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1. Introduction

In a short note of Brøndsted [3] in 1976, he observed that certain fixed point
theorems may be derived from theorems on the existence of maximal elements in
partially ordered sets. Consequently, he obtained very useful three theorems includ-
ing the Caristi fixed point theorem [5].

In 1982-2000, we had published several articles mainly related to the Caristi fixed
point theorem, the Ekeland variational principle for approximate solutions of min-
imization problems, and their equivalent formulations with some applications; for
example, see [21–26]. From the beginning of such studies, we obtained a Metatheo-
rem for some equivalent statements on maximality, fixed points, stationary points,
common fixed points, common stationary points, and others.

In the present article, we show that certain order theoretic fixed point theorems
are equivalent to theorems on the existence of maximal elements in pre-ordered sets.
In fact, those maximal elements are same to fixed points, stationary points, common
fixed points, common stationary points, and others for certain types of maps or
multimaps with nonempty values. Consequently, we improve and generalize well-
known theorems due to Banach, Nadler, Browder-Göhde-Kirk, Caristi-Kirk, Caristi,
Brøndsted, and possibly many others following the method in our recent works [27–
29].

This article is organized as follows: In Section 2, we introduce our Metatheorem.
Sections 3–10 are concerned to apply Metatheorem to theorems due to Browder-
Göhde-Kirk [4, 11, 18], Brøndsted [3], Caristi-Kirk [6], Caristi [5], Nadler [8, 20],
Banach [2], Tarski-Kantorovitch [9], and Jachymski [13–17], respectively. Finally,
Section 11 is for certain remarks as the conclusion.

2. Metatheorem in Fixed Point Theory

We introduce our new version of Metatheorem introduced in [28] in 2022:

Metatheorem. Let X be a set, A its nonempty subset, and G(x, y) a sentence
formula for x, y ∈ X. Then the following eight statements are equivalent:

(i) There exists an element v ∈ A such that G(v, w) for any w ∈ X\{v}.

(ii) If T : A ⊸ X is a multimap such that for any x ∈ A\T (x) there exists a
y ∈ X\{x} satisfying ¬G(x, y), then T has a fixed element v ∈ A, that is, v ∈ T (v).

(iii) If f : A → X is a map such that for any x ∈ A with x ̸= f(x), there
exists a y ∈ X\{x} satisfying ¬G(x, y), then f has a fixed element v ∈ A, that is,
v = f(v).

(iv) If f : A → X is a map such that ¬G(x, f(x)) for any x ∈ A, then f has a
fixed element v ∈ A, that is, v = f(v).

(v) If T : A ⊸ X is a multimap such that ¬G(x, y) holds for any x ∈ A and
any y ∈ T (x)\{x}, then T has a stationary element v ∈ A, that is, {v} = T (v).
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(vi) If F is a family of maps f : A → X satisfying ¬G(x, f(x)) for all x ∈ A
with x ̸= f(x), then F has a common fixed element v ∈ A, that is, v = f(v) for all
f ∈ F.

(vii) If F is a family of multimaps Ti : A ⊸ X for i ∈ I with an index set
I such that ¬G(x, y) holds for any x ∈ A and any y ∈ Ti(x)\{x}, then F has a
common stationary element v ∈ A, that is, {v} = Ti(v) for all i ∈ I.

(viii) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x}
satisfying ¬G(x, z), then there exists a v ∈ A ∩ Y .

Here, maps and multimaps have nonempty values and ¬ denotes the negation.
We give the following proof in [28] for completeness:

Proof. (i)=⇒(ii): Suppose v /∈ T (v). Then there exists a y ∈ X\{v} satisfying
¬G(v, y). This is a contradiction.

(ii)=⇒(iii): Clear.

(iii)=⇒(iv): Clear.

(iv)=⇒(v): Suppose T has no stationary element, that is, T (x)\{x} ≠ ∅ for any
x ∈ A. Choose a choice function f on {T (x)\{x} : x ∈ A}. Then f has no fixed
element by its definition. However, for any x ∈ A, we have x ̸= f(x) satisfying
¬G(x, f(x)). Therefore, by (iv), f has a fixed element, a contradiction.

(v)=⇒(vi): Define a multimap T : A ⊸ X by T (x) := {f(x) : f ∈ F} ≠ ∅ for all
x ∈ A. Since ¬G(x, f(x)) for any x ∈ A and any f ∈ F, by (v), T has a stationary
element v ∈ A, which is a common fixed element of F.

(vi)=⇒(i): Suppose that for any x ∈ A, there exists a y ∈ X\{x} satisfying
¬G(x, y). Choose f(x) to be one of such y. Then f : A → X has no fixed element
by its definition. However, ¬G(x, f(x)) for all x ∈ A. Let F = {f}. By (vi), f has
a fixed element, a contradiction.

(i)+(v) =⇒ (vii): By (i), there exists a v ∈ A such that G(v, w) for all w ∈
X\{v}. For each i ∈ I, by (v), we have a vi ∈ A such that {vi} = Ti(vi). Suppose
v ̸= vi. Then G(v, vi) holds by (i) and ¬G(v, vi) holds by assumption on (v). This
is a contradiction. Therefore v = vi for all i ∈ I.

(vii) =⇒ (v): Clear.

(i) =⇒ (viii): By (i), there exists a v ∈ A such that G(v, w) for all w ̸= v. Then
by the hypothesis, we have v ∈ Y . Therefore, v ∈ A ∩ Y .

(viii) =⇒ (i): For all x ∈ A, let

A(x) := {y ∈ X : x ̸= y, ¬G(x, y)}.

Choose Y = {x ∈ X : A(x) = ∅}. If x /∈ Y , then there exists a z ∈ A(x). Hence
the hypothesis of (viii) is satisfied. Therefore, by (viii), there exists a v ∈ A ∩ Y .
So A(v) = ∅; that is, G(v, w) for all w ̸= v. Hence (i) holds.

This completes our proof. 2
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Note that the element v ∈ A is the same for all (i)–(viii), and (iv)=⇒(v) adopts
the Axiom of Choice. In our previous works [27, 28], we gave many examples of
Metatheorem, for which (i)–(viii) are true.

3. Kirk Fixed Point Theorem

In 1965, Kirk [16] obtained the following:

Theorem 3.1. (Kirk) Let X be a Banach space and suppose that C is a nonempty
weakly compact convex subset of X which has the normal structure property. Then,
any nonexpansive map f : C → C (that is, ||f(x)−f(y)|| ≤ ||x−y|| for all x, y ∈ C)
has a fixed point.

Kirk’s original proof was based on Zorn’s Lemma. Later Fuchssteiner [10] used
Zermelo’s theorem in the context of nonexpansive map.

In the same year 1965, Browder [4] and Göhde [11] obtained the following:

Theorem 3.2. Let X be a uniformly convex Banach space and suppose that C
is a nonempty closed bounded convex subset of X. Then, any nonexpansive map
f : C → C has a fixed point.

This is known as the Browder-Göhde-Kirk fixed point theorem for nonexpansive
maps. Early in 1981, Granas [12] gave a proof of Theorem 3.2 for Hilbert spaces by
applying the Hartman-Stampacchia theorem.

In 2002, using Zermelo’s theorem, Jachymski [16] established a common fixed
point theorem for two progressive maps on a partially ordered set. This result yields
the Kirk fixed point theorem for nonexpansive maps independent of the Axiom of
Choice.

Motivated by the Browder-Göhde-Kirk theorem and our Metatheorem, we have
the following equivalency:

Theorem 3.3. Let C be a closed convex subset in a uniformly convex Banach space
and ϕ : C → C be a map.

Then the following statements are equivalent:

(i) There exists an element v ∈ C such that ||ϕ(v) − ϕ(w)|| > ||v − w|| for any
w ∈ C\{v}.

(ii) If T : C ⊸ C is a multimap such that for any x ∈ C\T (x) there exists a
y ∈ C\{x} satisfying ||ϕ(x)− ϕ(y)|| ≤ ||x− y||, then T has a fixed element v ∈ C,
that is, v ∈ T (v).

(iii) If f : C → C is a map such that for any x ∈ C with x ̸= f(x), there exists
a y ∈ C\{x} satisfying ||ϕ(x)−ϕ(y)|| ≤ ||x− y||, then f has a fixed element v ∈ C,
that is, v = f(v).

(iv) If f : C → C is a map such that ||ϕ(x) − ϕ(f(x))|| ≤ ||x − f(x)|| for all
x ∈ C, then f has a fixed element v ∈ C, that is, v = f(v).
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(v) If T : C ⊸ C is a multimap such that ||ϕ(x) − ϕ(y)|| ≤ ||x − y|| holds for
any x ∈ C and any y ∈ T (x)\{x}, then T has a stationary element v ∈ C, that is,
{v} = T (v).

(vi) If F is a family of maps f : C → C satisfying ||ϕ(x)−ϕ(f(x))|| ≤ ||x−f(x)||
for all x ∈ C with x ̸= f(x), then F has a common fixed element v ∈ C, that is,
v = f(v) for all f ∈ F.

(vii) If F is a family of multimaps Ti : C ⊸ C for i ∈ I with an index set I
such that ||ϕ(x)− ϕ(y)|| ≤ ||x− y|| holds for any x ∈ C and any y ∈ Ti(x)\{x} for
all i ∈ I, then F has a common stationary element v ∈ C, that is, {v} = Ti(v) for
all i ∈ I.

(viii) If Y is a subset of C such that for each x ∈ C\Y there exists a z ∈ C\{x}
satisfying ||ϕ(x)− ϕ(z)|| ≤ ||x− z||, then there exists a v ∈ C ∩ Y = Y .

Proof. In Metatheorem, let G(v, w) be the statement ||ϕ(v) − ϕ(w)|| > ||v − w||
and let A = X = C. Then each of (i)–(viii) follows from the corresponding ones in
Metatheorem. This completes our proof. 2

Note that, for the particular case when ϕ = f is nonexpansive, the case (iii)
extends the Browder-Göhde-Kirk fixed point theorem.

4. Brønsted Principle

In a short note in 1976, Brøndsted [3] observed that certain fixed point theorems
may be derived from the following statement on the existence of maximal elements
in partially ordered sets.

(A) Let (E,≼) be a partially ordered set which admits at least one maximal
element. Let f : E → E be a progressive map (that is, x ≼ f(x) for all x ∈ E).
Then f admits at least one fixed point.

Recall that the main point in our previous work [29] is to show how certain fixed
point theorem can be deduced from the simple observation (A).

In [29], we adopted the following instead of (A), where a pre-order is required
to be only reflexivity and transitivity.

Brønsted Principle. Let (E,≼) be a pre-ordered set and f : E → E be a pro-
gressive map. Then E admits a maximal element v ∈ E if and only if v is a fixed
element of f .

In most applications of this principle, a maximal element in a partially ordered
set is achieved by the upper bound of a chain. Moreover, this is better than (A)
and the necessity is trivial.

In [28], we applied this principle to the following consequence of Metatheorem:

Theorem 4.1. Let (X, d) be a complete metric space, and φ : X → R lower
semicontinuous and bounded below. Define a partial order ≼ on X by
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x ≼ y iff d(x, y) ≤ φ(x)− φ(y).

Then the following equivalent statements hold:

(i) There exists a maximal element v ∈ X; that is, v ̸≼ w or d(v, w) > φ(v) −
φ(w) for any w ∈ X\{v}.

(ii) If T : X ⊸ X is a multimap such that for any x ∈ X\T (x) there exists a
y ∈ X\{x} satisfying d(x, y) ≤ φ(x)−φ(y), then T has a fixed element v ∈ X, that
is, v ∈ T (v).

(iii) If f : X → X is a map such that for any x ∈ X with x ̸= f(x), there exists
a y ∈ X\{x} satisfying d(x, y) ≤ φ(x) − φ(y), then f has a fixed element v ∈ X,
that is, v = f(v).

(iv) If f : X → X is a map such that d(x, f(x)) ≤ φ(x)−φ(f(x)) for all x ∈ X,
then f has a fixed element v ∈ X, that is, v = f(v).

(v) If T : X ⊸ X is a multimap such that d(x, y) ≤ φ(x)− φ(y) holds for any
x ∈ X and any y ∈ T (x)\{x}, then T has a stationary element v ∈ X, that is,
{v} = T (v).

(vi) If F is a family of maps f : X → X satisfying d(x, f(x)) ≤ φ(x)−φ(f(x))
for all x ∈ X, then F has a common fixed element v ∈ X, that is, v = f(v) for all
f ∈ F.

(vii) If F is a family of multimaps Ti : X ⊸ X for i ∈ I with an index set I
such that d(x, y) ≤ φ(x)−φ(y) holds for any x ∈ A and any y ∈ Ti(x)\{x}, then F
has a common stationary element v ∈ X, that is, {v} = Ti(v) for all i ∈ I.

(viii) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
such that d(x, y) ≤ φ(x)− φ(y), then there exists an element v ∈ Y .

Note that (iv) is given in [3] as (B) and the celebrated Caristi fixed point the-
orem, and others except (i) and (viii) are its generalizations. Therefore (i)–(viii)
hold.

5. Caristi-Kirk Fixed Point Theorem

From Theorem 4.1(ii), we immediately have the following in [6]:

Theorem 5.1. (Caristi-Kirk) Let (X, d) be a complete metric space and T : X ⊸ X
be a multimap such that for each x ∈ X, there exists y ∈ T (x) satisfying

d(x, y) + φ(y) ≤ φ(x)

where φ : X → R ∪ {+∞} is a proper, lower semicontinuous and bounded below
functional. Then, T has a fixed point, that is, there exists v ∈ X such that v ∈ T (v).

Note that Theorem 4.1(v) is a variant of the Caristi-Kirk theorem and (vii) is
its collective version.



S. Park, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 420–432. 426

6. Caristi Fixed Point Theorem

Theorem 4.1(iii) is a single-valued case of (ii) and (iv) is the following in [5]:

Theorem 6.1. (Caristi) Let M be a complete metric space, suppose φ : M → R is
lower semi-continuous and bounded below, and suppose g : M → M satisfies:

d(x, g(x)) ≤ φ(x)− φ(g(x)), x ∈ M.

Then g has a fixed point.

In Theorem 4.1, note that (iv) is given in [3] as (B), which is the celebrated
Caristi fixed point theorem, and others except (i) and (viii) are its generalizations.
Note that (ii) and (v) are multimap versions of (iii) and that (v) and (vii) are for
families of multimaps. Therefore all of (ii)–(vii) can be considered generalizations
of the Caristi fixed point theorem.

For the history of proofs of the Caristi theorem, see Jachymski [14] in 1998.

7. Nadler Fixed Point Theorem

From Jachymski [15] in 2001: Let (X, d) be a metric space, CB(X) denotes the
family of nonempty closed bounded subsets of X, and Cl(X) denotes the family of
all nonempty closed subsets of X (not necessarily bounded). For A,B ∈Cl(X), set

H(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},

where d(a,B) = inf{d(a, b) : b ∈ B}. Then H is called a generalized Hausdorff
metric since it may have infinite values.

Definition 7.1. Let (X, d) be a metric space and let T : X ⊸ X. T is called a
contraction [20] if for a fixed constant k < 1 and for each x, y ∈ X, H(T (x), T (y)) ≤
kd(x, y). Such a map T is also known as the Nadler contraction.

Using the concept of Hausdorff metric, Nadler [20] proved the following theorem
on the existence of fixed points for multimaps, known as the Nadler contraction
principle.

Theorem 7.2. (Nadler) Let (X, d) be a complete metric space. Then, each con-
traction T : X → CB(X) has a fixed point.

As Jachymski [15] noted: In contrast to its single-valued counterpart, fixed
points in Theorem 7.2 need not be unique. Indeed, if X is bounded, then the map
T (x) = X for all x ∈ X satisfies the conditions of Theorem 7.2.

Jachymski recalled a more general form of Nadler’s theorem established by
Covitz and Nadler [8] as follows:

Theorem 7.3. (Nadler Fixed Point Theorem) Let (X, d) be a complete metric
space and T : X → Cl(X). Assume there is an h ∈ [0, 1) such that

H(T (x), T (y)) ≤ hd(x, y) for all x, y ∈ X.
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Then T has a fixed point.

In 1998, Jachymski [14] showed that Nadler’s contraction T on a complete metric
space (X, d) admits a selection T : X → X, which is a Caristi map on (X, d)
generated by a Lipschitzian function f . Hence, Caristi’s fixed point theorem yields
Nadler’s theorem.

Motivated by Theorem 7.3 and Metatheorem, we have the following extended
form of [27, Theorem 3.2]:

Theorem 7.4. Let X be a complete metric space, F : X → Cl(X) be a multimap,
and 0 < h < 1. Then the following equivalent statements hold:

(i) There exists an element v ∈ X such that H(F (v), F (w)) > hd(v, w) for any
w ∈ X\{v}.

(ii) If T : X ⊸ X is a multimap such that, for any x ∈ X\T (x), there exists a
y ∈ X\{x} satisfying H(F (x), F (y)) ≤ hd(x, y), then T has a fixed element v ∈ X,
that is, v ∈ T (v).

(iii) If f : X → X is a map such that, for any x ∈ X with x ̸= f(x), there
exists a y ∈ X\{x} satisfying d(F (x), F (y)) ≤ hd(x, y), then f has a fixed element
v ∈ X, that is, v = f(v).

(iv) If f : X → X is a map such that d(F (x), F (f(x))) ≤ hd(x, f(x)) for any
x ∈ X, then f has a fixed element v ∈ X, that is, v = f(v).

(v) If T : X ⊸ X is a multimap such that H(F (x), F (y)) ≤ hd(x, y) holds for
any x ∈ X and any y ∈ T (x)\{x}, then T has a stationary element v ∈ X, that is,
{v} = T (v).

(vi) If F is a family of maps f : X → X such that, for all x ∈ X with x ̸= f(x)
there exists a y ∈ X\{x} satisfying d(F (x), F (y)) ≤ hd(x, y), then F has a common
fixed element v ∈ X, that is, v = f(v) for all f ∈ F.

(vii) If F is a family of multimaps Ti : X → X, i ∈ I, satisfying H(F (x), F (y)) ≤
hd(x, y) for all x ∈ X and any y ∈ Ti(x)\{x}, i ∈ I, then F has a common stationary
element v ∈ X, that is, {v} = Ti(v) for all i ∈ I.

(viii) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
satisfying H(F (x), F (z)) ≤ hd(x, z), then there exists a v ∈ X ∩ Y = Y .

Proof. Note that, in Metatheorem, put A = X and let G(v, w) be the statement
H(F (v), F (w)) > hd(v, w). Then each of (i)–(viii) follows from the corresponding
ones in Metatheorem. Note that, when T = F is a single-valued map f , (iv) holds
by the Banach contraction principle. Then we have a maximal element in (i) by
Brøndsted principle. This completes our proof. 2

Note that Theorem 7.4(ii) or (v) extend Nadler’s theorem and (iii) implies the
Banach contraction principle. Therefore, in some sense, these two theorems are
equivalent in view of Theorem 7.4.
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8. Extensions of the Banach contraction principle

Recall the following well-known concept:

Definition 8.1. Let (X, d) be a metric space and let f : X → X. f is called a
contraction if for a given constant k < 1 and for each x, y ∈ X, d(f(x), f(y)) ≤
kd(x, y). Such a mapping f is also known as Banach contraction.

In this section, we will discuss the most basic fixed point theorem in analysis,
known as the Banach Contraction Principle. According to Jachymski [15]: “It is
due to Banach and appeared in his Ph.D. thesis (1920, published in 1922 [2]). The
principle was first stated and proved by Banach for the contraction maps in the
setting of complete normed linear spaces. At about the same time the concept of an
abstract metric space was introduced by Hausdorff, which then provided the general
framework for the principle for contractions in a complete metric space.”

Theorem 8.2. (Banach Contraction Principle) Let (X, d) be a complete metric
space, then each contraction f : X → X has a unique fixed point.

It is well-known that this follows from the Caristi fixed point theorem which was
extended by Theorem 4.1(iii). This also extends the Banach principle as follows:

Theorem 8.3. Let (X, d) be a complete metric space and k ∈ [0, 1). If f : X → X
is a continuous map such that for any x ∈ X with x ̸= f(x), there exists a y ∈
X\{x} satisfying d(f(x), f(y)) ≤ kd(x, y), then f has a fixed element v ∈ X, that
is, v = f(v).

Proof. From d(f(x), f(y)) ≤ kd(x, y), we can deduce

d(x, y) ≤ φ(x)− φ(y) with φ(x) =
1

1− k
d(x, f(x)),

where φ : X → R+ = [0,∞).
If f : X → X is a map such that for any x ∈ X with x ̸= f(x), there exists a

y ∈ X\{x} satisfying d(f(x), f(y)) ≤ kd(x, y), then f has a fixed element v ∈ X by
Theorem 4.1(iii); that is, v = f(v). 2

A. Latif [19] gave an example of the situation in which f : X → X is not
necessarily a contraction, but fn is a contraction for some n.

Example 8.4. Let f : [0, 2] → [0, 2] be defined by

f(x) = 0 for x ∈ [0, 1]; f(x) = 1 for x ∈ (1, 2].

Then, f2(x) = 0 for all x ∈ [0, 2], and so, f2 is a contraction on [0, 2].
Note that f is not continuous and thus not a contraction. Moreover, this example

does not satisfy Theorem 4.1(iii) in case f = φ.

We give an example of Theorem 8.3 based on [1, 7]:
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Definition 8.5. Let (X, d) be a metric space. For any x, y ∈ X, the segment
between x and y is defined by

[x, y] = {z ∈ X : d(x, z) + d(z, y) = d(x, y)}.

Definition 8.6. Let (X, d) be a metric space. A continuous map f : X → X is
called a directional contraction if there exists α ∈ (0, 1) such that for any x ∈ X
with f(x) ̸= x, there exists z ∈ [x, f(x)]\{x} such that d(f(x), f(z)) ≤ αd(x, z).

Corollary 8.7. (Clarke’s Fixed Point Theorem) Let (X, d) be a complete metric
space and f : X → X be a directional contraction map. Then, f has a fixed point.

9. Tarski-Kantorovitch Theorem

A selfmap f of a partially ordered set (P,≼) is said to be ≼-continuous if for
every countable chain C having a supremum, the image f(C) has a supremum and
sup f(C) = f(sup C). It is easily seen that a ≼-continuous map is isotone. (P,≼)
is said to be ≼-complete if every countable chain has a supremum.

Following Dugundji and Granas [9, p.15], Jachymski [15] introduced:

Theorem 9.1. (Tarski-Kantorovitch) Let (P,≼) be a ≼-complete partially ordered
set and a map f : P → P be ≼-continuous. If there exists p0 ∈ P such that
p0 ≼ f(p0), then f has a fixed point; moreover, p∗ := sup{fn(p0) : n ∈ N} is fixed
under f.

By applying Metatheorem, this suggests the following extension of the Brøndsted
principle:

Theorem 9.2. Let (X,≼) be a pre-ordered set and G(x, y) is x ̸≼ y for x, y ∈ X.
Then the following eight statements are equivalent:

(i) There exists an element v ∈ X such that v ̸≼ w for any w ∈ X\{v}.

(ii) If T : X ⊸ X is a multimap such that for any x ∈ X\T (x) there exists a
y ∈ X\{x} satisfying x ≼ y, then T has a fixed element v ∈ X, that is, v ∈ T (v).

(iii) If f : X → X is a map such that for any x ∈ X with x ≼ f(x), there exists
a y ∈ X\{x} satisfying x ≼ y, then f has a fixed element v ∈ X, that is, v = f(v).

(iv) If f : X → X is a map such that x ≼ f(x) for any x ∈ X, then f has a
fixed element v ∈ X, that is, v = f(v).

(v) If T : X ⊸ X is a multimap such that x ≼ y holds for any x ∈ X and any
y ∈ T (x)\{x}, then T has a stationary element v ∈ X, that is, {v} = T (v).

(vi) If F is a family of maps f : X → X satisfying x ≼ f(x) for all x ∈ X
with x ̸= f(x), then F has a common fixed element v ∈ X, that is, v = f(v) for all
f ∈ F.

(vii) If F is a family of multimaps Ti : X ⊸ X for i ∈ I with an index set I
such that x ≼ y holds for any x ∈ X and any y ∈ Ti(x)\{x}, then F has a common
stationary element v ∈ X, that is, {v} = Ti(v) for all i ∈ I.
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(viii) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
satisfying x ≼ z, then there exists a v ∈ X ∩ Y = Y .

Consequently, in a pre-ordered set, the existence of maximal elements is equiv-
alent to the corresponding ones for fixed elements, stationary elements, common
fixed elements, common stationary elements, and locations of such elements.

10. Jachymski Stationary Point Theorem

In 2011, Jachymski [17] gave a stationary point theorem for some multimap
on a metric space. The existence of fixed points of such maps characterizes the
metric completeness and yields the order-theoretic Cantor theorem and the Ekeland
variational principle.

The following (i) is known as the order theoretic Cantor theorem due to Granas-
Horvath; see [17, Theorem 3]:

Theorem 10.1. Let (X, d) be a complete metric space endowed with a partial order
≼. Assume that for any x ∈ X, the set {y ∈ X : x ≼ y} is closed and given ε > 0,
there is y ∈ X such that x ≼ y and diam{z ∈ X : y ≼ z} < ε.

Then the following equivalent statements hold:

(i) There exists a maximal element v ∈ X, that is, v ̸≼ w for any w ∈ X\{v}.

(ii) If T : A ⊸ X is a multimap such that for any x ∈ X\T (x) there exists a
y ∈ X\{x} satisfying x ≼ y, then T has a fixed element v ∈ X, that is, v ∈ T (v).

(iii) If f : X → X is a map such that for any x ∈ X with x ̸= f(x), there exists
a y ∈ X\{x} satisfying x ≼ y, then f has a fixed element v ∈, that is, v = f(v).

(iv) If f : X → X is a map such that x ≼ f(x) for any x ∈ X, then f has a
fixed element v ∈, that is, v = f(v).

(v) If T : X ⊸ X is a multimap such that x ≼ y holds for any x ∈ X and any
y ∈ T (x)\{x}, then T has a stationary element v ∈ X, that is, {v} = T (v).

(vi) If F is a family of maps f : X → X satisfying x ≼ f(x) for all x ∈ X
with x ̸= f(x), then F has a common fixed element v ∈ X, that is, v = f(v) for all
f ∈ F.

(vii) If F is a family of multimaps Ti : X ⊸ X for i ∈ I with an index set I
such that x ≼ y holds for any x ∈ X and any y ∈ Ti(x)\{x}, then F has a common
stationary element v ∈ X, that is, {v} = Ti(v) for all i ∈ I.

(viii) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
satisfying x ≼ z, then there exists a v ∈ X ∩ Y = Y .

Proof. Recall that (i) is true by [17, Theorem 3]. Now Metatheorem with X = A
works for x ̸≼ y instead of G(x, y). 2
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11. Conclusion

Our original Metatheorem first appeared in [21] in 1985. The one in [27] is
a particular form without (iv) and indicated that it holds for pre-ordered (quasi-
ordered or pseudo-ordered) sets. The present Metatheorem and Theorem 3.2 were
appeared in our previous article entitled Applications of various maximum principles
[28] with several applications.

In this article, we introduce our Metatheorem in [28] and show that it can be
applied to equivalent formulations of a number of known theorem as we did in
our previous work [27]. In such equivalent formulations, certain maximal points are
actually same to fixed points, stationary points, collectively fixed points, collectively
stationary points, and we have some information on the location of such points. No
one recognized this fact yet. Therefore, if we have a theorem on any of such points,
then we can deduce at least seven equivalent theorems on other types of points.

In many fields of mathematical sciences, there are plentiful number of theorems
concerning maximal points or fixed points that can be applicable our Metatheorem.
Some of such theorems can be seen in our previous works in [21]–[29]. Therefore,
our Metatheorem is a machine to find new equivalent theorems with trivial proofs.
This is like an industrial revolution of making new equivalent statements.
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