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Abstract

In this paper, we propose extensions of Leray-Schauder boundary condition for a sum of two operators
T + S in the case when T is an expansive operator and I — S is a completely continuous operator. As their
applications, we investigate a class of fourth-order nonlinear boundary value problems with integral boundary
conditions. We give conditions for the parameters of the considered boundary value problem that ensure
existence of at least two non trivial bounded nonnegative classical solutions of the considered boundary value
problem. The results in the paper are provided with a suitable example.
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1. Introduction

Since 1970, the interest for fourth order boundary value problems (BVPs for short) has risen due to their
important applications in practical problems. For instance, the deformation of an elastic beam under an
external force h supported at both ends is described by the linear boundary value problem

=@ (1)

=h(t), te(0,1),
z(0) =2(1) =

) =2"(0) =2"(1) =0,
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where vanishing moments at the ends of the attached beam motivate the boundary conditions (see [9] for more
details). The existence of solutions for nonlinear fourth-order BVPs has gained much interest in the last years
(see, e.g., [2 B, 4, 6 X0, 11, 12} 13| 15 17]). Boundary value problems with integral boundary conditions
constitute a very interesting and important class of problems. They include two, three, multi-point, and
nonlocal boundary conditions as special cases.

In this paper, we investigate the existence of at least two nonnegative solutions to the fourth-order
nonlinear boundary value problem with integral boundary conditions:

W) = wt)ftx(t),2"(), te(0,1),
z(0) = fol hi(s)z(s)ds, x(1)= fol ki(s)z(s)ds, (1.1)

2"(0) = [ ha(s)a"(s)ds, a"(1) = [ ka(s)a"(s)ds,
where
(H1) w € L(]0,1]) is nonnegative and may be singular at t = 0 and (or) t =1, f € C([0,1] x R x R),
|f(t,u,v)] < ai(t)|ulPr + az(t)|v]P? + az(t), te[0,1], wu,veR,
ai,az,as € C([0,1]) are given nonnegative functions, pj, py are given nonnegative constants.
(H2) hy, ha, k1, k2 € LY([0,1]) with mivy + nipg # 0, mave + naus # 0,

for

1 1
my = /Shl(s)ds, mgz/ sha(s)ds,
0 0
1 1
ny = 1—/ ski(s)ds, n2:1—/ ska(s)ds,
0 0
1 1
o= 1- / ha(s)ds, =1 / ha(s)ds,
0 0

1 1
vy = 1 / ki(s)ds, wve=1 / ka(s)ds.
0 0

In 2003 and 2004, the authors of [I1] 18] studied the existence of solutions of Problem for hy = hy =
k1 = ko = 0, by using the Krasnosel’skii’s fixed point theorem and fixed point index theory on cones of
Banach spaces, respectively.

By using the Krasnosel’skii fixed point theorem of cone expansion and compression, in [I5] is proved the
existence of at least two positive solutions of BVP when w may be singular at ¢ = 0 and (or) t = 1,
w € LY([0,1]), f:1]0,1] x [0,00) x (=00, 0] — [0, 00) is continuous, h1, ha, k1, k2 € L'([0, 1]) are nonnegative
with uy >0, v1 >0, uo > 0, vo > 0.

The paper is organized as follows. Some background material and auxiliary results are provided in the
next section, extensions of Leray-Schauder boundary condition are given in the case of completely continuous
mappings as well as in the case of the sum 7'+ S, where T is an expansive mapping and (I-S) is a completely
continuous one. The main existence result of this paper is presented and proved in Section 3. It complements
and improves similar results obtained in [I5]. In Section 4, we discuss and compare our result with those
obtained in [I5]. We end the paper by giving in Section 5 an example of application with some numerical
computations.
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2. Auxiliary Results
Let E be a real Banach space.

Definition 2.1. A closed, convex set P in F is said to be cone if

1. az € P for any a > 0 and for any = € P,
2. x,—x € P implies x = 0.

Every cone P defines a partial ordering < in F defined by :
x <y if and only if y —xz € P.

Definition 2.2. A mapping K : E — FE is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

In the sequel, we give an extension of the Leray-Schauder boundary condition, which allows to increase
the field of applications of this condition. First, we present our result for the completely continuous mappings.
Next, we extend it to the case of the sum T'+ S, where T is an expansive mapping and (I —.5) is a completely
continuous one.

Lemma 2.3. Let X be a closed conver subset of a Banach space E and U C X a bounded open subset with
0€U. Assume K : U — X is a completely continuous mapping without fized point on the boundary OU with
v = dist(0, (I — K)(OU)) and there exists € > 0 small enough such that

Kz # Mz for all x € OU and A\ >1+e¢. (2.1)
Then the fized point index i (K,U, X) = 1.

Proof. Consider the homotopic deformation H : [0,1] x U — X defined by

H(t,z) = tKz.

£+

The operator H is completely continuous and has no fixed point on 9U, Vt € [0,1] ; otherwise, we may
distinguish between two cases:
o If t = 0, there exists some g € OU such that x¢g = 0, contradicting 0 € U.

e If t € (0, 1], there exists some xy € QU such that ﬁ tKxg = xo; then

+é

1 14¢
Kxy = To with %214-8,
leading to a contradiction with the hypothesis (2.1)).
From the invariance under homotopy and the normalization properties of the index (see [8, Theorem 2.3.1]),

we deduce 1

e+1

i( K,U,X)=i(0,U,X)=1.

Now, we show that

1
e+1
Since K has no fixed point in U and (I —K)(9U) is a closed set (see [14, Lemma 1]), we get 0 & (I — K)(9U).
Hence,

i (KU, X) =i (

K,U,X).

inf [z — Kz| =~ > 0.
Jnf Jlo— Kaf| =~
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Let ¢ be sufficiently small so that || 55 Kz|| < 3. Hence
1
|Kz — —— Ka|| = | Kz — Kz + —— Kz|| = | —— Kz < L, Vo € aU.
e+1 e+1 e+1 2
Define the convex deformation G : [0,1] x U — X by

G(t,x) =tKx + (1 —t)

1
Kzx.
€+1x

The operator G is completely continuous and has no fixed point on 9U, Vt € [0,1]. In fact, for all z € U
and ¢ € [0, 1], we have

e = G(t,2)| = [lz— R — (1- t)ﬁ%f(xl\
> |z — g Kz|| - t| Kz — 47 Kz )
> o — Kaf| - [z Kaf| - t]| Kz — 7 K]
> y—3-3=0.
Then our claim follows from the homotopy invariance property of the index. O

Now, we recall the definition of an expansive mapping.

Definition 2.4. Let X and Y be real Banach spaces. A mapping 7' : X — Y is said to be expansive if there
exists a constant h > 1 such that

Tz — Ty|ly > h|lz —yl|/x, forany z,y e X

The extension of the fixed point index for T+ S, where T is an expansive mapping and I — .S is a
completely continuous one, is based on the following result.

Lemma 2.5. [16] Let (X, ||.||) be a linear normed space and D C X. Assume that the mapping T : D — X
is expansive with constant h > 1. Then the inverse of T : D — T(D) exists and

. . 1
T2 =Tyl < sllz =y, Va,y € T(D).

In the sequel, P will refer to a cone in a Banach space (E, ||.||), €2 is a subset of P, and U is a bounded
open subset of P, and P* = P\{0}.

Assume that I — S : U — E is a completely continuous mapping and T : 2 — E is an expansive one
with constant h > 1. By Lemma , the operator T~! is h~!-Lipschitzian on T'(Q). Suppose that

(I-S)U)cCT(Q), (2.2)

and
x # Tz + Sz, forall z € OU NQ. (2.3)

Then x # T—1(I — S)z, for all z € OU and the mapping T-1(I —S) : U — P is completely continuous. From
[8, Theorem 2.3.1], the fixed point index i (T~1(I — S),U, P) is well defined. Thus we put

i(T-YI—8),U,P), if UNQ#0

0. i UNQ= 0. (2.4)

z’*(T+S,UﬂQ,P):{

Using the main properties of the fixed point index for strict set contractions (in particular completely
continuous mapping), Djebali, Benslimane and Mebarki in [5], have discussed the properties of the generalized
fixed point index i,. The following lemma gives the computation of this index.
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Lemma 2.6. Assume that T : Q — E is an expansive mapping, I — S : U — E is a completely continuous

mapping, and (I — S)(U) C T(Q2). Suppose that T + S has no fized point on OU N ().
Then we have the following results:

(1) If0 € U and there exists € > 0 small enough such that
(I—8S)x#T(A\x) forall \>1+¢, x €U and Iz € Q,
then the fized point index i, (T + S,UNQ,P) = 1.
(2) If there exists ug € P* such that
(I —S)x #T(x— Aug), forall A>0 and x € U N (Q+ Aug),
then the fized point index ix (T + S, U NQ,P) =0.

Proof. (1) The mapping T-1(I —S) : U — P is completely continuous without fixed point on U, and our
hypothesis implies
T YI—-S)x#Xx for all 2€dU and A>1+e.

Then, our claim follows from (2.4) and Lemma

(2) See the proof of [5, Proposition 3.13].
O

Remark 2.7. The result (1) in Lemma is an extension of [5, Corollary 3.7| in the case where I — S is a
0-set contraction.
Now, we combine the results (1) and (2) of Lemma [2.6] to establish the following multiplicity result. This

result will be used to prove our main result.

Theorem 2.8. Let Uy,Us and Us three open bounded subsets of P such that U, c Uy CUs and 0 € Uj.
Assume that T : Q C P — E is an expansive mapping, I — S : Uz — E is a completely continuous one and
(I —S)(U3) C T(Q). Suppose that (U3 \U1)NQ # D, (Us\Uz) NQ # D, and there exists ug € P* such that
the following conditions hold:

(i) (I —S)x#T(x— Aug), forall A\ >0 and x € OU; N (L + Auy),
(1) there exists € > 0 small enough such that (I — S)x # T(A\x), for all A\>1+¢, x € QUs, and \x € Q,

(11i) (I —S)x #T(x — Aug), for all X >0 and x € OU3 N (2 + Aup).
Then T + S has at least two non-zero fized points x1,xo € P such that

z1 €U N and x9 € (U'g,\Uz)ﬂQ

or
x1 € (Ua\Up)NQ and x9 € (U3\U2) N Q.

Proof. If (I — S)x = Tx for x € OUs N, then we get a fixed point x1 € Uz N Q of the operator T + S.
Suppose that (I — S)z # Tx for any x € 90Uz N Q. Without loss of generality, assume that Tx + Sz #
x on OU1 NQ and Tz 4+ Sz # x on 9U3 N Q, otherwise the result is obvious. By Lemma [2.6] we have

i (T+ S, U1 NQP) =i (T+S,UsNQP)=0and i, (T+ S, UsNQ,P) =1.
The additivity property of the index i, yields
i (T+ S, (U2 \U1)NQ,P)=1and i, (T + S, (U3 \Uz) NQ,P) = —1.

Consequently, by the existence property of the index i,, T'+ S has at least two fixed points z1 € (Uz \ Uy) N
Q and $2€<U3\U2)QQ. O
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Let
s(1—1t), 0<s<t<l,
G(t,s) =
t(l—s), 0<t<s<l,

Hi(t,s) = Glt,s)+ —mrtrat /Vumqumw

mivr +nip Jo

ny — Vlt

1
/fmmammw,

mivy +niur Jo

Ha(t,s) = G(t,s)+ —r2trt /Vﬂmammw

mov2 + nol2 Jo

ng — Vot

/Ummammw,

movlo + nou2 Jo

1
Hit,s) = / Hy(t,0)Ha(v, s)dv, .5 € [0,1],
0

1 1
Kl = / \kl(y)|dy, KQ = / |k2(l/)’dl/,
0 0

1 1
H& = / () |dv, Hy = / Iha(w)dv,
0 0

my| + ny|+|v
A = 1+ ! 1| \,u1| K, + | 1\ ’ 1‘ H;,
|mivy + nypa |mavy + n

[ma| + |ps2l K Ina| + va|

Ay = 1+
|maovo + napiol [mavs + naps|

As = /w(s)als s
0
1
Ay = /w(s)ag(s)ds
0
1
A=
Then

0<G(t,s) <1, tselo1],

and

|Hy(t,s)] < Gt s)+ m”+mlu/m )G (t, v)dy
|mivy + napu|

_Aml ] /|h )G (t,v)d
|m1V1 + nyp|

[ma | + | K [n1] + [11]

< 1+
|mavy + nq [mavr +nipa |

Hl :A17
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Hy(t,s)| < Glt,s) + T2l Tl / ka(0)[G(, )
[mave + naps|
’n2|—|—‘V2| / ’h ‘th
[mavs + naps|
S e 2 B Tl L TR A
|mave + napio] |mavs + naps|
1
Hto) = || HatHa )i
0
1
< /|H1(t,y)||H2(t,y)|d1/
0
< AjAs, t,se [0, 1]
In [15, Lemma 5], it is proved that if z € C%(]0,1]) is a solution to the integral equation
1
= [ Hul)f (. 0(5). 2" (),
0
then 2 € C2([0,1]) NC*((0,1)) and it satisfies the BVP ([1.1)).
Let g € C([0, 1]) be a positive function such that
1
/ (1—8)?+2(1—s)+2)g(s)ds < A (2.5)
0
for some positive constant A. For x € C?([0, 1]), define the operator
t 1
Fz(t) = / (t —s)%g(s) (—:r(s) +/ H(s,s1)w(s1)f (s1,2(s1),2"(s1)) d31> ds, telo0,1], (2.6)
0 0
and the norm
ol = max{ ma lo(0)], s [o'()] e |«”(0)])
Lemma 2.9. Suppose (H1) and (H2). If x € C*([0,1]) is a solution to the equation
Ly
0=+ Fe(t), telo1], (2.7)

where Ly is an arbitrary constant, then x € C%(0,1]) N C*((0,1)) is a solution to the BVP (L.1)).

Proof. Let x € C?([0,1]) is a solution to the integral equation (2.7). We differentiate three times with respect

to t the integral equation (2.7) and we get

1
0=g(t) <—x(t) —I—/O H(t,s1)w(s1)f (s1,2(s1),2"(s1)) d51> , telo,1],

whereupon )
= /O H(t,s))w(s1)f (51,:1:(51),33”(51)) dsy, telo0,1].

Then = € C%([0,1]) N C*((0,1)) is a solution to the BVP (1.1]). This completes the proof.
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Lemma 2.10. Assume (H1) and (H2). Let x € C*([0,1]) and ||z|| < ¢ for some positive constant c. Then
we have

”F.TH <A (C + A1As (Agcpl + AygcP? + A5)) .
Proof. Let x € C%([0,1]) and ||z|| < c¢. Then

[Fz(t)] =

t(t—S)QQ(S) —z(s) + 1H(&Sl)w(81)f(817w(81)7x"(81))d81 ds
0 0

< Ak—@%@(Mﬂ+[ﬁﬂ@amwMﬂ&wmxﬂmmem

1
S.[u—#mﬁG+““Akuwmmamw+@mmﬂmw+%@»w0“

IN

/01(1 — 5)%g(s) <c + A1 A (cpl /01 w(sy)ay(s1)dsy + P2 /01 w(s1)as(s1)dsy

[ wtsnastonas, ) )as

1
< (c+ A1As (P Az + P2 Ay + As)) / (1—s)%g(s)ds
0

< A+ AjAy (PP Az + 2 Ay + A)), te [0, 1],

and
t 1
|(Fz)'(t)] = ‘2/0 (t —s)g(s) <—33(8)—|—/0 H(s,sl)w(sl)f(sl,x(sl),az"(sl))dsl> ds
1 1
< 2 [ -9 (e e [ ulon) (@lenla(onl + an(on)a ()P + aa(on)) don ) ds
< Ae+ A1Ag (P*As+ P2 Ay + As)), te]0,1],
and
t 1
|(Fz)"(t)] = ‘2/0 g(s) (—x(8)+/0 H(s,sl)w(sl)f(sl,x(sl),x"(sl))dsl> ds
1 1
< 2/0 g(s) (c—i— A1A2/0 w(sy) (a1(s1)|z(s1)|P* + az(s1)]z” (51)|P + as(s1)) d51> ds
< A (C + A1 A (Cp1A3 +c2Ay + A5)) , t€ [0, 1].
Consequently

HF{BH <A (C + A1A5 (Cp1A3 +c?Ay + A5)) .

3. Main Result

Theorem 3.1. Under the assumptions (H1) and (H2), the BVP (1.1) has at least two non trivial bounded
nonnegative classical solutions x1, x2 in C2([0,1]) N C*((0,1)).
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Proof. Consider the Banach space E = C%(]0, 1]) endowed with the norm

= t "(t "t
||| maX{tgl[% lz(t)], max 2" ()], max 2" ()]},

and the positive cone
P={zxe€eE:x>0 on [0,1]}.

For z € E, define the operators

Tz(t) = (14 me)z(t) — 5%,
Sx(t) = —eFx(t) — mex(t) — 5&, te0,1],

10

where ¢, Ly are positive constants, m > 0 is large enough and the operator F' is given by formula (2.6)). Note
that any fixed point « € E of the operator T'+ S is a solution to the BVP ([1.1J).
Let r1 and Ry be positive constants that satisfy the following conditions
Ry
r1 <L < 55—,
1 1< 3

5m

L
A(Ry+ A1As (R A3+ R? Ay + As)) < ?17
where A is the constant which appears in (2.5)). Define

Pr, = {veP:|v|| <nm},

Pr, = {veP:|v||<Li},

Pr, = {veP:|v| <R},
R (1 +mE)R1 +cA (Rl + A1As (R€1A3+R11)2A4—|-A5)) +E%
2 = M

1+ me

Q = Pr,={veP:|v|] <R}
The proof of our result is based on Theorem [2.8) and it is divided into 5 steps.

Step 1. For 21, x5 € €0, we have
HT.CIZl — T.%'QH = (1 + mE)Hml — .I‘QH,

whereupon T : ) — FE is an expansive operator with a constant 1 + me > 1.

Step 2 We prove that I — S is completely continuous operator.

1. I — S is continuous. Indeed, let {x, } be a sequence such that =, — x as n — oo in E. We have

(I = S)zn(t) — (I — S)z(t)] < e|Fan(t) — Fz(t)| + (1 +me)|an(t) — ()], Vte[0,1. (3.2)
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Note that f(-,-,-) is uniformly continuous on [0, 1] x [0, M] x [0, M] for any positive constant M.
Take € > 0. Then there is an N € N so that

lzn(s) —z(s)] < e,

f(s,2n(s), () — f(s,2(s),2"(s)] < ¢
for any s € [0, 1] and for any n > N, n € N. Hence,
[Fan(t) — Fa(t)]

< /0 (t = 5)29(s) (|a(s) — 2(s)]

1
+ /0 |H (s, s1)|w(s1)|f (s1,2n(s1), 2 (s1)) = f (s1,2(s1),2"(s1)) |ds1) ds

. < /0 ' 4(s) <1 A /0 1w<sl)d51) ds)
= ¢ <1+A1A2/01w(51)d51> (/Olg(s)d5>, tel0,1], n>N.

So, |Fxy(t) — Fx(t)] = 0, as n — oo. Thus |(I — S)z,(t) — (I — S)x(t)| = 0, as n — oc.
In the same way we prove that (I — S)z,)'(t) — (I —S)z)' (¢)] = 0 and |((I — S)zy,)"(t) — (I —
S)x)"(t)] — 0, as n — oo, and then conclude that Sz,, — Sz, as n — oo in E, which ends the
proof.

2. (I — S)(Pg,) is uniformly bounded. Indeed, For z € Pg,, we get

VAN

L
(I = 9)z| < €||F$!\+(1+m€)lel+€T8

L
< cA(Ry+ A1 Ay (RV A3 4+ RP2 Ay + As)) + (1 +me)Ry + 8171).

3. (I — S)(Pg,) is equicontinuous in E. Indeed, let t1,t2 € [0,1],#1 < t2 and x € Pg,.
Then, we deduce

|Fa(ty) — Fx(to)]

/Otl(h — 5)%g(s) <—x(s) + /01H(SvSl)w(sl)f(shx(81),x"(31))dsl> ds

-/ ® (2 — 5g(s) (—w<s> -/ H (s, s w(sn) fGsn x(sn,x"(sl))dsl) ds

t1 1
< [ (== 2= 9000 <|x<s> +f \H(s,sl>\w<sl>|f<sl,x(su,x’%sl»rda) s
to 1
S RCEOYT (ra:<s>| - |H<s,sl>|w<sl>rf<s1,x(sn,x"(sm\dsl) ds
< /01 ((tl - 3)2 — (tg — 5)2) g(s) (|x(s)| + /01 |H(s,51)|w(81)|f(51,x(sl),x//(sl)ﬂdsl) ds

- * (1 97%(s) (\x<s>r - 1 H(s,snw(smf(sl,x(sl),as"(sl))rdsl) ds

t1

—)O, as ‘tl —tg’ — 0.
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Similarly,
|(Fz)'(t2) — (Fz)'(t1)] = 0, as [t —t2] =0,
and
|(Fz)"(ta) — (Fx)"(t1)] — 0, as |t; —ta] — 0.
Consequently,
(I = S)x(tz) — (I = S)z(t)|
< ¢|Fx(ta) — Fx(t1)] + (1 +em)|z(te) — xz(t1)] — 0, as |[t; — ta| — 0,
(I = S)a)'(t2) = (I — S)z)'(t1)]
< g|(Fz)(te) — (Fx) (t1)| + (1 +em) |2 (t2) — 2/ (t1)] — 0, as |[t; — ta] — 0,
(1 = S)2)"(t2) = (I = S)z)"(t1)]
< e|(Fx)'(t2) — (Fx)"(t)| + (1 +em)|2” (t2) — 2" (t1)| — 0, as |t1 — ta] — 0.

Therefore, (I — S)(Pg,) is equicontinuous.

According to the Arzela-Ascoli compactness criterion, we conclude that the operator (I—S5): Pr, - E
is completely continuous.

Step 3. Let u € Pg, be arbitrarily chosen. Then

(I-Su = u—Su

L
= u—i—sFu—i—msu—i—sl—(l)

Ly
= (1+me)u+eFu+e—.

10
Set
 (T+me)u+elu+ 5%
v 1+me ‘
By Lemma and the condition (3.1]), it follows
L
—% S AR+ Ay (RY A5 + RP A+ 45))

< Fu

< A (Rl + A1 A, (R‘?Ag + R€2A4 + A5))

< b
)

Therefore Fu + % > 0 and v > 0. Moreover,

(1 + me)Rl +eA (Rl + A1 A, (R?Ag + RII)2A4 + A5)) + 8%
1+me

o]

= Rs.
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Therefore v € Q and

Ly
Tv = (1 —e—
v (1+me)v—e 0

L
= (1+m€)u+£Fu+€1—5
= (I-9u.

Thus, (I — S)(Pg,) C T().

Step 4. Assume that for any ug € P* there exist A\g > 0 and g € IP,, N(Q+Noug) or g € OPr, N(2+Noup)

such that
(I —S)xg=T(xo— Aouo).
Then I I
eFzo(t) + (1 + em)zo(t) + ETS = (1+em)(mo(t) — Aouo(t)) — ETS, t e o,1].
Whereupon,
1 L
Fao(t) = —Xo +€5mu0(t) -2 telo,)
So,
14+em Ly Ly
Faol = || s=
1Fzoll = lAdo———uo + —I > —

which contradicts Lemma and the inequality (3.1]).
Step 5. Let e1 = 5% Assume that there exist A\; > ¢; +1 and z1 € OPr,, \ix1 € 77732 such that
(I - S)l‘l == T()\lscl) (33)

Note that z; € OPr, and A\ix1 € Pgr, imply

2
< + 1) L1 < MLy = Ai]jz1]] < Ro.
5m

Then, using the equation (3.3)) and the definitions for the operators T' and S, we get

L L
eFay + (1+me)zy + e~ = M (1 +me)zy —e—,
10 10
or
Ly
e(Far + F) = (A — 1)(1 4+ me)z;.
Hence,
Ll L1
2?5 > ¢||Fxy + ?H =\ = DA +me)|a1] = A — 1)(1 + me) Ly,
or

Ml 41="41,
1+ me me 5m

which is a contradiction.

Therefore all conditions of Theorem hold for Uy = P,,, Uy = Pr, and Us = Pg,. Hence, the BVP (1.1))
has at least two solutions z1 and x5 such that 1 € (Pr,\Py,) NQ, 22 € (Pr,\PL,) N and

ry < Hx1|| < L1 < ”$2|| < Rl.
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4. Concluding remarks
In [1I5], the BVP (.1 is investigated in the case when

(A1) w may be singular at ¢t = 0 and (or) t = 1, w € L'([0,1]), f : [0,1] x [0,00) x (—00,0] — [0, 00) is
continuous, hi, ha, k1, ko € L'([0,1]) are nonnegative with 1 > 0, v1 > 0, g > 0, vy > 0.

If (A1) holds and N fo > 1, N foo > 1, and there exists b > 0 such that max flt,x,y) < %, where
t€[0,1],0<|z|+]|y|<b
o f(t,z,y)
fg = liminf n — (=0, f=o0,
7 altivl—s e 2]+ [y
and
1
mnz | N2
L = <7 2
16 + 1 ) /0 w(s)ds,
p1p2 P2 1-9
N = (ﬁ + Z) 52/6 e(s)w(s)ds,
 omy+ng+pr(l - ) ~ ma +ng + pa(l — )
m = o T2 =
mivy + nypi mal + Nafig
1 1 1
= — ky(T)dr + / hi(T)dr |,
o= e (i [ e+ [ ermier)
1 1 1
- - ko (T)dT + / ho(7)dr )
p= o (i [ enha(ar o [ eomatrir)

et) = t(1—t), telo,1],

in [13], it is proved that the BVP (L.1)) has at least two positive solutions.
Moreover, if (A1) holds and Lf° < 1, Lf*® < 1, and there exist § € (0, %) and B > 0 such that f(¢t,z,y) >

OB for all t € Js, x € [0°B, B, y € [-B, —62B], where Js = [5,1 — 4],

t
8 = limsup max 1 05Y)
| +|y|—ate0.1] |z + |y

BZO, ﬁ:OO,

in [I5], it is proved that the BVP (|1.1)) has at least two positive solutions.
When p1 < 0or vy <0, or pg <0, or 9 < 0, then we can not apply the results in [15] and we can apply
our main result. Thus, our main result and the results in [I5] are complementary.

5. Example
Let

rn = 1, L;=10, R} =20,

pr = 2, pp=4, m=1000, A=—

Let also,

s €10,1].
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Then
1

4
my = m2:4/ S2d827,

0 3

4 1

= :1——:——

ni n2 3 37

1
n1 = M2:V1:V2:1—4/ sds=—-1<0,
0

1
Kl = K2:H1:H2:4/ SdSZQ,
0

4 1 25
A = Ay =1 —+11)-2 Z41).2==2
N GO RGO

1
As = 144:145:1 ﬁ:2
3Jo Vs 3
Then
A A1As (R A P2AL+ A - 625 2 2 4
(Ri+ A1ds (R" A3 + RPAu+ 45)) = 575 (20+ =5 - 5+ (200 +207 + 1)
_ L
- 10
Ly
2=—.
< 5
Ry 2 2
2 UL
Ly ” 5000 + 5m *
Let g(s) = 145, s € [0,1]. Then
1 , 1, 1
/O((l—s) +2(1—s)+2)g(s)ds = 0 J, (s —43+5)d8=m<A.
Consequently the BVP
1 —5t t 2 " 4
o L e cost(x(t)) L @) -

Vi \ 60 (14 (2(t))2 + 2(x(t)* + 3(x(t))5 (2" (t))®) 30(1—1—(m”(t))8> ’

1
z(0) = =z(1)= 4/0 sz(s)ds, 2"(0)=2"(1) =42'(1),

has at least two nonnegative solutions.
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