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In this article, we employ Mawhin’s theory of degree of coincidence to provide an existence result for a class
of problems involving non-linear implicit fractional differential equations with the exponentially fractional
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary order. For
additional information check, for example, the books ([T}, 2, [8, @, [33]), the papers [12, 15}, 17, 22} 25, 26], 38,
37, 36 1351 3], [, Bl 6], [7] and the references therein.

Fractional differential equations have emerged naturally in a variety of fields in recent years including
fractals, chaotic dynamics, modeling and control theory, signal processing, bio-engineering and biomedi-
cal applications, and so on. Fractional derivatives are an ideal tool for describing memory and heredi-
tary characteristics of diverse materials and processes. We recommend that the reader examine the books
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(10, 171, 21, 23], 241 27, 311, 32), 34], 20] and the references therein.

In [I8], the authors considered the following fractional-order equations with a new boundary value con-
dition in R™ :
“Diyu(t) = f (t,u(t),°Di; u) . te€(0,1),
u(0) = Bu(§), u(l) = Cu(n),

where 0 < n,§ < 1,1 < a < 2;B,C are two n-order nonzero square matrices, D, represents the Caputo
differentiation, and f : [0, 1] x R?" — R" satisfies Carathéodory conditions.

In [14], the authors investigated some existence result for periodic solutions to the following nonlinear
implicit fractional differential equations with Caputo fractional derivatives:

{CD%&?) _ W (9, 0(0),°D0(8)), §EE:=[0,0],0>0,0<a<l,
©(0) = p(0),

where ¥ : = x R x R — R is a continuous function. They based their arguments on the coincidence degree
theory.

In [16], Bouriah et al. considered the following nonlinear pantograph fractional equation with ¢-Caputo
fractional derivative:

©(0) = ¢(O),

where C’Dg‘iw denotes the 1)-Caputo fractional derivative of order 0 < o < 1, € (0,1),and ¥V : ExRxR — R
is a continuous function.
The authors of [19] studied the nonlinear problem:

{csgr"w) = U, p(¥), p(e0)), ¥ € = := [0, 6],

1D 0(8) = F (€,0(6). 15V p(c0)) € € (0.0,
Iy e(0) = 1570 (6),

where H@gf;w denote the t-Hilfer fractional derivative of order 0 < a < 1 and type 8 € [0, 1]. Ié:”’w is
the 1-Riemann-Liouville fractional integral of order 1 — v, (v = a4+  — aff) and 0,¢ € (0,1]. Moreover,
F : 3 xR? = Ris given continuous function.

Motivated by the mentioned papers, in this paper, we are concerned with the existence of solutions for
the following nonlinear fractional differential equation:

00, +0(9) = 9(0,0(9), D% L p(0)), U € E:= [k, k2], (1)
with the periodic conditions:
p(k1) = p(k2) and DL (k1) =D ¢(ka), (2)

where §©i1+and EDgﬁ are the Caputo’s exponential fractional derivative of orders 1 <9 <2and 0 < pp <1,
g:= xR xR — Ris a continuous function.

The following is how this paper is arranged. In Section 2, several remarks are introduced, and some
introductory concepts concerning fractional calculus and auxiliary results are addressed. Section 3 presents
proof of the main result utilizing Mawhin’s degree of coincidence. Finally, two examples are provided in
the last section to demonstrate the applicability of our results. Our findings are mostly based on papers
[13, [14), 16], 19], where we employed the coincidence degree theory.
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2. Preliminaries

This section introduces the notations and definitions that will be utilized throughout the study. Let
:= [K1, k2] such that —oo < k1 < Ky < +00.

By C(E) := C(E,R), we denote the Banach space of all continuous functions ¢ from = into R with the
supremum norm

[1]

[elloe = sup{le(9)] : ¥ € Z}.
By L(Z) we denote the space of Lebesgue-integrable functions ¢ : = — R with the norm

K2
ol = / 0(9)|9.

1

As usual, AC(Z) denote the space of absolutely continuous function from = into R. We denote by AC}(Z)
the space defined by

d
ACI(E) == {cp 2o R: °@“‘1¢(ﬁ) € AC(Z),"® = e—ﬁdﬁ} ’

where n = [6]+1 and [§] is the integer part of §. In particular, if 0 < § < 1 then n = 1 and AC(Z) := AC.(Z).

Definition 2.1 ([29]). The exponential type fractional integral of order § > 0 of a function g € L'(Z) is

defined by
9

1
e 70 — 9 Lo0\0—1 0 =,
Jo,+98(9) F((S)/ﬁ (e —e9)° "g(0)e®do, for each ¥ €

1

Definition 2.2 ([29]). Let 6 > 0 and g € AC}(Z). The exponential derivatives of Riemann-Liouville type of
order § > 0 is defined by

1 d\" ¢ n—4—1
eryo N -9 @ 9 L0 ] -
(D%00) = gy (5) [ (=) slodo e

where n = [0] + 1 and [0] denotes the integer part of the real number §.

Definition 2.3 ([29]). Let 6 > 0 and g € ACY(E). The Caputo’s exponential type fractional derivatives of

order § is defined by
1 9 n—6—1 d do
eyo — 9 _ o -9
(c©n1+g)(19) F(n—é)L (e ¢ ) < d’ﬁ) g(@)e_gv

1

for each ¥ € Z.

Properties 2.4 (|29]). If +, 5 > 0, then for each ¥ € Z we have

r
eJ'Y (e e )6 _ F(w(f-;i)l) (eﬁ _ ea)’y-l-/o’.

%( ) = 5
DT (0 =) = %(eﬁ — %),

Lemma 2.5 ([29]). Let v > 0 and b € ACF(E). Then,

n—l

7 (D7, h(9) )= (7 — et e@h(a),

i=0

where n = [y] + 1.
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Lemma 2.6 ([29]). Let v > 0. Then, the differential equation:
iCDZJrh(ﬁ) =0,

has a solution:

) 1

h(0) = wo 4+ w1 (e¥ —¢®) + wale? — )2+ ...+ i (e¥ — )",
where w; € R, i =1,...,n are constants and n = [y] + 1.

We shall provide definitions and the coincidence degree theory, both of which are required for demon-
strations of our outcomes. For more information, see [2§].

Definition 2.7 (|28]). Let Q and © be normed spaces. The linear operator K : Dom(K) C Q — O is called
a Fredholm operator of index zero where

a) dimker K = codimImghk < +oo.
b) Jmgk is a closed subset of ©.

Definition implies the existence of continuous projectors ¥: O — © and Y :  — § verifying
JmglkC =ker ¥, ker K =JmgY, O =7Tmg¥V®Imgkl, Q=kerT ® kerk.
Then, the restriction of K to Dom/C Nker T, denoted by K, is an isomorphism onto its image.

Definition 2.8 ([28]). Let & C Q be a bounded subset and IC be a Fredholm operator of index zero with
DomkK NS #£D. Then, S : & — O is said to be K—compact in & if

a) US:® — O is continuous and S (@) C O is bounded.
b) (Kv) ' (id — 0)S : & — Q is completely continuous.

Lemma 2.9 ([30]). Let Q, and © be Banach spaces, & C § a bounded open set and symmetric with 0 € &.
Assume that K : DomkK C Q — © is a Fredholm operator of index zero with DomK NS # () and S: Q — O
is a K—compact operator on &. Moreover,

Kp—Sp# —e(Kp+S(—w)),

for any p € DomkK N IG and any ¢ € (0,1], where 0B is the boundary of & with_respect to Q. If these
requirements are met, then there exist at least one solution of Ku = Sp on Doml N &.

3. Existence of Solutions

We consider the Banach space

Q={p e CER): p(®) = I 1n(¥):n€CER),JeE},

K

with the norm
)
lelle = max{|[¢lloo: [D7, +Plloc: 111D 1 ¢lloo}-

More details can be found in [16, 13].
Consider the Banach space © = C(E,R) with the norm

Inlle = sup{|n(¥)| : J € E}.
Consider the linear operator K : Dom/k C QQ — O by

Ko=) ;p, 1<6<2, (3)

K
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where
Domk = {s@ €Q: D) L€ O;p(k1) = p(ka)
and ‘D (k1) = Q’D}gﬁ(p(/ﬁg)}.
Define @ : 2 — © by
Bp(d) = g (19, o(9).¢ ©g1+¢(19)) WeZand 0< p< 1. (4)
Then the problem — can be rewritten as Ky = ®p.
Lemma 3.1. Let K be defined by (@ Then,
ker K = {p € Q: p(d) = ¢(k1), ¥ € E}

and

JmglkC = {w €0: 11(51_1) /,:2(6”2 —¢2)°"2(p)eldp = O} .
Proof. By Lemma , for ¥ € E, Kp(¥) = ﬁ@ilJrgo(ﬁ) = 0 has the following solution

p(0) = @ + (e’ —e); D €,

where wy = (k1) and wy = e@iﬁgo(m).

Since ¢ € Dom/C, we can get that

Then,
ker K = {p € Q: o(V¥) = p(k1), ¥ € E}.

For w € Jmg/C, there exists ¢ € DomkC such that w = Kp € ©. By Lemma [2.5] we have for each ¥ € =
P(0) = (k) + D plin) (67— ) s [ (67— e Nalg)etd,
K
Then,
1 1 1 L 52
DL, o) =D, 1 plm) + | 6= e utgenae,
K

Since ¢ € Domk, we can get that w satisfies

1 2 _
T / (e — e2)24y(g)e?dg = 0.
K1

On the other hand, suppose w € © and satisfies

Then, we get
w(¥) = (DY 1 o(D)
and
DL o) =T w(®)
Therefore,
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and
D). (k1) =Dy (k)

which implies that ¢ € Dom/k. Thus, w € Jmgk..
Then, we have

K2
ImglC = {w €0O.: / (ef2 — 6‘9)672(4)(@)696@ = ()} .
K1
O

Lemma 3.2. Let K be defined by (@ Then, IKC is a Fredholm operator of index zero, and the linear continuous
projector operators 1 : 2 — Q and ¥y : © — O can be defined as

din(d) = nlx1) + DL () (e” — )
and
o0—1 K2 s G2 ,
p2v(9) = (eR2 — eriyo—1 ("2 — ¢?)°"“v(p)edp.
K1
Furthermore, the operator lC;ll s JmgK — QN keryy can be given by
Kyl () (9) =25 s o(d).

Proof. Clearly, Jmgiy; = ker K and ¢? = 1);. It follows for each n € Q,n = (9 — ¥1n) + ¥1n that Q =
ker ¢ + ker K.
Also, we have ker 11 Nker I = 0. Therefore,

Q =kery; @ ker K.

Similarly, for each v € ©, ¥3v = 19v and v = (v — a(v)) + ¥2(v), where (v — 1h2(v)) € ker 1y = TJmgk.
Since JmgkC = ker ¢y and 13 = 1)o, then Jmges N ImgkC = 0. Thus,

O = JmglC & Tmg)s.

Hence,
dimker K = dimJImgye = co0imImglC,

which implies that IC is a Fredholm operator of index zero.
We will demonstrate that ICJI1 = nglJr is the inverse of K|pomirkers, - In fact, for v € JmgkC, we have

k1t

KKl (v) = 40 (U;jﬁv) — 0. (5)
Furthermore, for n € ®omk N ker ¢y we get
K1) = I8+ (08 n(@)) = n() — (1) — DL smsn) (¢ — ).
Since n € Dom/C Nker vy, then (k1) = 0 and e@tﬁn(m) = 0. Therefore,
o1 (K(0(9))) = n(9). (6)

Combining with @), we know that ICQZE = (K:|©omlCﬂker1/;1)_1~ O

In the sequel we need the following hypotheses:

K

(T1) There exist constants w,w > 0 such that

l9(9,p,q) — 9(9,p,9)| < w|p—p|+Flg—q| for J € E, and p,p,q,q € R.
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(T'2) There exist constants v > 0 and 7 > 0 such that

19(9,m1,m2) — g(F, 71, 72)| > YIm — M| —F|n2 — 12,
for ¥ € = and 1,101, 72,72 € R.

Lemma 3.3. Assume that the condition (T'1) is verified. Then, the operator ® is K-compact on any bounded
open set S C Q.

Proof. Let S ={ne Q:|nlla < K} be a bounded open set where K > 0.
Claim 1: ¥9® is continuous.
Let (1),cn be a sequence such that 7, — 1 in Q. Then for each ¢ € =, we have

[12® () (0 ) 1/124’ () (o)
e 6 e () - B o)

By (T'1), we have

[¥2® (1) (0) — 2®(n)(0)]
= (erfim)gl/ﬁ (e"2 = ¢)°%|(m)(0) — (m)(0)[e°do

1

b U [ e = et () - 8 @

1

O —D)(@+D)|lm—nlle [ . 5-2
S (352 _ e/{l)(s_l / (e 2 _ e'g) eQdQ
K1

< (@ + @) = nlla:
Thus, for each p € =, we get

|1h2® (1) (0) — p2@(n)(0)| — O as n — +o0,
and hence,
112®@(1n)(0) — 2®(n)(0)|le —> 0 as n — +o0.

Thus, 2@ is continuous.

Claim 2: 1»®(S) is bounded
For each n € S and ¥ € =, we have

2201)(9)
< g € = g0 n(0). 20t (o)l

1

< g (€ = lgln(0). 4 n(e) ~ gle.0.0)de

1

5—1 ro -
D [ e el o.0,0) e

51 2
* 6— 2
S 9 + (252 _ em)éfl )

<g¢" +K(w+m),

¢ (wln(o)| + =Dk n(0)]) do
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where ¢g* = sup |g(¢,0,0)|. Thus,
veJ

|[V2®(n)]le < 9" + K(w + @) := R.
This show that ¥ ®(S) is a bounded set in ©.

Claim 3: We show that ICJI1 (id — 2)® : S — Q is completely continuous.
In view of the Ascoli-Arzela theorem, we need to prove that lC;ll (id — 12)®(S) C Q is equicontinuous and
bounded. First, for each n € S and ¥ € Z, we have

Ky, (id — 2)@n(9)
= K, (@n(9) — a2®n(v))

= nglJr [9(79, n(d), ﬁgfilw(ﬁ))

5—1 R )
- (enz_em)é—l/n ("2 — )" %g(0,n(0), :D" ,n(0))e?do

1

)
— I‘(ld)/ (e? — ¢2)%1g(0,1(0), §©Z1+77(Q))egd9

(0 - 1 — ey
CT(6+ 1)(er2 — er1)d-1

K2
y / (e"2 — ¢2)*~2g(g, n(0), {D" ,n(0))e?do.

1

In one hand, for each n € S and ¥ € Z, we have
|y, (id — 2) ()]

1 K2 B e
<55 e e gton(o), 0%, o) - ale.0.0)eds
K1

1 2 _
s L= e ol 0. 0)ede
K1

(6= 1)(e"2 — ey
5+ (e — )i
<[ = P glo,n(0), 504, n(e)) — 9(e.0.0)|e%de

1

T

(0 —1)(er2 —em)d o2 52
+ L6+ 1)(erz — em)tsfl /141 ("2 —¢)°""|g(0, 0,0)[edo

2(21'@ _ e/ﬂ)(S

<[¢"+ K(w+@)] TGoT 1)

= [1.

Therefore,
151 (i — ) rlloc < Br. (7)
On the other hand, we have

E©i1+ (]qull (id — ¢2)CI)77(19)> = 9(19, 77(79)7 gggfrn(ﬁ)) o (2”2 (is ;411;(5—1)

K2
></ ("2 — )" "*g(0,n(0), D" ,n(0))e%do,

1
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which implies that for each n € S and ¥ € Z, we have

Thus,

o (gt —ven)| <6 ;.
Also, we have
Ralu (/c;j(z'd - wz)fbn(ﬂ))
o—
=7 [g(9,0(9), D" (D))

_ (5;11))(51) /HZ(Q’% _ 30)5 29(@, (9)’5@Z1+Ti(@))e@dg]

(e - 1
9
= F(él—u)/ (919—?Q)(‘S_”_l)g(g,n(g),Eﬁﬁlm(g))e@dg
(¢7 — &™) — 1)
(5 N+ 1)(ef€2 _ em) (6—1)
X/ (e e 2g(0m(0 ), ¢ n(0))e?do,

1

which implies that for each n € S and ¥ € Z, we have
@, (K (i — ) () |

1 "0 (6—p—1)
[ — B ey _ 0
< | =T fatento) 502, o) — ste0.0)| e

1 /'ﬁ2 9 §—p—1
+ = ¢! — 2) 0=V 14(0,0,0)| e?dp
XA ( ) l9( )|
(en2 — er1)O=m)(§ — 1)
L(6 — p+ 1)(erz —er1)0=1)
K2
></ (¢"2 — ¢2)02 ‘g(gm(g),ig’;m(g))—9(9,0,0) e?do

1

6wty
e e [ =) (e 0.0) e
K1

2(e“2 — g”l)(‘sﬁu)
reo—p+1)

<[¢"+K(w+m@)] = (3.

Thus,

eggﬁ‘ (Killl (id - ¢2)®7]> Hoo < f3. (9)
By inequalities , and @’ we have
||IC7;11(id —2)®n||o < max{B1, B2, A3},

which shows that ! (id — 12)®(S) is uniformly bounded in €.
Now, we need to prove that K;ll (id — 1p2)®(S) is equicontinuous. Furthermore, for k1 < 1 < ¥ < ko and
n € S, we have firstly

K (id — 12) Pn(92) — KM (id — 1) @n(01)]
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G+ K(w+w@)
=TTTE)

’19]
/
a

K(w+@)+g*
r'e+1)

¥a
/ (e”2 — ¢2)0~1e2dyp
9

1

(eﬂg _ 29)6—1 _ (2191 _ eg)é—l’ QQdQ]

{@792 _ ea)é _ (eﬂl _ ea)é] _

Secondly,

@, (K, (i — ) n(ta)) — 08+ (K10 = vo)@n(t) )|
< Jg(ta,m(t2), 598 L n(t2)) = glta, n(t2), $D% . n(t)|.
Finally, we have
! (Kl =) en(v))
= <0 gtz m(ta), 9% n(t2)) — gty m(t), D%, n(tr))] .

We conclude that as ¢1 — 99, the right-hand side of the above three inequalities tends to zero. Thus,
K;ll(id — 19)®(S) is equicontinuous in Q. By the Ascoli-Arzela theorem, ICQL1 (id — 12)®(S) is relatively
compact. Consequently, ® is K-compact in S. OJ

Lemma 3.4. Suppose that (T'1) is satisfied. If

@+ %@ < min {1’ (ijii?)& (l;f__:ij)_dl—)u} ’ (10)
then there exists H > 0 independent of € such that,
K(n) —@(n) = —e[K(n) + 2(=n)] = lInlla <H, e<€(0,1]. (11)
Proof. Let n € Q) satisfies . Then,
K(n) — @(n) = —ek(n) — e®(-n).
Thus,
Kn) = 75 ®0) — 72 ®(-n). (12)

By employing the definition of K and &, we get for each ¥ € Z

[KCn(0)] =

59‘21#7(19)‘
1 €
< - ey = _ _eyM
= 1—|—6 ‘9(19777(19)7c©51+77(19))‘ + 1 te ‘9(197 77(19)7 c9,41+77('ﬂ))’

|, @), 28, 9 — 9(0,0,0)| + 7]
+—— [Jo, =n(2), =24, 1(9)) - 9(9,0,0)] +7]

1 € 1
< * —=l|eq)H
< (Tt o) o+ 1o (=) + 712t )]

e —
s [l @)+ =0l ()]

IN
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< * — ey
<o+ (s ) [Fn@)+ w10t )]

< g+ [@ln)| + S 0 ()]
< g + @llloo + FDE, 1l

K
which implies that
é —
1525, + 1l < g™ + @l + TDg: lloo-
By (12), for each ¥ € Z, we have

1 _1 € 1
= (b -
1+ EIC% () 1+ slcd’l

n(?) O (—n)(¥).

Then,

9
/ (¢ — 2 g 0, n(0), 5D . 1(0)) — 9(0,0,0) ¢%do

1 (1+e)0(o)

9
< [ = gle, o).~ n(e))  g(e.0.0)|e%de
- (1+2)T(0)
g*(eng . g”l)‘s gg*(eng . 651)5
1+l +1) (14l (6+1)

£ 1 (eHQ _ em)& o
< 2@# )
B <1+z—: * 1+6> L6 +1) (anH"Oer”c rr+Mlloc

c 1 g*(eﬁg _ eﬁl)l;
- -
l+e 1+4¢ r'o+1)
(e,‘ig _ eﬁ1)6

S — e
= Torn (@l + TN <) +

In()| <

_l’_

g*(e'” _ em)&
ro+1)
Hence,
: _ (2 — 1)
Il < 9" + @il + B il 555
On one hand, for each ¥ € 2, we have

_ 1 —1 € -1
= T3 n 20 - 5k

n(v) ®(—n)(9).

Then,

1

5—
L) = 0 em)0)

€

5—
T e ().

Hence,
D% (@)
v 9 ) 1
6 = e Dlgln(0). 0% () — ol 0.0)|ede
K1

: 1+o00 )

(13)

(14)
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IV
8/ (eﬁ — eg)(éﬂhl)‘g(& _77(9)7 _E©Z1+77(Q)) - g(ga 07 O)‘egdg
K1

(146 — p)
g (er2 — em)(é—u) eg*(e"? — em)(é—#)
14+e)(d—p+1) (A+el0—pu+1)

€ 1 (e2 — er1)(0—n) _
(i) (@Il + D, o)

+

+

1+ 14¢) T(0—p+1)
N e N 1 g (er2 — em)(é—u)
1+ 1+4¢ Ir'e—p+1)
(2 — ¢r1)(—n)

— * —1le 17
= ooy e+ T o)

Therefore,

(52 — ¢r1)o=n
r(6—p+1)°
Using the definition of the norm || - || and the inequalities , we see that if ||n||q = Hﬁ@iﬁm‘o@? then

02 1)l < [0 + lnllc + D" o v

Inlle < g" +@lnllec + @Dy 1l
< g+ (@+@)nla,

which implies that
*

g

< — 1= .
Il < 1 o=
On the other hand, if ||n]q = ||/l then implies
* — e M (e,{2 B eH1)5
nlle < g +W||77||oo+w||c©m+77||oo]w
K2 _ oK1)\0
s e e
< [g" +@lnlle +=Zlnlal TG+ 1)
* — (el€2 B eIﬂ)J
< ~ 7
< o+ @+ Bl S
and so
g*
Inle < ToT1 — = Ha.
W — (w + W)

And, if [[nllo = [[iD} llco, then by inequalities we have

(QHQ o erﬂ)&—u

< [ * — B@N i|—
Inllx < _9 +W‘|77||oo+w||c m+77||°° I'(0—p+1)
r o (eliz _ 651)5—#
5 (¢ —em)>r
< o+ wlallx +@lallx] T
f B (e2 — em)5—u
5 (¢ —em)>n
< |+ @@ T

and so
gk

e < —5
—ptl —
i — (@ )

= Hg.
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Therefore,
Inllo < max{H1, Ha, H3} :=H.

O

Lemma 3.5. If the conditions (T'1) and (@) are satisfied, then there is a bounded open set S C Q0 such that

K(n) — ®(n) # —e[K(n) + 2(=n)],
for allm € 0S and all € € (0,1].

Proof. By Lemma [3.4] there exists % > 0 independent of € where, if n verifies K(n) — ®(n) = —[K(n) +
®(—n)],e € (0,1], then [|n]lo < H. Thus, if

S ={neQnla < F}, (16)

where F > H, we conclude that
K(n) — ®(n) # —e[K(n) — 2(—n)],
for every n € 0S = {n € Q;||nlla = F} and € € (0,1]. O

Theorem 3.6. If the conditions (T'1) and @) hold, then the problem — has at least one solution.

Proof. The set S given in is symmetric, 0 € S and QNS = S # (). Moreover, by Lemma and if (7'1)
is verified, then

K(n) —®(n) # —elK(n) — ®(=n)],
for all n € QN IS = 9S and all € € (0,1]. And, by Lemma [2.9] we conclude that (I)-(2) has at least one

solution. O
4. Uniqueness of Solution

Theorem 4.1. Consider that the hypotheses (T'1)-(T2) are satisfied. If

w(er2 — m)é w(er2 — nl)éfu (7 2(co+3) (2 — K1)5
maX{( N CES R v sy ) ; (% + e Ay )} <1, (17)

then the problem — has a unique solution in Domk N S.

Proof. Note that condition is stronger than condition . Then, by Theorem we obtain that the
problem — has at least one solution in DomkK N S.

Now, we prove the uniqueness result. Suppose that the problem — has two different solutions 71,72 €
Dom/ N S. Then, we have for each ¥ €

D0 (D) = g(¥,m (), D" Lm(¥)),

and
(D0 ma(9) = g9, ma(9), DL ma(9)),
where
m (k1) = m(k2), m2(k1) = n2(k2),
and

D+ m (V) (k1) =L D, (V) (k2), Dy +m2(9) (k1) =¢ D, 1 m2(9) ().
Let U(¥) = m(¥) — n2(9), for all ¥ € Z. Then,
LUW) = D ,U(®)

K
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= @D () — D2 (V)
= g(0,m®),D, ym () — g9, m(9), D, 1 1m2(9)). (18)
Using the fact that Jmg/C = ker 12, we have

[ =072 [gle.m (@), 0%, m(0) — slom(o). 12, (o)) etde

e

x (er2 — er1)(3-1) =0.

Since g is continuous function, there exist ¥y € Z such that

9(90,m1 (Do), <D}, +m1 (Do) — g(Po, m2(V0), D), 1 12(d0)) = 0

In view of (72), we have

~2 \

[1(90) = m(90)] < Z|ED oo (Do) — 0, (Do) < Tl — el

\g

Then,
U@0)| < 2. (19)
On the other hand, by Lemma [2.5] we have
T (D U) = UW) = Ulr) — Dy s Ulra) (&7 — ),
which implies that
Uk1) 4 DL U)(& — 1) = U(8) ~* JE, (D, .U (00)).

and therefore
U@W) = J2,+ (D2, U®)) = UWo) +° Jp + (D2, U (%))
Using , for every ¥ € =, we obtain
U@ < [0 U]+ [UWo)| + T2, + (D%, + U (%0))]

2(e"2 — )0
< —|Ula+ ”D Ullco-
< 7H o TG 1) 125, + Ul
Then,
ol 2(e"2 — 1)
U U la + D% U ||oo- 20
Ul = Sl (5“) 125, + Ul (20)

By (18)) and (7'1), we find that

DL UW)| = [ cm(9) =D ina(9)
= Jo(@m@).£2% ;m () = g0, m().£ D" 1 (9))
< (@+3) Wiy
Then,
@ .U < (@+®) Ul (21)

By and we get,

T, 2wt =)
01 < (T4 2ZE =20 o,
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On the other hand, we have

D! UW)| = [s08,- [+ (DL UW))]
= D0 [T (DL m9)] - 5084 [ (D (D))
= g0, (DL (), T2 LD m(9))
900, Th (DL ma(9)), T (D" ()]
e ) )Y e )
- (5 +1) L(§—p+1) AU
w(eng _ e/ﬂ)é ﬁ(eng _ 3“1)5*M
< .
—< G " tgoprn )Wl
Then,
K2 _ ,K1)0 —=(sk2 _ sK1\0—1
el < w(e"2 — M) (e e"1) 99
169, Ul < (ZS i+ T ey ) 10l 22

Hence, by , we conclude that
1Ulle = 0.

As a result, for any ¥ € = we get
U(W) = 0= m(9) = n2(9).

O
5. Examples
Example 5.1. Consider the following problem for non-linear implicit fractional differential equations
1
> e’ |p(0)] [Dg+ (V)] 9 m
‘D2, (1) = v We [o, f}, (23)
ot (11+¢”) |1+ "P(”Q)‘ 1+ ’e@z o)) 2
i T
0(0) = ¢ (§> and  Dp(0) = Dy (§> : (24)
Here we have s
¢ Y1 Y2 9
197 ) = - +e 9
Woer D) = i) <1+s01 1+s02>

where ¥ € [0, 7], ¢1,p2 € [0,400).
Clearly, the function g is jointly continuous.
For each 1, p1, 2,02 € [0,4+00) and ¥ € [0, 5], we have

-

¢ _ _
)HSDl — Q1] + o2 — @]

_ 5 ) <
|g(197 @17%02) 9(797801a902)| = (11 _’_619

1 B _
< E(Wl — @1] + [p2 — P2l).

1
Hence, the condition (T'1) is satisfied with w =@ = 5
And on the other hand, we have

1
w+w=—-

6
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3w
4(ez —1) ’

3
2
which implies that the condition (@) is satisfied. It follows from Theorem that the problem f
has at least one solution.

Example 5.2. Consider the following problem:

6 2 T
400 = (100024 p0)) v € 7= [0.7]. (25)
T T
0(0) =¢ (g) and D3 p(0) = "Djs¢p (5) , (26)
where (9 + 2) .
n(v + —er [ 9 [ W}
% = —F - 5 v e |0,=
g( 7901’@2) 5\/77_ @1+56 <bln§01+gp2+1>+€, € 73 ’
such that o1, s € RT.
Clearly, the function g is jointly continuous.
For any ©1, 91, 92,92 € RT and 9 € [0, Z], we have
In(% +2 1
19(9, 01, 02) — g(0, @1, P2)| < n(;’\/%)W’l — o1l + §| sin ¢ — sin 4|
1 _
+ QVPQ 2]
e"In(F +2)+ 7 1
< 3 — Q1| + =—|p2 — Pa.
< 5 /e 1 — 1] + 5e,r\902 P2

Hence, the condition (T'1) is satisfied with
I In(5+2)+ 7

5y/me”
and
o 1
W=
oe™
For any o1, @1, 92, 92 € R and ¢ € [0, 5], we get
In(2 1
900 91,92) ~ 90,01, 0)] 2 T 21— il = 5ozl sinn — singa
o
Bem P2 — P2
¢™In(2) — /7

Y

_ 1 _
WKM — 1] — @VPQ — P2l
¢"In(2) — /7 1

= ——. Also, we have

Hence, the condition (T2) is satisfied with v = W,W Eo
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and

(@-ns\|_  vE
1) ™ In(2) — /7
LTI +2) +2v/7 (5 —1)%

Ve @)

!

~ 0.6672
<1.

Consequently, Theorem wmplies that the problem f@ has a unique solution.

Conclusion

In the present research, we have investigated existence and uniqueness criteria for the solutions of a
boundary value problem for a class of problems involving non-linear implicit fractional differential equations
with the exponentially fractional derivative of Caputo. To achieve the desired results for the given problem,
we employ Mawhin’s theory of degree of coincidence. Two examples are provided to demonstrate how the
major results can be applied. Our results in the given configuration are novel and substantially contribute
to the literature on this new field of study. We feel that there are multiple potential study avenues such as
coupled systems, problems with integro-differential equations, and many more due to the limited number of
publications on implicit differential equations with periodic conditions.
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