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Abstract

In this work we focus on presenting a method for solving local fractional di�erential equations. This method
based on the combination of the Aboodh transform with the local fractional derivative (we can call it local
fractional Aboodh transform), where we have provided some important results and properties. We concluded
this work by providing illustrative examples, through which we focused on solving some linear local fractional
di�erential equations in order to obtain nondi�erential analytical solutions.
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1. Introduction

The search for analytical solutions to fractional di�erential equations is often di�cult, so in many cases
researchers focus on studying the existence, uniqueness and properties of solutions [5, 12, 18, 21, 27, 28],
while others tend to employ numerical methods to search for approximate solutions.
Transformations de�ned by integrals play an important role in the resolution of ordinary di�erential equa-
tions, partial di�erential equations and in the resolution of integral di�erential equations with integer order
or fractional order. It also intervenes in mathematical physics, probability calculus, automatics, engineering,
etc.
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Among the most famous transformations, we �nd the Laplace transform method [24], the Fourier trans-
form method [6], the Hankel transform method [19], the Mellin transform method [14], and there are other
transformations that have appeared in the recent period. We cite for example, the Sumudu transform method
[29], the Natural transform method [13], the Ezaki transform method [7], the Aboodh transform method [1],
the ZZ-transform method [35], the Shehu transform method [17] and others.

Our work in this paper is based on the Aboodh transform method, which was developed in 2013 by
K. S. Aboodh [1], and has been used by many researchers in solving di�erential equations of integer order
[2, 4, 15, 16, 20, 23, 36, 38], and di�erential equations of fractional order [8, 9, 22, 26] and we will extend it to
solve linear di�erential equations with local fractional derivative. We supported this work with illustrative
examples showing how to apply this transform with the use of local fractional derivative.

The present paper has been organized as follows. In Section 2, some basic de�nitions and properties of
the local fractional calculus and local fractional Laplace transform method. In Section 3, we present some
important results. In Section 4, we apply the local fractional Aboodh transform method (LFETM) to solve
the proposed example. Then we �nish with the conclusion.

2. Basic of local fractional calculus

In this section, we present the basic de�nitions and theorems of local fractional derivative, local frac-
tional integral, local fractional Taylor's series, local fractional Mc-Laurin's series and local fractional Laplace
transform method.

De�nition 2.1. ([25], [32], p. 14) If there exists the relation

|Φ(υ)− Φ(υ0)| < γη, (1)

with |υ − υ0| < δ, for γ, δ > 0, and γ, δ ∈ R. Now Φ(υ) is called local fractional continuous at υ = υ0, denote

by limυ−→υ0 Φ(υ) = Φ(υ0). Then Φ(υ) is called local fractional continuous on the interval (a, b), denoted
by Φ(υ) ∈ Cη(a, b).

De�nition 2.2. ([25], [32], p.18, p.34) Setting Φ(υ) ∈ Cη(a, b), the local fractional derivative of Φ(υ) of

order η at υ = υ0 is de�ned as

Φ(η)(υ) =
dηΦ

dυη

∣∣∣∣
υ=υ0

=
∆η(Φ(υ)− Φ(υ0))

(υ − υ0)η
, (2)

where

∆η(Φ(υ)− Φ(υ0)) ∼= Γ(1 + η) [(Φ(υ)− Φ(υη0)] . (3)

The local fractional partial di�erential operator of order η (0 < η 6 1) was given by

∂ηω(υ0, ν)

∂νη
=

∆η(ω(υ0, ν)− ω(υ0, ν0))

(ν − ν0)η
, (4)

where

∆η(ω(υ0, ν)− ω(υ0, ν0)) ∼= Γ(1 + η) [ω(υ0, ν)− ω(υ0, ν0)] . (5)

De�nition 2.3. ([25], [32], p. 25) The local fractional integral of Φ(υ) of order η in the interval [a, b] is
de�ned as

aI
(η)
b Φ(υ) =

1

Γ(1 + η)

b∫
a

Φ(τ)(dτ)η

=
1

Γ(1 + η)
lim

∆τ−→0

N−1∑
i=0

f(τi)(∆τi)
η, (6)

where ∆τi = τi+1− τi, ∆τ = max {∆τ0,∆τ1,∆τ2, · · · } and [τi, τi+1] , τ0 = a, τN = b, is a partition of the

interval [a, b].
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De�nition 2.4. ([10], p.113, [25], [37])The local fractional Laplace transform of Φ(υ) of order η is de�ned

as

Lη {Φ(υ)} = zη(s) =
1

Γ(1 + η)

∞∫
0

Eη(−sηυη)Φ(υ)(dυ)η. (7)

If Lη {Φ(υ)} = zη(s), the inverse formula of (7) is de�ned as

Φ(υ) = L−1
η {zη(s)} =

1

(2π)η

β+i∞∫
β−i∞

Eη(s
ηυη)zη(s)(ds)

η, (8)

where Φ(υ) is local fractional continuous, sη = βη+iη∞η, and Re(s) = β > 0.

Theorem 2.5. ([32], p.152) If Lη {Φ(υ)} = zη(s) and limυ→∞Φ (υ) = 0, then one has

Lη

{
Φ(η)(υ)

}
= sηLη {Φ(υ)} − Φ(0). (9)

Proof. (see[32], p.153)

Theorem 2.6. ([32], p.153) If Lη {Φ(υ)} = Fη(s) and limυ→∞ 0I
η
υΦ (υ) = 0,

then one has

Lη {0IηυΦ(υ)} =
1

sη
Lη {Φ(υ)} . (10)

Proof. (see[32], p.153)

Theorem 2.7. ([32], p.155) If Lη {Φ(υ)} = zη(s) and Lη {Ψ (υ)} = Ωη(s), then one has

Lη

{
(Φ(υ) ∗Ψ (υ))η

}
= zη(s)Ωη(s), (11)

where

(Φ(υ) ∗Ψ (υ))η =
1

Γ(1 + η)

∞∫
0

Φ(κ)Ψ(υ − κ)(dκ)η. (12)

Proof. (see[32], p.155)

Theorem 2.8. ([33]) Suppose that Φ(υ) ∈ Cη[a, b], then there is a function

Π(υ) = aI
(η)
υ Φ(υ),

the function has its derivative with respect to (dυ)η,

dηΠ(υ)

(dυ)η
= Φ(υ), a 6 υ 6 b.

Proof. (see[33])
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3. Main Result

In this section, we derive the local fractional Aboodh transform method (LFAT ) and some properties
are discussed.

If there is a new transform operator LFAη : Φ(υ) −→ zη(ν), namely,

LFAη {Φ(υ)} = LFAη

{ ∞∑
k=0

akυ
kη

}
=

∞∑
k=0

ak
Γ (1 + kη)

νkη+2
. (13)

For example if Φ(υ) = Eη(i
ηυη), we obtain

LFAη {Eη(iηυη)} = LFAη

{ ∞∑
k=0

ikηυkη

Γ(1 + kη)

}

=

∞∑
k=0

ikη

νkη+2
, (14)

and if Φ(υ) = υη

Γ(1+η) , we get

LFAη

{
υη

Γ (1 + η)

}
=

1

νη+2
. (15)

These results can be generalized by providing the following de�nition.

De�nition 3.1. The local fractional Elzaki transform of Φ(υ) of order η is de�ned as

LFAη {Φ(υ)} = zη(ν) =
1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Φ(υ)(dυ)η, 0 < η 6 1. (16)

The inverse transformation can be obtained as follows

LFA−1
η { zη(ν)} = Φ(υ). (17)

Theorem 3.2. (linearity). If LFAη {Φ(υ)} = zη(ν) and LFAη {Ψ (υ)} = Ωη(ν), then one has

LFAη {λΦ(υ) + µΨ (υ)} = λzη(ν) + µΩη(ν), (18)

where λ and µ are constant.

Proof. Using formula (16), we obtain

LFAη {λΦ(υ) + µΨ (υ)} =
1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη) {λΦ(υ) + µΨ (υ)} (dυ)η

=
1

Γ(1 + η)

1

νη

∞∫
0

[Eη(−νηυη) (λΦ(υ)) + Eη(−νηυη) (µΨ (υ))] (dυ)η

= λ
1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Φ(υ)(dυ)η +

µ
1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Ψ (υ) (dυ)η

= λLFAη {Φ(υ)}+ µLFAη {Ψ (υ)} .

This ends the proof.
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Theorem 3.3. (local fractional Aboodh-Laplace and Laplace-Aboodh duality). If Lη {Φ(υ)} = zη(s) and

LFAη {Φ (υ)} = Ωη(ν), then one has

Lη {Φ(υ)} = sηΩη(s). (19)

LFAη {Φ(υ)} =
1

νη
zη(ν). (20)

Proof. We show formula (19). Using the formula (7) gives

Lη {Φ(υ)} =
1

Γ(1 + η)

∞∫
0

Eη(−sηυη)Φ(υ)(dυ)η

= sη

 1

Γ(1 + η)

1

sη

∞∫
0

Eη(−sηυη)Φ(υ)(dυ)η


= sηΩη(s).

Proof of the formula (20). We have

LFAη {Φ(υ)} =
1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Φ(υ)(dυ)η.

then

LFAη {Φ(υ)} =
1

νη

 1

Γ(1 + η)

∞∫
0

Eη(−νηυη)Φ(υ)(dυ)η

 ,

therefore, we get

LFAη {Φ(υ)} =
1

νη
zη(ν).

This and the proof.

Theorem 3.4. (local fractional Aboodh transform of local fractional derivative). If LFAη {Φ(υ)} = Ωη(ν),
then one has

LFAη
{
Dσ

0+Φ(υ)
}

= νηΩη(ν)− Φ(0)

νη
, 0 < η 6 1, (21)

and

LFAη
{
Dnσ

0+Φ(υ)
}

= νnηΩη(ν)−
n−1∑
k=0

Φ(kη)(0)

ν(2−n+k)η
, 0 < η 6 1. (22)

Proof. We proof the formula (21). Using the formula (16) and the integral by parts [11], we get the follow-
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ing

LFAη

{
Φ(η)(υ)

}
=

1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Φ(η)(υ)(dυ)η

=
1

Γ(1 + η)

1

νη

[−Γ(1 + σ)Φ(0)] + νη lim
t−→∞

t∫
0

Eη(−νηυη)Φ(υ)(dυ)η


= − 1

νη
Φ(0) + νη

 1

Γ(1 + η)

1

νη

∞∫
0

Eη(−νηυη)Φ(υ)(dυ)η


= νηΩη(ν)− Φ(0)

νη
.

To demonstrate the validity of the formula (22), we use mathematical induction.
If n = 1 and according to formula (22), we obtain

LFAη

{
Φ(η)(υ)

}
= νηΩη(ν)− Φ(0)

νη
,

so, according to the (21), we note that the formula holds when n = 1.
Assume inductively that the formula holds for n, so that

LFAη
{
Dnσ

0+Φ(υ)
}

= νnηΩη(ν)−
n−1∑
k=0

Φ(kη)(0)

ν(2−n+k)η
. (23)

It remains to show that (22) is true for n+ 1. Let Dnσ
0+Φ(υ) = φ(υ), (where LFAη{φ(υ)} = ψη(ν)) and

according to (21) and (23), we have

LFAη

[
D

(n+1)σ
0+ Φ(υ)

]
= LFAη

[
Dσ

0+φ(υ)
]

= νηψη(ν)− φ(0)

νη

= νη

[
νnηΩη(ν)−

n−1∑
k=0

Φ(kη)(0)

ν(2−n+k)η

]
− φ(0)

νη

= ν(n+1)ηΩη(ν)−
n−1∑
k=0

Φ(kη)(0)

ν(1−n+k)η
−
Dnσ

0+Φ(nη)(0)

νη

= ν(n+1)ηΩη(ν)−
n∑
k=0

Φ(kη)(0)

ν(1−n+k)η
.

Therefore the formula (22) is true for n+ 1.
Thus by the principle of mathematical induction, for all n > 1 the formula (22) holds.

Theorem 3.5. (Local fractional Aboodh transform of local fractional integral ). If LFAη {Φ(υ)} = Ωη(ν),
then one has

LFAη

{
0I

(η)
υ Φ(υ)

}
=

1

νη
Ωη(ν). (24)

Proof. Let P (υ) = 0I
(η)
υ Φ(υ).According to the (theorem 3.2.9, [33]), we get

Dη
0+P (υ) = Φ(υ), (25)

and P (0) = 0.
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Taking the local fractional Aboodh transform on both sides of Equ.(25), we have

LFAη
{
Dη

0+P (υ)
}

= LFAη {Φ(υ)} .

Which give
νηLFAη {P (υ)} = Ωη(ν),

because P (0) = 0, and LFAη {Φ(υ)} = Ωη(ν).
Thus we get

LFAη

{
0I

(η)
υ Φ(υ)

}
=

1

νη
Ωη(ν).

Theorem 3.6. (local fractional convolution). If LFAη {Φ(υ)} = zη(ν) and LFAη {Ψ (υ)} = Ωη(ν), then
one has

LFAη

{
(Φ(υ) ∗Ψ (υ))η

}
= νηzη(ν)Ωη(ν),

where

(Φ(υ) ∗Ψ (υ))η =
1

Γ(1 + η)

∞∫
0

Φ(κ)Ψ(υ − κ)(dκ)η.

Proof. The Laplace transform of fractional order of the function (Φ(υ) ∗Ψ (υ))η , is given by

Lη

{
(Φ(υ) ∗Ψ (υ))η

}
= Lη {Φ(υ)}Lη{Ψ (υ)} .

Using the formula (19), gives

LFAη

{
(Φ(υ) ∗Ψ (υ))η

}
=

1

νη
Lη{Φ(υ) ∗Ψ (υ)}

= νη
(

1

νη
Lη{Φ(υ)} 1

νη
Lη{Ψ (υ)}

)
= νηzη(ν)Ωη(ν).

This completes the proof.

Aboodh transform of somes special functions

In all of the following results, we relied on the formula (16), and some of the results found in references
[3], [34]

1) If Φ(υ) = 1, we get

LFAη {1} =
1

νη
1

Γ(1 + η)

∞∫
0

Eη(−νηυη)(dυ)η

=
1

νη
lim

κ−→∞

[
−1

νη
Eη(−νηυη)

]κ
0

=
1

ν2η
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2) If Φ(υ) = υη

Γ(1+η) (0 < η 6 1), using the integral by parts [11], we get the following

LFAη {υη} =
1

νη
1

Γ(1 + η)

∞∫
0

Eη(−νηυη)υη(dυ)η

=
1

νη
1

Γ(1 + η)
lim

κ−→∞

 κ∫
0

(
−1

νη
Eη(−νηυη)

)(η) υη

Γ(1 + η)
(dυ)η


=

1

ν2η

1

Γ(1 + η)
lim

κ−→∞

 κ∫
0

Eη(−νηυη)(dυ)η


Because limκ−→∞

[
−1
νη Eη(−ν

ηυη) υη

Γ(1+η)

]κ
0

= 0.

Therefore

LFAη {υη} =
1

ν2η
lim

κ−→∞

[
−1

νη
Eη(−νηυη)

]κ
0

=
1

ν3η
.

3) If Φ(υ) = Eη (aυη) , using the formula (16), we get

LFAη {Eη (aυη)} =
1

νη
1

Γ(1 + η)

∞∫
0

Eη(−νηυη)Eη (aυη) (dυ)η

=
1

νη
1

Γ(1 + η)

∞∫
0

Eη((a− νη)υη)(dυ)η

=
1

νη
lim

κ−→∞

[
1

a− νη
Eη(−νηυη)

]κ
0

=
1

ν2η − aνη

4) If Φ(υ) = sinη(aυ
η) (0 < η 6 1), using the formula (16), we get

LFAη {sinη(aυη)} =
1

νη
1

Γ(1 + η)

∞∫
0

Eη(−νηυη)
Eη (aiηυη)− Eη (−aiηυη)

2iη
(dυ)η

=
1

2iηνη
1

Γ(1 + η)

∞∫
0

[Eη((ai
η − νη)υη)− Eη((−aiη − νη)υη)] (dυ)η

=
1

2iηνη
lim

κ−→∞

[(
Eη((ai

η − νη)υη)
aiη − νη

− Eη((ai
η − νη)υη)

−aiη − νη

)]κ
0

After the calculations we �nd

LFAη {sinη(aυη)} =
a

νη (ν2η + a2)
.

5) If Φ(υ) = cosη(aυ
η) (0 < η 6 1), knowing that cosη(aυ

η) =
Eη(aiηυη)+Eη(−aiηυη)

2 , and by following the
same previous steps, we get
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LFAη{cosη(aυ
η)} =

1

ν2η + a2
.

6) If Φ(υ) = sinhη(aυ
η) (0 < η 6 1), we obtain

LFAη {sinhη(aυ
η)} =

1

νη
1

Γ(1 + η)

∞∫
0

Eη(−νηυη)
Eη (aυη)− Eη (−aυη)

2
(dυ)η

=
1

2νη
1

Γ(1 + η)

∞∫
0

[Eη((a− νη)υη)− Eη((−a− νη)υη)] (dυ)η

=
1

2νη
lim

κ−→∞

[(
Eη((a− νη)υη)

a− νη
+
Eη((−a− νη)υη)

a+ νη

)]κ
0

By performing simple operations, we �nd

LFAη {sinhη(aυ
η)} =

a

νη (ν2η − a2)
.

5) If Φ(υ) = coshη(aυ
η) (0 < η 6 1), knowing that coshη(aυ

η) =
Eη(aυη)+Eη(−aυη)

2 , and by following the
same previous steps, we get

LFAη {coshη(aυ
η)} =

1

ν2η − a2
.

4. Ilustrative Examples

In this section, we will apply the local fractional Aboodh transform (LFAT ) to some suggested local
fractional di�erential equations.

Example 4.1. First, we consider the following local fractional di�erential equation of order η, (0 < η 6 1)

dηψ (υ)

dυη
+ ψ (υ) = −1, (26)

with the initial condition ψ(0) = 0.
Taking local fractional Aboodh transform on both sides of given equation,we have

νη LFAη {ψ (υ)} − ψ (0)

νη
+ LFAη {ψ (υ)} = −LFAη {1} . (27)

Then

(νη + 1) LFAη {ψ (υ)} = − 1

ν2η
. (28)

Which give

LFAη {ψ (υ)} = − 1

ν2η (νη + 1)

=
1

ν2η + νη
− 1

ν2η
. (29)

By applying the inverse transformation on both sides of equation (29), we get

ψ (υ) = Eη(−υη)− 1, (30)
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Example 4.2. Next, we consider the following local fractional di�erential equation of order η, (0 < η 6 1)

dηψ (υ)

dυη
− 2ψ (υ) = 2, (31)

with the initial condition

ψ(0) = 1. (32)

Taking local fractional Aboodh transform on both sides of equation (31), we have

νη LFAη {ψ (υ)} − 2LFAη {ψ (υ)} =
2

ν2η
. (33)

By following the same steps as the previous example, we obtain

LFAη {ψ (υ)} =
2

νη (νη − 2)
− 1

ν2η
. (34)

Take the inverse transformation on both sides of equation (34),we get

ψ (υ) = 2E(2νη)− 1. (35)

Result (35) represents the exact solution to the equation (31).

Example 4.3. Finally, we consider the following local fractional di�erential equation of order 2η, (0 < η 6 1)

d2ηψ (υ)

dυ2η
+ ψ (υ) = − υη

Γ (1 + η)
, (36)

subject to the initial conditions

ψ(0) = 0,
dηψ(0)

dυη
= 0. (37)

Taking local fractional Aboodh transform on both sides of equation (36), we have

ν2ηLFAη {ψ(υ)}+ LFAη {ψ(υ)} = − 1

ν3η
. (38)

By following the same steps as the previous example, we obtain

LFAη {ψ(υ)} =
1

νη (νη + 1)
− 1

ν3η
. (39)

Take the inverse transformation on both sides of equation (39), yields

ψ(υ) = sinη(υ
η)− υη

Γ (1 + η)
. (40)

Result (40) represents the exact solution to the equation (36).

5. Conclusion

The basic idea that we presented in this work is based on combining the Aboodh transform with the local
fractional derivative, where we presented some important results and properties of this combination. And in
order to prove the e�ectiveness of this method, we applied it to solving some linear local fractional di�erential
equations, as we saw that the solutions are accurate and of the type of nondi�erentiable functions. Based on
the results of the proposed examples, we can say that this method is practical and e�ective in solving other
forms of linear local fractional di�erential equations.
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