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Abstract

Our aim in this paper is to study the existence of solution sets and its topological structure for non-local
fractional differential equations on the half-line in a Banach space using Riemann-Liouville definition. The
main result is based on Meir-Keeler fixed point theorem for condensing operators combined with measure of
non-compactness. An example is given to illustrate the feasibility of our main result.
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1. Introduction

Fractional calculus can be seen as a generalization of the ordinary differentiation and integration to arbi-
trary non integer order, and has been recognized as one of the most powerful tools to describe long memory
processes in the last decades. For a long time, the theory of fractional Calculus developed only as a pure
theoretical field of mathematics. However, in the last decades, it was found that fractional derivatives and
integrals provide, in some situations, a better tool to understand some physical phenomena, especially when
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dealing with processes with memory|[I]. Applications include modeling viscoelastic and viscoplastic materials
[20], chemical processes [24], and a wide range of engineering problems. Fractional order models can be found
to be more adequate than integer order models in some real world problems as fractional derivatives provide
an excellent tool for the description of memory and hereditary properties of various materials and processes.
The mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electro
dynamics of complex medium, polymer rheology, etc., involves derivatives of fractional order. As a conse-
quence, the subject of fractional differential equations is gaining more importance and attention. There has
been significant development in ordinary and partial differential equations involving both Riemann-Liouville
and Caputo fractional derivatives, see [2, [3, 5, 13 25]and [4], 6} 9], fractional differential equations with non
local conditions have been discussed in [16] and references therein. Non-local conditions were initiated by
Byszewaski [15] where he proved the existence and uniqueness of mild and classical solutions of non-local
Cauchy problems. As remarked by Byszewaski [14] and [2I] the non-local conditions can be more useful than
the standard condition to describe some physical phenomena.

Very recently, many research papers have appeared concerning the fractional differential equations in Banach
spaces, some of them investigated the existence results of solutions on finite intervals and unbounded domain
by classical tools from functional analysis and measure of non compactness see, for example the following
references: |8, 11} 12 [19].

In this paper we deal with the existence of solution sets and its topological structure for fractional differ-
ential equations on unbounded domain with the non-local conditions. We consider the following non-local
boundary-value problem

Rﬁpg“'y(t) = f(tvy(t))u teJ= (07 +OO)7 (1)
T y(0%) = > Ny(m), (2)

=1
REDE y(00) = Yoo (3)

where RED& denotes the Riemann-Liouville fractional derivative of order o, 1 < a < 2. The operator
Ig;o‘ denotes the Riemann-Liouville fractional integral, the state y(-) takes values in a Banach space FE,
f : (0,00) x E — E will be specified in section 3. 7;, i = 1,2,...,m are pre-fixed points satisfying
0<7m < <7y A €RY and

m +o00
MNa—1) # Z N2, where T'(a) = /o tele~tdt, (4)
i=1

The condition is used to define in section 3 a technical quantity. We can interpret this condition later in
terms of non existence result or local blow-up once it is close to zero. Our starting point will be the property
concerning Riemman-Liouville fractional derivative,

ta—l toz—2

lim (Z'~%y)(t) — lim (Z2~%y)(t).

[Z%o D8+y] (t) =y(t) - @ 0+ m t—=0F

In this situation lim+ (Z'=y)(t), (Z?~y)(t) take the place of initial data values and are null once the
t—0

lim
t—0+
state y is continuous on the domain J. Our thinking is focused on the continuity of the state y only on J’
and the existence of the above values without nullity, hence this hardness combined with the unboundedness
of the domain imposes us a choice of a special Banach space that will be specified later. We show that this
constructed space is in a natural way, in the sense that, one recovers the characterization of the relatively
compact subset in the space C(J, E) when J is compact.

This paper is organized in the following way. In Section [2] we give some preliminaries and general results,
in Section [3] we present the existence results for the problem (I)-(3), by using the fixed point theorem for
Meir-Keeler condensing operators via measure of non-compactness. In the last section, we give an illustrative
example that will be presented in Section
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2. Preliminary results

In this section, we introduce some notation and technical results which are used throughout this paper.
Let I € J = (0,00) be a compact interval and denote by C(I, E) the Banach space of continuous functions
y : I — E with the usual norm

[Ylloe = sup{lly(®)], ¢ € I}.

L'(J, E) the space of E valued Bochner integrable functions on .J with the norm

400
11z :/O | £(t)]|dt.

We consider the following Banach space

t2oy(t
Co([0,00), E) = {y € C((0,00), E) : tl_i}r(% 2%y (t) and tli>I£10 Hyt(a) exist and are finite}.
A norm in this space is given by
2= ly(1)|]
ylla = Sup

For y € C,([0,00), F), we define y, by

t2oy(t

73/(05)7 te (07 OO),

ya(t) = 1 +2t—a

T y(t)

lim———=, t=0.

t—0 1+t~

It is clear that y, € C([0,00), E).
We begin with some definitions from the theory of fractional calculus.

Definition 2.1 ([20]). (i) Let T be the gamma function and o a non-negative real number. We recall that
the fractional (arbitrary) integral of order o of a function h € L' (J, E) is given by

1

— t — 5)* h(s)ds.
i |

o+ h(t) =

(ii) Let 0 < o < 1. The Riemann-Liouville fractional derivative of order o of the function h is given by :

t
RED (1) = r(11—a)5t < /0 (t s)_o‘h(s)ds> .
For the existence of solutions for the problem ([])-(3), we need the following auxiliary lemmas.
Lemma 2.2. [20, 23] Let o > 0 and h € C(J, E)N L' (J, E). Then the differential equation
REDG, h(t) = 0,
has as a unique solution given by
h(t) = et T et 2+ et
where ¢; ER, i =1...n and n = [a] + 1, where [a] denotes the integer part of the real number «.

Lemma 2.3. [20, (23] Let o > 0. Suppose that h € C(J,E) N LY(J, E) with a fractional derivative of order
a belonging to C(J,E) N LY(J,E). Then

T8 REDG h(t) = h(t) + crt® ™ 4 eat® ™2 4 et

for some ¢; R, i =0,...,n, where n=[a]+ 1.
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Remark 2.4. For a >0, k> —1, we have

T(k+1) a T(k+1)
" T Tatktn * o = T h—arn’ 170

giving n particular RﬁDSﬁrta*m =0, m=1,...,n, where n is the smallest integer greater than or equal to
Q.

Remark 2.5. If h is a suitable function (see for instance [20), [22]), we have the composition relations
REDGLIS h(t) = h(t), a >0

and
REDGLTE h(t) = T h(t), k> a >0, t> 0.

Let us now recall the definition of the measure of non-compactness in the sense of Kuratowski and its
properties. For all G C E, we denote by Sp(G) the set of all bounded subsets of G.

Definition 2.6. [10, (18] Let D € Sp(F). The Kuratowski measure of non-compactness v of the subset D is
defined as follows:

fy(D):inf{d>0:DC | Di, diam Digd}.
i=1

Lemma 2.7. [10,[18] Let A, B € Sy(E). The following properties hold:

(i1) v(A) = 0 if and only if A is relatively compact,

(i2) v(A) = v(A), where A denotes the closure of A,

(i3) V(A + B) <~(A) +~(B),

(i) A C B implies 4(A) < ~(B),

(i5) v(a.A) = |la]|.v(A) for all a € E,

(i) 7({61} UA) =~(A) foralla € E,

(i7) v(A) = y(Conv(A)), where Conv(A) is the smallest convex that contains A.

Lemma 2.8. [I7] Let D € Sy(E) and € > 0. Then, there exists a sequence {up}nen C D, such thal
(D) < 2y({un, n € N}) +e.

Lemma 2.9. [18] If D is an equicontinuous and bounded subset of C(|a,b], E), then v(D(.)) € C([a,b],R™)

0(0) = max 206, ~ ({ [t te }) < [oiona

te[a,b]
where D(t) = {y(t) : y € D} and ¢ is the non-compactness measure on the space C([a,b], E).

In 1969, Meir-Keeler introduced a notion of a contraction mapping in a metric space. Most recently in
2015, the author introduced the following definition and his fixed point theorem.

Definition 2.10. [7/ Let k be an arbitrary measure of non-compactness on E and G be a non empty subset
of E. Let A be an operator from G to G. A s said Meir-Keeler condensing operator if

Ve >0, Jk(e) >0, VD € Sp(G);e < k(D) <e+k(e) = k(AD) <e

Theorem 2.11. [7/ Let k be an arbitrary measure of non-compactness on E and G a closed, bounded and
conver subset of E. Let A be an operator from G to G, assume that A is a Meir-Keeler condensing operator
and conlinuous, then the set {w € G : A(w) = w} is non empty and compact.
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3. Main result

In the sequel we denote
T —

— .
D(a—1) = Y 72
i=1
Let us list some assumptions to be used later.

(Hy) There exist nonnegative continuous functions a, b such that

|f(t,u)] < a( )+ t27b(t) |Jul| forallt € J and ueFE,

1+ t)b(t)dt < L) :
Jo~ ©) 3T A )

fo t)dt < oo.

(Hz2) f:(0,00) x E — E is a continuous function and for all z,y and (0,b] C (0,00):
1£(t,2) = F(t, )l < at®™ |z — y]|, for all t € (0,8,
with o € R,

Hj3) There exists nonnegative function ¢ € L'(J,RT) such that for each non empty, bounded set Q C
g

Co(J, E)
V(1)) < 27Uy (L)), for all ¢ € J,
[+ t)e(t)dt < L)

AT N
i=1

(H4) There exists strictly positive real number R such that

lyooll +3 Jy~ a(t)dt

Fif‘) — 3]‘0 (1+ t"‘)b(t)dt.
L+ I A ™)

i=1

R >

Definition 3.1. A function y € C,([0,+00)) is said to be a solution of the problem (1)-(3) if y satisfies the
equation ®EDysy(t) = f(t,y(t)) and the conditions .

Lemma 3.2. Let 1 < o < 2. A function y is a solution of the fractional integral equation

y(t) = == fo?{s’y(‘s))ds [t“l +T (f)xﬁa—1> t(”}

Tt 2 m ot (5)
—i—ngl)\i Jo' (ri = s) f(s,u(s)) ds+ fo f(s,y(s))ds
of and only if y is a solution of the problem
REDGy(t) = f(t,y(1), te€J=(0,+00), (6)
I3y (0) = Z)\Zy (7i), (7)

REDS 4(00) = Yoo: (8)
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Proof. Assume that y satisfies the problem @—. We may apply Lemma to reduce equation @ to an
equivalent integral equation

y(t) = et + ot 2+ I8 f(t,y(t)), 9)
for some ¢y, co € R. Applying Ig;o‘ to both sides of @, we have

T2y () = el Z20 !+ T2 4 T2 f(t y (b)),

From Remark [2.4] we then get

t
Z3 ) = Gt arla = )+ g [ (- reate)s
Taking t — 0, we obtain
Iy (0T)
2T Ta-1)

Applying R£Dy ! to both sides of (@), we obtain
1,0 1,0 -1
REDGTy(t) = e REDET 40 4+ ¢ REDRT 0 4 REDGTITS, £(t, y(t)).

From Remark and Remark we get

REDG (D) = el @) + /0 F(s,y(s))ds

=g | [ Fte)as].

_ L _ > s s S a—1 Ig;ay(o—i_) a—2 L ¢ _ g a—1 s s s
W) = ragle = [ Flssease + e s [ syods. (10

Hence

Thus, we have

Next, we substitute ¢ by 7; into the above equation,

00 + T;
R T e MU Sy R

by multiplying both sides of the equality by \;, we obtain

o) 1-2;(1 0+
o) = sl = [ fsuDasrnt + 2Ly
IR\ R
i [ = s
From , we have
Z2+a 0+ m
Ig;ay(o—l-) yoo / f S y dS Z)\ 7_04 1 0 _(1))2)‘2'7—@‘0{2

=1

T)Z)‘i /OTz‘ (Ti _ s)o‘_lf(s,y(s))ds,
i=1
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which implies

I3 y(0%) =

a—1 a 1
o—1 (Yoo — / f(s,y(s dSZ)\T +Z)\/ i — ) f(s,y(s ))d] (11)
Substituting (11]) into , we derive that ( .

Conversely, assume that y satisfies the integral equatlon . Applying Ig % to both sides of 1ID and using
Remark [2.4] we have

IZ57y(t) = <yoo - /OOO f(s,y(s)))ds> (t + azi 15;)\”.?—1)

* %Di /0 (i = )" f(5,9(5))ds + Zg- f (£ y(1)))-

i) <yoo —/OOO f(s,y(s)))ds>

Ast — 0, we get

So, we derive

Z)\iy<ﬂ') = fo F( (Z)\ T Ly Zx\ﬁf_l)z}\ﬁia—2>
i=1 — —

=1 i=1
TZ/\ T .
=1 ; 7 — ) (s, y(s))ds
e ?/o (7 = )" f(s.y(s))d
1 m‘TiT—so‘ls s))ds
+F(a);&/o (7 — 8" f(s.y(s)d
(e = J5° Flsp))ds) S o
= = 1+T)Y N1l
R G
—i—ii)\ /TZ(T —5)* 7 f(s,y(s))ds 1—|—T§:/\ Ta2
F(Oé) — t 0 ’ ’ g (A8
Finally,
> nin() = 2y (Conee ) (o= [ s pteas)
i=1 i=1
F N [ = 9 fs(s))ds = T8 (o)
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Now by applying REDS‘I ! to both sides of and using Remark , Remark ﬁ we have
RLpyOL > 1
Do+ y(t) = Yoo — ; f(s,y(9)))ds + Tos f (2, y(t)).

Let t — oo, then we get
a—1
R£D0+ Y(20) = Yoo

Next, by applying ®Djy: to both sides of and using Remark Remark we obtain REDgy(t) =
f(t,y(t)). Which ends the proof. O

Now, we are in a position to give the main result of this work. Let
B ={y € Cu([0,00), E) : [lylla < R}.

Remark 3.3. We can write Equation (5]) in the following form,

_ Yo ra— 1 Ta 1\ pa— 2 Tta e " 7 — ) (s, y(s))ds
) = s D 7 T 2 ) () o)
- L / 1 TS A (1 )0 (s, y(s))ds
r(a) Jy = ’
- 1“(104) /too(t“‘1 + Ty N ) f(s,y(s))ds.

i=1

Theorem 3.4. Assume that conditions (Hy), (Hz), (Hs) and (Hy) are satisfied. Then, the problem (1))-(3)
has at least one solution.

Proof. Let the operator N : Cy([0,00), E) = C(]0,00), E) be defined as

m a—2 M
N = el + TN e+ o 2 ) s
i=1
I A - 7ONO2 — (t— )L (s, y(s))ds
-t /o“ + T AT 2 — (= 5) 1 f(s,(5))d

=1
_L o0 a—1 m AT-Oé_l a—2 s u(s)ds
F(a)/t (t +T(;)‘z ST (s, y(s))ds.

From the definition of the operator N and Lemma [3.2] we see that the fixed points of N are solutions of
problem ([I))-(3). For this reason, it suffices to verify the axioms of Theorem [2.11], which is done in four steps.
Stepl: We start to prove that N is bounded.

Let y € Cy(]0,00), E), from (Hy) it is easy to deduce that Ny € C,(J, E). Using (Hy), for all y € B and
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€ (0,00), we get

Ta 1
2| N () (1) S Yool (1+‘T’ZZ/\ > ‘T| ZA / 7 — )27 (s, y(s)) | ds

14t I'(a)
2+\T!E/\ ra 1+|T’Z)‘i7—ia_1 N
+ /Hfsy )|lds + F(:Ot) /t 1£(s,y(s))|lds
HyooH(l + |Trzw-1> TS Are 43
= 1“(oj):1 * 2211“(@) /0 a(t)dt
Tl oA 43
* Zp_(a) /O (14 t)b(t)dt.

Hence, N : Co(J, E) — C4(J, E) is bounded.
Step2: We will show that N is continuous.

Let {yn}>2 C Co(J, E) and y € Cy(J, E) such that y, — y as n — oco. Then, {y,}72, is a bounded set of
Cuo(J, E), i.e. there exists M > 0 such that |y,|lo < M, for n > 1. We also have by taking the limit that
lylla < M. In view of condition (Hjy), for all € > 0, there exists L > 7, such that

/ ~ at)dt < L(a)e , / T () dt < _Tla)e , (12)
L BAIT| S Nt +4] 7F AT - N ™! +4M
i=1 =1

and from (Hy), there exists N € N such that, for all n > N and ¢ € (0, L], we have

1 () — (L y(@)]] < L) . (13)

B2T|(C N ™) +3]L
i=1

Therefore, for all t € J and n > N , we have

2—a
L IN )0 ~ N0 < ‘T'Z 3 [ = 9 (o) — (el
2+|T|(§m
+— / 175 n(5)) — (s, u()) s
LTSN
s [ 1) = syt s
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IftSLandn>N,wehave

B NG ()~ N O] < LS et / C £, 5n(#) = Flsp()]d
1+ ta Yn Yy > F(a) £ iT; 0 S, YnlS S, Y(s S
34 2T NN
| 1) = Fs. sl

From ([12)) and (13)), we obtain,

tQ—Ot

IN (yn)(t) = N(m)(®)]| < g TR

1+t 3 3

The case when ¢ > L and n > N is treated similarly. Thus we conclude that,
lyn — ylla = 0 as n — oo.

So, N is continuous.
Step 3: We prove the following results :
(i) NB, = {(Ny)a : y € By} is equicontinuous on any compact [0, d] of [0, c0).
(ii) For given € > 0, there exists a constant n; > 0 such that
Nalt1) — N(y)a(tz)

— <
I 1419 1115 I <e,

for any t1,t2 > n; and y(.) € B,. We have, from (H7) and the boundedness of B, there exists M > 0 such
that

/0 7t y(@®)dt < M for any y € B. (14)

Let us show the equicontinuity of N B, on any compact [0,d]. Indeed, let y € B and ¢, ty € [0,d], where
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to > t1. Then
H HON(y)(t) 5 N(y)(t2) H
1+19 1415
= I‘(a) T+ 1+ T 146

1 1

1460 1419

‘T’ ZA = s e as

1 t1 to
b / (tr — ) f (s, y(s))ds — / (2 — )2 f(s,y(s))ds
F(Oé) 0 0
ool + [T mAin*1M+M
bl 0] 6t el + N A ) 11
=" T(a 1+t0‘ 116 T () 118 1413
L /“|<t 91 (1 — )7 (s, y(s)) s + — /t2<t o115 (s, y(s))ld
—_— 2— S — 1— S S,yS S —_— 2— S S,ys S
(o) Jy o)
soll + T m/\iTia_lM—i-M
IIyooH+M | Ml AT L
=" T(a 1+t‘" 1415 T (a) 1410 1+15

L tl _Safl_ _Sozflas s i h _Safl_ _Safl 5@ s)ds
+F(a)/0 |(t2 — s) (t1 — 5)* a(s)d +F(a)/0 |(ta — s) (t1 — 8)* (1 + s*)b(s)d

1 to a1 to . )
i () /tl (f =)™ als)ds + T(a) / (t2 —5)* (1 + s%)b(s)ds

m
TS N DYM + M
SRSV - Nl AR OM A
I (« 1+t"‘ 1+t LHt¢  1+15

a* +b*R (/t . . ) a*+b*R/t2 .
= tg—5)* N —(t; —8)* s ) + ———— [ (tg —5)*'ds
ra) UL (t2 — s) (t1 —s) (o) tl( )

20"R & a—1_« h a—1_o
+F(a)</0 (t2 — s) sds—/o (t1 —s) sd8>

lyooll + | TICC N ™M + M

”Z/oou‘i‘M _t2 n = 11
=" T(a 1+t°¥ 1415 () 1+tg 1413

a* +b*R

T1+a) (ty —t7 — (ta — 1))

a*+b'R 20"RB(a, e + 1) , 9

L ity — 1) {20 _ 420

F(].+Oé)(2 1) P(Oé) (2 1 )7

where a* = rn[a>§] a(t) and b* = m[a>g] b(t). As ty — t1 the right-hand side of the above inequality tends to
tela, te|a,

2= N(B)(t)

zero. Then
1+te

is equicontinuous on [0, d.
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Next, let us show the equiconvergence of NB,. In fact, let € > 0, we have

BN () 3 *N(y)(t2)

1419 1415
Hyoo” + M o t2
T(a) |1 +ta 1+ tg
el + \T@An?—l)M v
1=
* T'(a) ‘1+t‘f 1415
1 t1 t%_a(tl o S)a—l to t2—a(t2 . S)a—l
. ds— [ 2 ds||.
ol e et (O B o (VI

It suffices to show that

t1 tha(t _ S)a—l to t27a(t _ S)a—l
1 1 2 2
ds — ds|| < e.
A s ytenas = [T BRI s s < ¢
Relation ([14) yields that there exits Ny > 0 such that
o0
Ity < 5 or any y € B, (15)

No

2—a (4 _ a—1
On the other hand, since lim £t~ No)

= 0, there exists N1 > Ny such that, for any ¢1,{5 > N; and
t—00 1+ to
€ [0, No|, we have

t%ia(tQ . S)Oé—l B t%ia(t]_ . S)a_l
1+t 1+

g
£ 1
< 3M (16)

Now taking t1,t2 > Ny, from (15)), (16), we can arrive at

t1 42—« — g1 tr 12—« _ g)a-1
\ / B =" b ())ds — / f T2 =™ py (e))ds
0 0

1+ 19 1415
Ny t2—a to — a—1 t2—a t— a—1
< [ Iyt s
2 1
t1 t2—o¢(t1 o S)a—l to t2—o¢(t2 . S)a—l
i 1 7 ds + 2 , d
/N s ytentas + [ B e o) s
6 o0 [ee]
<gu | I uolds+2 [ (s ds <.
3M N

Thus, N B, is equiconvergent.
Step 4: Now, let us show that N satisfies the assumptions of Theorem. 2.11]

First, we now show that N is defined from B to B, Indeed, for any y € B, by above conditions (Hy), (Hy)
and according to a little calculation, we have

I el v+ 3o [ o
2+\T|<§Anf-1> , LTSN
+ [ e ———— [yl
(1 +ITIE A )

< Fi:;) (y\yoon +3/0°° a(t)dt+3R/Ooo(1—|—t°“))b(t)dt> <R.



K. Benia, et al., Adv. Theory Nonlinear Anal. Appl. 1 (2022), 1184134 130

Hence, | Ny|lo < R, we conclude that N : B — B.

We put D = conv(N B), it is clear that D is a closed, bounded and convex subset of B. As we know that
ND C NB C D, then N remains defined from D to D. We denote by v, the Kuratowski measure of
non-compactness on Cy([0,00), F). Let us first show that 7, satisfies the following equality

t2=ONV ()

’ya(NV):sup{v< T >, tE(O,oo)},foraIlVCD. (17)

Remark 3.5. From the definitions of Cy(]0,00), E), we see that
Ya(Q) = 75(Qa), for all bounded subset Q of Cy([0,00), E).

27NV (t)
1+t '
Let ¢ be a strictly positive real number. From the equiconvergence of NV, there exists A > 0 such that

We show first vo(NV) < SUP(0,00) 7

5 “Ny(t2) 5 *Ny(ts)
1+15 1+

| <e, t1,ta > A. (18)

Let NV, |k be the restriction of NV, on the interval K = [0, A, by using Lemma and the third step, we
get
t2‘aNV(t)> (tQ‘C“NV(t)>
NV, = su —— =) < su ],
eale) = () = e (S

this implies that there exists a finite partition NV of NV, so that NV, = U;NV! and

diam(NV}|k) < sup =

te(0,00)

27NV (t)
1+t

)—i—e, i=0,1,-- k. (19)

Consequently, using inequalities @ and @, for all Ny1, Nys of NV; and t > A, we have

tQ_OéNyQ(t) B tQ_OCNyl (t)) tQ_OéNyQ(t) AQ—aNy2(A)

< —
| 1+ to 1+ to ”—”H%(t,o) 1+ A |

n ” AQ_QNyQ(A) B AQ_aNyl (A) ” i H tQ_QNyl (t) B AQ_O‘NyQ(A) H

1+ A 1+ A 1+ 9a(t,0) 1+ A
27NV (t)

<3+ sup vy <> .

te(0,00) I+t
So,
27Ny (t) 27Ny (t)) 27NV (t)
— < — 7). 2
I 1+ o H—3€+t:(320)7 1+ o (20)

From (@ and (@), we obtain

diam(NV;) < sup 7y

te(0,00)

YNV (1)
(o

>+35, i=0,1,--- k.

Thus,
2NV (¢

o(N
Ya(NV) < sup 7< R

te(0,00)
Since € is arbitrary, this leads us to the desired result.

2faN
tV(t)) < Yo (NV). According to the definition of Kuratowski MNC,

C l how that
onversely, we show that sup '7< T

te(0,00)
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we have, for all € > 0, we can find a finite partition NV, = U;NVE such that diam(NV}) < 7o(NV) + ¢
then for all y1,y2 € V and t € (0,00), we obtain,
£ *Nya(t) > “Nyi(t)
14to 14to
27NV (t)
1+te

| I < [[Ny2 = Nyifla <7a(NV) +e

According to NV, (t) = U;NVE(t), we get vy (
2NV (¢
y ( Q)

) < Ya(NV) +e, since € is arbitrary, we then have

) < Ya(NV). So,

14to
2NV (¢
sup 7( a< )> < 7a(NV)
te(0,00) I+t
Finally we need to prove the following implication
Ve >0, Jo(e) re < (V) <e+ 0= Yau(NV) <e, forany V. C D. (21)

Let € be a strictly positive real number, V' C D and t € (0,00), for all x € R satisfying t < «, we define
the auxiliary operator N, by

a—2 M T;
N(p)(t) = [l + D AL Trt( F | =9 s ute)as

+ 5 /0 1+ (S A2 (1 — 5 (s, y(s))d

i=1
L i —8)* (s, y(s))ds
g =9 s

Then from(Hj), we obtain

t2—a

INL)0) = N < [ e

< pi:;; i </:° a(t)dt+R/:o(1+ta))b(t)dt>,

27 New(V)(1) 2N (V)(1)

)

14to

this shows that Hy ) —0as& —>0and n — oo, t € J. Where Hy denotes

14t 14t
the Hausdorff metric in space E. By the property of non-compactness measure, we get
2N (V)(¢ t2N(V)(t
lim (N (WO _ | (FENVI (22)
K—00 1+ te 14t@

By a similar argument as the one of third step, we show that the NV, is equicontinuous and bounded
n [0,k]. From Lemmas (Hg) and the previous steps, it follows, that there exists a sequence
{un}s2y C V such that

27NV (1)
ST

IN

+
m
o“\;Y
)
—_—
=
w
<
3
3
m
Z,
—
QL
[Va)

<
2 F(a

AN
N ™
+
3.
ll
o“\;Y
—
+
V2]
=
B
=
=
=
[Va)
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From (22), we know that

201+ [TI (N7 (N (V)

v <W> < % + i=1 ) /000(1 + 59)4(s)ds.
Thus,
TSN N
TW(N(V)) < &+ S | s
If
TSN V)
Ya(N(V)) < 5T - (o) /0 (1+ s*)(s)ds < e,
this implies that
Tn(N(V)) < T — .

AL+ TSN fo™ (L + s2)(s)ds
i=1
so that implication (21)) is fulfilled, we take
D() =4[+ [T (S X ™) fo™ (L + s*)(s)ds
i=1

0= E.

AL+ \T!(; O] T (L + s2)(s)ds

3

So, N is a Meir-Keeler condensing operator via 7(q,y), thus all the hypotheses of the Theorem [2.1]] ‘ are
fulfilled. Then, the problem is non-empty and compact.

4. Example

As an application of our results, we consider the following fractional differential equation.

Rﬁﬁ<>=<uif§2m+?fg)mﬂ’tej:mﬁﬁm .

Tiy(t) = Jy(1) + y(4), (24)

1
REDE, y(00) = Yoo (25)

Let
E = {(ylayZa---vyﬂa"') $sup |yn| < OO}

with the norm ||y|| = sup]yn\ then E is a Banach space and problem can be regaded as an abstract
problem ([I)-(B)), with

“= % T ~0.5642 and f(t,y(t)) = (f(t,y1()),- .., f(tya(t)), .- ),

where
n € N*.

Viga(t)  sin(t)

f(t, yn(t)) = (1 i t%)elot 142’
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We shall verify the conditions (Hy) — (Hg). Evidently, f is continuous in J x E and

Vi 1

——||y(¢ .
Ol

(8 y@)I <

With the help of simple computation, we find that

00 1 r o]
/ e Vgt = — < (ﬁf) ~ 0.2451 and / Trptt= g < o0
0 3(1+ T3 A7 Y o Lt
=1

Finally, we verify condition (Hg). For any bounded set B C E, we have

Vit sin(t)

f(t,B(t)) = WB@) 7 T2
Then \[
t
Y(f(t, B(t)) < WV(B@))
Since

o 1 r
/ e 0t = o < (Sj) ~ 0.3676,
0 A1+ TS N
=1

we conclude that condition (Hg) is satisfied. Therefore, Theorem ensures that problem ([23)-(25) is
non-empty and compact.

Conclusion

In this work, we deal with the problem concerning existence of solution sets and its topological structure
for non-local Riemman-Liouville fractional differential equation modeled by equation — on the half line
with Riemann-Liouville fractional integral and derivative boundary conditions involving the discontinuity of
the state y at 0". Our main result is to prove the existence of solution sets and its topological structure for
the problem — on unbounded domain with the non-local conditions. To overcome the difficulty of the
problem, we have defined a special weight space of continuous functions C,(J, F). The constructed space is
in a natural way, in the sense that this space is endowed with a Banach structure.

As far as we know, in our opinion, this problem has not been studied in the literature.

The assumed hypotheses have as goals:

i) In this work we have assumed a more general growth condition (H;) unlike the affine condition.

ii) Hypothesis (H2) being supposed to overcome the equiconvergence at infinity.

iii) Conditions (H3) and (H,4) ensure the veracity of the Meir-Keeler fixed point theorem for condensing
operator.

These conditions are optimal in the sense that no condition implies the other. We make use in our approach
the Meir-Keeler fixed point theorem combined with tools from classical functional analysis and measure of
non-compactness. The paper concludes with an example to illustrate the feasibility of our main result.
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