 ± 0.77, and 4.28 ± 0.61 for Naïve Bayes, Decision Tree, and K-NN, respectively. One-way ANOVA 
showed that the differences among group means are significant (p < 0.05). Multiple comparisons showed 
that mean distance values were significantly (p < 0.05) lower in K-NN than in the Decision Tree 
classifier. The final distance (FD) ± standard error in pixels for all 34 subjects is measured as 3.80 ± 
0.44, 5.54 ± 0.75, and 5.75 ± 0.80 for the Naïve Bayes, Decision Tree, and K-NN, respectively. One-
way ANOVA didn’t show a difference among groups. 

For the Naïve Bayes classification, subjects 13 and 24 had an overall accuracy value of 100%. These 
subjects had final distance and mean distance values of zero pixels as expected. Subject 3 also had a 
final distance value of zero pixels with an overall accuracy value of 94.17%. This subject had a mean 
distance value of 1.33 pixels.  

For Decision Tree classification, subjects 13 and 25 had an overall accuracy value of 99.17% and 
98.33%, respectively. These subjects had a final distance value of 1.41 pixels and 0 pixels, respectively. 
They had a mean distance value of 0.21 pixels and 0.37 pixels, respectively. 

Finally, for K-NN classification, subjects 21 and 30, had an overall accuracy value of 100% and 
99.17%, respectively. These subjects had a final distance value of 0 pixels and 1.41 pixels, respectively. 
They had a mean distance value of 0 pixels and 0.65 pixels, respectively. Subjects 3, 18, and 34 also had 
a final distance value of zero pixels with an overall accuracy value of 96.67%, 56.67%, and 95%, 
respectively. These subjects had a mean distance value of 0.58, 13.87, and 1.97 pixels, respectively. The 
confusion matrix for subject 18 can be seen in Figure 8.  

 

Figure 8. Confusion matrix for the K-NN classification for subject #18 

Information transfer rate (ITR) ± standard error was calculated in terms of bits/min as 43.07 ± 2.10, 
30.77 ± 2.26, and 39.36 ± 2.25 for Naïve Bayes, Decision Tree, and K-NN, respectively. One-way 
ANOVA showed that the differences among group means are significant (p < 0.005). Multiple 
comparisons showed that Naïve Bayes and K-NN ITR values were significantly higher than the Decision 
Tree (p < 0.005 and p < 0.05, respectively). 
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4 Discussion 

Traditional machine learning classifiers were selected for this project because they are simple and 
efficient enough for this control system. Better accuracy values could be achieved with more advanced 
classifiers. However, the importance of this study is to show that higher overall accuracy does not 
necessarily mean better outcomes, as shown in the results section. Here, we evaluated the drone’s path 
with three different classifiers using four outcome measures. Depending on the selected performance 
measure, the difference in classifiers can be significant or insignificant. If an unbiased confusion matrix 
is to be obtained, then the final distance to the desired location can be very small even though the subject 
has low overall accuracy (See Figure 8). If the confusion matrix obtained is not well balanced, then the 
final location of the drone will be further away from the desired point even though the subject has a high 
overall accuracy value. Therefore, it is important to evaluate the relationship between classification 
accuracy and distance measures. Depending on the application, the mean or final distance can be more 
important than the overall accuracy or ITR values. 

Here we focused on a single 2D flight scenario where the quadcopter returned to its starting position. 
Depending on the flight scenario the relationship between the accuracy and the distance measures can 
vary. 

 

5 Conclusion 

This study proposes an SSVEP-based BCI control system for a quadcopter in 2D space. Results show 
that the quadcopter can accurately receive necessary commands and complete the movement process. 
Focusing on the relation between accuracy and distance might create a new perspective for BCI-based 
control systems. Therefore, this research could open doors for future projects concerning the control of 
a quadcopter or a similar robot with SSVEP-based BCIs. As a future project, the 3D simulation and 
movement process of a drone could be investigated. If the class number is increased from 4 to 6, then 
the drone could be visualized in 3D space with 6 degrees of freedom in xyz plane. Optimal maneuvers 
with minimum delay and maximum smoothness for such systems could also be investigated.  

In the future, these systems might be used to control vehicles without the existence of a pilot or a 
human being, or they might be used to reduce physical fatigue in different situations. Disabled people 
can complete their daily tasks with the assistance of these systems, i.e., with attached components, they 
can fly a quadcopter to do grocery shopping, they can see and travel the outside world without having 
to move their muscles with an attached camera, or they can entertain themselves by playing a specific 
game designed for such systems. These tasks can be extended dramatically concerning the growth in 
BCIs. With the development and evolution of BCI-based studies, research, and projects, we will see 
remarkable changes in our lives in the future and these changes will be beneficial for our quality of life. 
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