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Abstract

In this paper, we propose extensions of Leray-Schauder boundary condition for a sum of two operators
T + S in the case when T is an expansive operator and I − S is a completely continuous operator. As their
applications, we investigate a class of fourth-order nonlinear boundary value problems with integral boundary
conditions. We give conditions for the parameters of the considered boundary value problem that ensure
existence of at least two non trivial bounded nonnegative classical solutions of the considered boundary value
problem. The results in the paper are provided with a suitable example.
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1. Introduction

Since 1970, the interest for fourth order boundary value problems (BVPs for short) has risen due to their
important applications in practical problems. For instance, the deformation of an elastic beam under an
external force h supported at both ends is described by the linear boundary value problem

x(4)(t) = h(t), t ∈ (0, 1),
x(0) = x(1) = x′′(0) = x′′(1) = 0,
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where vanishing moments at the ends of the attached beam motivate the boundary conditions (see [9] for more
details). The existence of solutions for nonlinear fourth-order BVPs has gained much interest in the last years
(see, e.g., [2, 3, 4, 6, 10, 11, 12, 13, 15, 17]). Boundary value problems with integral boundary conditions
constitute a very interesting and important class of problems. They include two, three, multi-point, and
nonlocal boundary conditions as special cases.

In this paper, we investigate the existence of at least two nonnegative solutions to the fourth-order
nonlinear boundary value problem with integral boundary conditions:

x(4)(t) = w(t)f(t, x(t), x′′(t)), t ∈ (0, 1),

x(0) =
∫ 1
0 h1(s)x(s)ds, x(1) =

∫ 1
0 k1(s)x(s)ds,

x′′(0) =
∫ 1
0 h2(s)x

′′(s)ds, x′′(1) =
∫ 1
0 k2(s)x

′′(s)ds,

(1.1)

where

(H1) w ∈ L1([0, 1]) is nonnegative and may be singular at t = 0 and (or) t = 1, f ∈ C([0, 1]× R× R),

|f(t, u, v)| ≤ a1(t)|u|p1 + a2(t)|v|p2 + a3(t), t ∈ [0, 1], u, v ∈ R,

a1, a2, a3 ∈ C([0, 1]) are given nonnegative functions, p1, p2 are given nonnegative constants.

(H2) h1, h2, k1, k2 ∈ L1([0, 1]) with m1ν1 + n1µ1 ̸= 0, m2ν2 + n2µ2 ̸= 0,

for

m1 =

∫ 1

0
sh1(s)ds, m2 =

∫ 1

0
sh2(s)ds,

n1 = 1−
∫ 1

0
sk1(s)ds, n2 = 1−

∫ 1

0
sk2(s)ds,

µ1 = 1−
∫ 1

0
h1(s)ds, µ2 = 1−

∫ 1

0
h2(s)ds,

ν1 = 1−
∫ 1

0
k1(s)ds, ν2 = 1−

∫ 1

0
k2(s)ds.

In 2003 and 2004, the authors of [11, 18] studied the existence of solutions of Problem (1.1) for h1 = h2 =
k1 = k2 = 0, by using the Krasnosel'skii's �xed point theorem and �xed point index theory on cones of
Banach spaces, respectively.

By using the Krasnosel'skii �xed point theorem of cone expansion and compression, in [15] is proved the
existence of at least two positive solutions of BVP (1.1) when w may be singular at t = 0 and (or) t = 1,
w ∈ L1([0, 1]), f : [0, 1]× [0,∞)× (−∞, 0] → [0,∞) is continuous, h1, h2, k1, k2 ∈ L1([0, 1]) are nonnegative
with µ1 > 0, ν1 > 0, µ2 > 0, ν2 > 0.

The paper is organized as follows. Some background material and auxiliary results are provided in the
next section, extensions of Leray-Schauder boundary condition are given in the case of completely continuous
mappings as well as in the case of the sum T +S, where T is an expansive mapping and (I-S) is a completely
continuous one. The main existence result of this paper is presented and proved in Section 3. It complements
and improves similar results obtained in [15]. In Section 4, we discuss and compare our result with those
obtained in [15]. We end the paper by giving in Section 5 an example of application with some numerical
computations.
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2. Auxiliary Results

Let E be a real Banach space.

De�nition 2.1. A closed, convex set P in E is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

Every cone P de�nes a partial ordering ≤ in E de�ned by :

x ≤ y if and only if y − x ∈ P.

De�nition 2.2. A mapping K : E → E is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

In the sequel, we give an extension of the Leray-Schauder boundary condition, which allows to increase
the �eld of applications of this condition. First, we present our result for the completely continuous mappings.
Next, we extend it to the case of the sum T +S, where T is an expansive mapping and (I−S) is a completely
continuous one.

Lemma 2.3. Let X be a closed convex subset of a Banach space E and U ⊂ X a bounded open subset with
0 ∈ U. Assume K : U → X is a completely continuous mapping without �xed point on the boundary ∂U with
γ = dist(0, (I −K)(∂U)) and there exists ε > 0 small enough such that

Kx ̸= λx for all x ∈ ∂U and λ ≥ 1 + ε. (2.1)

Then the �xed point index i (K,U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1]× U → X de�ned by

H(t, x) =
1

ε+ 1
tKx.

The operator H is completely continuous and has no �xed point on ∂U, ∀t ∈ [0, 1] ; otherwise, we may
distinguish between two cases:
• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting 0 ∈ U.
• If t ∈ (0, 1], there exists some x0 ∈ ∂U such that 1

ε+1 tKx0 = x0; then

Kx0 =
1 + ε

t
x0 with

1 + ε

t
≥ 1 + ε,

leading to a contradiction with the hypothesis (2.1).
From the invariance under homotopy and the normalization properties of the index (see [8, Theorem 2.3.1]),
we deduce

i (
1

ε+ 1
K,U,X) = i (0, U,X) = 1.

Now, we show that

i (K,U,X) = i (
1

ε+ 1
K,U,X).

SinceK has no �xed point in ∂U and (I−K)(∂U) is a closed set (see [14, Lemma 1]), we get 0 ̸∈ (I −K)(∂U).
Hence,

inf
x∈∂U

∥x−Kx∥ = γ > 0.
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Let ε be su�ciently small so that ∥ ε
ε+1 Kx∥ < γ

2 . Hence

∥Kx− 1

ε+ 1
Kx∥ = ∥Kx−Kx+

ε

ε+ 1
Kx∥ = ∥ ε

ε+ 1
Kx∥ <

γ

2
, ∀x ∈ ∂U.

De�ne the convex deformation G : [0, 1]× U → X by

G(t, x) = tKx+ (1− t)
1

ε+ 1
Kx.

The operator G is completely continuous and has no �xed point on ∂U, ∀t ∈ [0, 1]. In fact, for all x ∈ ∂U
and t ∈ [0, 1], we have

∥x−G(t, x)∥ = ∥x− tKx− (1− t) 1
ε+1Kx∥

≥ ∥x− 1
ε+1Kx∥ − t∥Kx− 1

ε+1Kx∥
≥ ∥x−Kx∥ − ∥ ε

ε+1Kx∥ − t∥Kx− 1
ε+1Kx∥

> γ − γ
2 − γ

2 = 0.

Then our claim follows from the homotopy invariance property of the index.

Now, we recall the de�nition of an expansive mapping.

De�nition 2.4. Let X and Y be real Banach spaces. A mapping T : X → Y is said to be expansive if there
exists a constant h > 1 such that

∥Tx− Ty∥Y ≥ h∥x− y∥X , for any x, y ∈ X.

The extension of the �xed point index for T + S, where T is an expansive mapping and I − S is a
completely continuous one, is based on the following result.

Lemma 2.5. [16] Let (X, ∥.∥) be a linear normed space and D ⊂ X. Assume that the mapping T : D → X
is expansive with constant h > 1. Then the inverse of T : D → T (D) exists and

∥T−1x− T−1y∥ ≤ 1

h
∥x− y∥, ∀x, y ∈ T (D).

In the sequel, P will refer to a cone in a Banach space (E, ∥.∥), Ω is a subset of P, and U is a bounded
open subset of P, and P∗ = P\{0}.

Assume that I − S : U → E is a completely continuous mapping and T : Ω → E is an expansive one
with constant h > 1. By Lemma 2.5, the operator T−1 is h−1-Lipschitzian on T (Ω). Suppose that

(I − S)(U) ⊂ T (Ω), (2.2)

and
x ̸= Tx+ Sx, for all x ∈ ∂U ∩ Ω. (2.3)

Then x ̸= T−1(I−S)x, for all x ∈ ∂U and the mapping T−1(I−S) : U → P is completely continuous. From
[8, Theorem 2.3.1], the �xed point index i (T−1(I − S), U,P) is well de�ned. Thus we put

i∗ (T + S,U ∩ Ω,P) =

{
i (T−1(I − S), U,P), if U ∩ Ω ̸= ∅
0, if U ∩ Ω = ∅. (2.4)

Using the main properties of the �xed point index for strict set contractions (in particular completely
continuous mapping), Djebali, Benslimane and Mebarki in [5], have discussed the properties of the generalized
�xed point index i∗. The following lemma gives the computation of this index.
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Lemma 2.6. Assume that T : Ω → E is an expansive mapping, I − S : U → E is a completely continuous
mapping, and (I − S)(U) ⊂ T (Ω). Suppose that T + S has no �xed point on ∂U ∩ Ω.
Then we have the following results:

(1) If 0 ∈ U and there exists ε > 0 small enough such that

(I − S)x ̸= T (λx) for all λ ≥ 1 + ε, x ∈ ∂U and λx ∈ Ω,

then the �xed point index i∗ (T + S,U ∩ Ω,P) = 1.

(2) If there exists u0 ∈ P∗ such that

(I − S)x ̸= T (x− λu0), for all λ > 0 and x ∈ ∂U ∩ (Ω + λu0),

then the �xed point index i∗ (T + S,U ∩ Ω,P) = 0.

Proof. (1) The mapping T−1(I − S) : U → P is completely continuous without �xed point on ∂U , and our
hypothesis implies

T−1(I − S)x ̸= λx for all x ∈ ∂U and λ ≥ 1 + ε.

Then, our claim follows from (2.4) and Lemma 2.3.

(2) See the proof of [5, Proposition 3.13].

Remark 2.7. The result (1) in Lemma 2.6 is an extension of [5, Corollary 3.7] in the case where I − S is a
0-set contraction.

Now, we combine the results (1) and (2) of Lemma 2.6 to establish the following multiplicity result. This
result will be used to prove our main result.

Theorem 2.8. Let U1, U2 and U3 three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1.
Assume that T : Ω ⊂ P → E is an expansive mapping, I − S : U3 → E is a completely continuous one and
(I − S)(U3) ⊂ T (Ω). Suppose that (U2 \ U1) ∩ Ω ̸= ∅, (U3 \ U2) ∩ Ω ̸= ∅, and there exists u0 ∈ P∗ such that
the following conditions hold:

(i) (I − S)x ̸= T (x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ε > 0 small enough such that (I − S)x ̸= T (λx), for all λ ≥ 1 + ε, x ∈ ∂U2, and λx ∈ Ω,

(iii) (I − S)x ̸= T (x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).
Then T + S has at least two non-zero �xed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or
x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

Proof. If (I − S)x = Tx for x ∈ ∂U2 ∩ Ω, then we get a �xed point x1 ∈ ∂U2 ∩ Ω of the operator T + S.
Suppose that (I − S)x ̸= Tx for any x ∈ ∂U2 ∩ Ω. Without loss of generality, assume that Tx + Sx ̸=
x on ∂U1 ∩ Ω and Tx+ Sx ̸= x on ∂U3 ∩ Ω, otherwise the result is obvious. By Lemma 2.6, we have

i∗ (T + S,U1 ∩ Ω,P) = i∗ (T + S,U3 ∩ Ω,P) = 0 and i∗ (T + S,U2 ∩ Ω,P) = 1.

The additivity property of the index i∗ yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1.

Consequently, by the existence property of the index i∗, T +S has at least two �xed points x1 ∈ (U2 \U1)∩
Ω and x2 ∈ (U3 \ U2) ∩ Ω.
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Let

G(t, s) =


s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

H1(t, s) = G(t, s) +
m1 + µ1t

m1ν1 + n1µ1

∫ 1

0
k1(ν)G(t, ν)dν

+
n1 − ν1t

m1ν1 + n1µ1

∫ 1

0
h1(ν)G(t, ν)dν,

H2(t, s) = G(t, s) +
m2 + µ2t

m2ν2 + n2µ2

∫ 1

0
k2(ν)G(t, ν)dν

+
n2 − ν2t

m2ν2 + n2µ2

∫ 1

0
h2(ν)G(t, ν)dν,

H(t, s) =

∫ 1

0
H1(t, ν)H2(ν, s)dν, t, s ∈ [0, 1],

K1 =

∫ 1

0
|k1(ν)|dν, K2 =

∫ 1

0
|k2(ν)|dν,

H1 =

∫ 1

0
|h1(ν)|dν, H2 =

∫ 1

0
|h2(ν)|dν,

A1 = 1 +
|m1|+ |µ1|

|m1ν1 + n1µ1|
K1 +

|n1|+ |ν1|
|m1ν1 + n1µ1|

H1,

A2 = 1 +
|m2|+ |µ2|

|m2ν2 + n2µ2|
K2 +

|n2|+ |ν2|
|m2ν2 + n2µ2|

H2,

A3 =

∫ 1

0
w(s)a1(s)ds,

A4 =

∫ 1

0
w(s)a2(s)ds,

A5 =

∫ 1

0
w(s)a3(s)ds.

Then
0 ≤ G(t, s) ≤ 1, t, s ∈ [0, 1],

and

|H1(t, s)| ≤ G(t, s) +
|m1|+ |µ1|

|m1ν1 + n1µ1|

∫ 1

0
|k1(ν)|G(t, ν)dν

+
|n1|+ |ν1|

|m1ν1 + n1µ1|

∫ 1

0
|h1(ν)|G(t, ν)dν

≤ 1 +
|m1|+ |µ1|

|m1ν1 + n1µ1|
K1 +

|n1|+ |ν1|
|m1ν1 + n1µ1|

H1 = A1,
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|H2(t, s)| ≤ G(t, s) +
|m2|+ |µ2|

|m2ν2 + n2µ2|

∫ 1

0
|k2(ν)|G(t, ν)dν

+
|n2|+ |ν2|

|m2ν2 + n2µ2|

∫ 1

0
|h2(ν)|G(t, ν)dν

≤ 1 +
|m2|+ |µ2|

|m2ν2 + n2µ2|
K2 +

|n2|+ |ν2|
|m2ν2 + n2µ2|

H2 = A2,

|H(t, s)| =

∣∣∣∣∫ 1

0
H1(t, ν)H2(ν, s)dν

∣∣∣∣
≤

∫ 1

0
|H1(t, ν)||H2(t, ν)|dν

≤ A1A2, t, s ∈ [0, 1].

In [15, Lemma 5], it is proved that if x ∈ C2([0, 1]) is a solution to the integral equation

x(t) =

∫ 1

0
H(t, s)w(s)f(s, x(s), x′′(s))ds,

then x ∈ C2([0, 1]) ∩ C4((0, 1)) and it satis�es the BVP (1.1).
Let g ∈ C([0, 1]) be a positive function such that∫ 1

0

(
(1− s)2 + 2(1− s) + 2

)
g(s)ds ≤ A (2.5)

for some positive constant A. For x ∈ C2([0, 1]), de�ne the operator

Fx(t) =

∫ t

0
(t− s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f

(
s1, x(s1), x

′′(s1)
)
ds1

)
ds, t ∈ [0, 1], (2.6)

and the norm
∥x∥ = max{max

t∈[0,1]
|x(t)|, max

t∈[0,1]
|x′(t)|, max

t∈[0,1]
|x′′(t)|}.

Lemma 2.9. Suppose (H1) and (H2). If x ∈ C2([0, 1]) is a solution to the equation

0 =
L1

5
+ Fx(t), t ∈ [0, 1], (2.7)

where L1 is an arbitrary constant, then x ∈ C2([0, 1]) ∩ C4((0, 1)) is a solution to the BVP (1.1).

Proof. Let x ∈ C2([0, 1]) is a solution to the integral equation (2.7). We di�erentiate three times with respect
to t the integral equation (2.7) and we get

0 = g(t)

(
−x(t) +

∫ 1

0
H(t, s1)w(s1)f

(
s1, x(s1), x

′′(s1)
)
ds1

)
, t ∈ [0, 1],

whereupon

x(t) =

∫ 1

0
H(t, s1)w(s1)f

(
s1, x(s1), x

′′(s1)
)
ds1, t ∈ [0, 1].

Then x ∈ C2([0, 1]) ∩ C4((0, 1)) is a solution to the BVP (1.1). This completes the proof.
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Lemma 2.10. Assume (H1) and (H2). Let x ∈ C2([0, 1]) and ∥x∥ ≤ c for some positive constant c. Then
we have

∥Fx∥ ≤ A (c+A1A2 (A3c
p1 +A4c

p2 +A5)) .

Proof. Let x ∈ C2([0, 1]) and ∥x∥ ≤ c. Then

|Fx(t)| =

∣∣∣∣ ∫ t

0
(t− s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x

′′(s1))ds1

)
ds

∣∣∣∣
≤

∫ t

0
(t− s)2g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤
∫ 1

0
(1− s)2g(s)

(
c+A1A2

∫ 1

0
w(s1)

(
a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)

)
ds1

)
ds

≤
∫ 1

0
(1− s)2g(s)

(
c+A1A2

(
cp1

∫ 1

0
w(s1)a1(s1)ds1 + cp2

∫ 1

0
w(s1)a2(s1)ds1

+

∫ 1

0
w(s1)a3(s1)ds1

))
ds

≤ (c+A1A2 (c
p1A3 + cp2A4 +A5))

∫ 1

0
(1− s)2g(s)ds

≤ A (c+A1A2 (c
p1A3 + cp2A4 +A5)) , t ∈ [0, 1],

and ∣∣(Fx)′(t)
∣∣ =

∣∣∣∣2 ∫ t

0
(t− s)g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x

′′(s1))ds1

)
ds

∣∣∣∣
≤ 2

∫ 1

0
(1− s)g(s)

(
c+A1A2

∫ 1

0
w(s1)

(
a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)

)
ds1

)
ds

≤ A (c+A1A2 (c
p1A3 + cp2A4 +A5)) , t ∈ [0, 1],

and ∣∣(Fx)′′(t)
∣∣ =

∣∣∣∣2∫ t

0
g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x

′′(s1))ds1

)
ds

∣∣∣∣
≤ 2

∫ 1

0
g(s)

(
c+A1A2

∫ 1

0
w(s1)

(
a1(s1)|x(s1)|p1 + a2(s1)|x′′(s1)|p2 + a3(s1)

)
ds1

)
ds

≤ A (c+A1A2 (c
p1A3 + cp2A4 +A5)) , t ∈ [0, 1].

Consequently
∥Fx∥ ≤ A (c+A1A2 (c

p1A3 + cp2A4 +A5)) .

3. Main Result

Theorem 3.1. Under the assumptions (H1) and (H2), the BVP (1.1) has at least two non trivial bounded
nonnegative classical solutions x1, x2 in C2([0, 1]) ∩ C4((0, 1)).
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Proof. Consider the Banach space E = C2([0, 1]) endowed with the norm

∥x∥ = max{max
t∈[0,1]

|x(t)|, max
t∈[0,1]

|x′(t)|, max
t∈[0,1]

|x′′(t)|},

and the positive cone
P = {x ∈ E : x ≥ 0 on [0, 1]}.

For x ∈ E, de�ne the operators

Tx(t) = (1 +mε)x(t)− ε
L1

10
,

Sx(t) = −εFx(t)−mεx(t)− ε
L1

10
, t ∈ [0, 1],

where ε, L1 are positive constants, m > 0 is large enough and the operator F is given by formula (2.6). Note
that any �xed point x ∈ E of the operator T + S is a solution to the BVP (1.1).
Let r1 and R1 be positive constants that satisfy the following conditions

r1 < L1 <
R1

2
5m + 1

,

A (R1 +A1A2 (R
p1
1 A3 +Rp2

1 A4 +A5)) ≤
L1

5
, (3.1)

where A is the constant which appears in (2.5). De�ne

Pr1 = {v ∈ P : ∥v∥ < r1},

PL1 = {v ∈ P : ∥v∥ < L1},

PR1 = {v ∈ P : ∥v∥ < R1},

R2 =
(1 +mε)R1 + εA (R1 +A1A2 (R

p1
1 A3 +Rp2

1 A4 +A5)) + εL1
5

1 +mε
,

Ω = PR2 = {v ∈ P : ∥v∥ ≤ R2}.

The proof of our result is based on Theorem 2.8 and it is divided into 5 steps.

Step 1. For x1, x2 ∈ Ω, we have

∥Tx1 − Tx2∥ = (1 +mε)∥x1 − x2∥,

whereupon T : Ω → E is an expansive operator with a constant 1 +mε > 1.

Step 2 We prove that I − S is completely continuous operator.

1. I − S is continuous. Indeed, let {xn} be a sequence such that xn → x as n → ∞ in E. We have

|(I − S)xn(t)− (I − S)x(t)| ≤ ε|Fxn(t)− Fx(t)|+ (1 +mε)|xn(t)− x(t)|, ∀t ∈ [0, 1]. (3.2)
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Note that f(·, ·, ·) is uniformly continuous on [0, 1]× [0,M ]× [0,M ] for any positive constant M .
Take ε > 0. Then there is an N ∈ N so that

|xn(s)− x(s)| < ε,

|f(s, xn(s), x′′n(s))− f(s, x(s), x′′(s)| < ε

for any s ∈ [0, 1] and for any n ≥ N , n ∈ N. Hence,

|Fxn(t)− Fx(t)|

≤
∫ t

0
(t− s)2g(s) (|xn(s)− x(s)|

+

∫ 1

0
|H(s, s1)|w(s1)|f

(
s1, xn(s1), x

′′
n(s1)

)
− f

(
s1, x(s1), x

′′(s1)
)
|ds1

)
ds

< ε

(∫ 1

0
g(s)

(
1 +A1A2

∫ 1

0
w(s1)ds1

)
ds

)
= ε

(
1 +A1A2

∫ 1

0
w(s1)ds1

)(∫ 1

0
g(s)ds

)
, t ∈ [0, 1], n ≥ N.

So, |Fxn(t)− Fx(t)| → 0, as n → ∞. Thus |(I − S)xn(t)− (I − S)x(t)| → 0, as n → ∞.
In the same way we prove that |((I −S)xn)

′(t)− ((I −S)x)′(t)| → 0 and |((I −S)xn)
′′(t)− ((I −

S)x)′′(t)| → 0, as n → ∞, and then conclude that Sxn → Sx, as n → ∞ in E, which ends the
proof.

2. (I − S)(PR1) is uniformly bounded. Indeed, For x ∈ PR1 , we get

∥(I − S)x∥ ≤ ε∥Fx∥+ (1 +mε)∥x∥+ ε
L1

10

≤ εA (R1 +A1A2 (R
p1
1 A3 +Rp2

1 A4 +A5)) + (1 +mε)R1 + ε
L1

10
.

3. (I − S)(PR1) is equicontinuous in E. Indeed, let t1, t2 ∈ [0, 1], t1 < t2 and x ∈ PR1 .
Then, we deduce

|Fx(t1)− Fx(t2)|

=

∣∣∣∣ ∫ t1

0
(t1 − s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x

′′(s1))ds1

)
ds

−
∫ t2

0
(t2 − s)2g(s)

(
−x(s) +

∫ 1

0
H(s, s1)w(s1)f(s1, x(s1), x

′′(s1))ds1

)
ds

∣∣∣∣
≤

∫ t1

0

(
(t1 − s)2 − (t2 − s)2

)
g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

+

∫ t2

t1

(t2 − s)2g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

≤
∫ 1

0

(
(t1 − s)2 − (t2 − s)2

)
g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

+

∫ t2

t1

(1− s)2g(s)

(
|x(s)|+

∫ 1

0
|H(s, s1)|w(s1)|f(s1, x(s1), x′′(s1))|ds1

)
ds

→ 0, as |t1 − t2| → 0.
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Similarly,
|(Fx)′(t2)− (Fx)′(t1)| → 0, as |t1 − t2| → 0,

and
|(Fx)′′(t2)− (Fx)′′(t1)| → 0, as |t1 − t2| → 0.

Consequently,

|(I − S)x(t2)− (I − S)x(t1)|
≤ ε|Fx(t2)− Fx(t1)|+ (1 + εm)|x(t2)− x(t1)| → 0, as |t1 − t2| → 0,

|((I − S)x)′(t2)− ((I − S)x)′(t1)|
≤ ε|(Fx)′(t2)− (Fx)′(t1)|+ (1 + εm)|x′(t2)− x′(t1)| → 0, as |t1 − t2| → 0,

|((I − S)x)′′(t2)− ((I − S)x)′′(t1)|
≤ ε|(Fx)′′(t2)− (Fx)′′(t1)|+ (1 + εm)|x′′(t2)− x′′(t1)| → 0, as |t1 − t2| → 0.

Therefore, (I − S)(PR1) is equicontinuous.

According to the Arzelà-Ascoli compactness criterion, we conclude that the operator (I−S) : PR1 → E
is completely continuous.

Step 3. Let u ∈ PR1 be arbitrarily chosen. Then

(I − S)u = u− Su

= u+ εFu+mεu+ ε
L1

10

= (1 +mε)u+ εFu+ ε
L1

10
.

Set

v =
(1 +mε)u+ εFu+ εL1

5

1 +mε
.

By Lemma 2.10 and the condition (3.1), it follows

−L1

5
≤ −A (R1 +A1A2 (R

p1
1 A3 +Rp2

1 A4 +A5))

≤ Fu

≤ A (R1 +A1A2 (R
p1
1 A3 +Rp2

1 A4 +A5))

≤ L1

5
.

Therefore Fu+ L1
5 ≥ 0 and v ≥ 0. Moreover,

∥v∥ ≤
(1 +mε)R1 + εA (R1 +A1A2 (R

p1
1 A3 +Rp2

1 A4 +A5)) + εL1
5

1 +mε

= R2.
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Therefore v ∈ Ω and

Tv = (1 +mε)v − ε
L1

10

= (1 +mε)u+ εFu+ ε
L1

10

= (I − S)u.

Thus, (I − S)(PR1) ⊂ T (Ω).

Step 4. Assume that for any u0 ∈ P∗ there exist λ0 > 0 and x0 ∈ ∂Pr1∩(Ω+λ0u0) or x0 ∈ ∂PR1∩(Ω+λ0u0)
such that

(I − S)x0 = T (x0 − λ0u0).

Then

εFx0(t) + (1 + εm)x0(t) + ε
L1

10
= (1 + εm)(x0(t)− λ0u0(t))− ε

L1

10
, t ∈ [0, 1].

Whereupon,

Fx0(t) = −λ0
1 + εm

ε
u0(t)−

L1

5
, t ∈ [0, 1].

So,

∥Fx0∥ = ∥λ0
1 + εm

ε
u0 +

L1

5
∥ >

L1

5
,

which contradicts Lemma 2.10 and the inequality (3.1).

Step 5. Let ε1 =
2
5m . Assume that there exist λ1 ≥ ε1 + 1 and x1 ∈ ∂PL1 , λ1x1 ∈ PR2 such that

(I − S)x1 = T (λ1x1). (3.3)

Note that x1 ∈ ∂PL1 and λ1x1 ∈ PR2 imply(
2

5m
+ 1

)
L1 ≤ λ1L1 = λ1∥x1∥ ≤ R2.

Then, using the equation (3.3) and the de�nitions for the operators T and S, we get

εFx1 + (1 +mε)x1 + ε
L1

10
= λ1(1 +mε)x1 − ε

L1

10
,

or

ε(Fx1 +
L1

5
) = (λ1 − 1)(1 +mε)x1.

Hence,

2
L1

5
ε ≥ ε∥Fx1 +

L1

5
∥ = (λ1 − 1)(1 +mε)∥x1∥ = (λ1 − 1)(1 +mε)L1,

or

λ1 ≤
2
5ε

1 +mε
+ 1 <

2
5ε

mε
+ 1 =

2

5m
+ 1,

which is a contradiction.

Therefore all conditions of Theorem 2.8 hold for U1 = Pr1 , U2 = PL1 and U3 = PR1 . Hence, the BVP (1.1)
has at least two solutions x1 and x2 such that x1 ∈ (PL1\Pr1) ∩ Ω, x2 ∈

(
PR1\PL1

)
∩ Ω and

r1 ≤ ∥x1∥ < L1 < ∥x2∥ ≤ R1.
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4. Concluding remarks

In [15], the BVP (1.1) is investigated in the case when

(A1) w may be singular at t = 0 and (or) t = 1, w ∈ L1([0, 1]), f : [0, 1] × [0,∞) × (−∞, 0] → [0,∞) is
continuous, h1, h2, k1, k2 ∈ L1([0, 1]) are nonnegative with µ1 > 0, ν1 > 0, µ2 > 0, ν2 > 0.

If (A1) holds and Nf0 > 1, Nf∞ > 1, and there exists b > 0 such that max
t∈[0,1],0<|x|+|y|≤b

f(t, x, y) < b
L , where

fβ = lim inf
|x|+|y|→β

min
t∈[0,1]

f(t, x, y)

|x|+ |y|
, β = 0, β = ∞,

and

L =
(η1η2

16
+

η2
4

)∫ 1

0
w(s)ds,

N =
(ρ1ρ2
120

+
ρ2
4

)
δ2

∫ 1−δ

δ
e(s)w(s)ds,

η1 =
m1 + n1 + µ1(1− ν1)

m1ν1 + n1µ1
, η2 =

m2 + n2 + µ2(1− ν2)

m2ν2 + n2µ2
,

ρ1 =
1

m1ν1 + n1µ1

(
µ1

∫ 1

0
e(τ)k1(τ)dτ + ν1

∫ 1

0
e(τ)h1(τ)dτ

)
,

ρ2 =
1

m2ν2 + ν2µ2

(
µ2

∫ 1

0
e(τ)k2(τ)dτ + ν2

∫ 1

0
e(τ)h2(τ)dτ

)
,

e(t) = t(1− t), t ∈ [0, 1],

in [15], it is proved that the BVP (1.1) has at least two positive solutions.
Moreover, if (A1) holds and Lf0 < 1, Lf∞ < 1, and there exist δ ∈

(
0, 12

)
and B > 0 such that f(t, x, y) >

δ2B
N for all t ∈ Jδ, x ∈ [δ2B,B], y ∈ [−B,−δ2B], where Jδ = [δ, 1− δ],

fβ = lim sup
|x|+|y|→β

max
t∈[0,1]

f(t, x, y)

|x|+ |y|
, β = 0, β = ∞,

in [15], it is proved that the BVP (1.1) has at least two positive solutions.
When µ1 < 0 or ν1 < 0, or µ2 < 0, or ν2 < 0, then we can not apply the results in [15] and we can apply

our main result. Thus, our main result and the results in [15] are complementary.

5. Example

Let

r1 = 1, L1 = 10, R1 = 20,

p1 = 2, p2 = 4, m = 1000, A =
1

1010
.

Let also,

h1(s) = h2(s) = k1(s) = k2(s) = 4s, a1(s) = a2(s) = a3(s) =
1

3
, w(s) =

1√
s
, s ∈ [0, 1].
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Then

m1 = m2 = 4

∫ 1

0
s2ds =

4

3
,

n1 = n2 = 1− 4

3
= −1

3
,

µ1 = µ2 = ν1 = ν2 = 1− 4

∫ 1

0
s ds = −1 < 0,

K1 = K2 = H1 = H2 = 4

∫ 1

0
s ds = 2,

A1 = A2 = 1 +

(
4

3
+ 1

)
· 2 +

(
1

3
+ 1

)
· 2 =

25

3
,

A3 = A4 = A5 =
1

3

∫ 1

0

ds√
s
=

2

3
.

Then

A (R1 +A1A2 (R
p1
1 A3 +Rp2

1 A4 +A5)) =
1

1010

(
20 +

625

9
· 2
3
·
(
202 + 204 + 1

))
=

1

10

< 2 =
L1

5
.

R1

L1
= 2 >

2

5000
+ 1 =

2

5m
+ 1.

Let g(s) = 1
103

, s ∈ [0, 1]. Then∫ 1

0
((1− s)2 + 2(1− s) + 2)g(s)ds =

1

103

∫ 1

0
(s2 − 4s+ 5)ds =

1

3 · 102
< A.

Consequently the BVP

x(4)(t) =
1√
t

 e−5t cos t(x(t))2

60 (1 + (x′′(t))2 + 2(x(t))4 + 3(x(t))6(x′′(t))8)
+

(x′′(t))4

30
(
1 + (x′′(t))8

)
 , t ∈ (0, 1),

x(0) = x(1) = 4

∫ 1

0
sx(s)ds, x′′(0) = x′′(1) = 4x′(1),

has at least two nonnegative solutions.
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