Advances in the Theory of Nonlinear Analysis and its Applications 1 (2022) No. 1, 28–32. https://doi.org/10.31197/atnaa.941403 Available online at www.atnaa.org Research Article

A simple proof for Kazmi et al.'s iterative scheme

Ebrahim Soori^a, Ravi P. Agarwal^b

^a Department of Mathematics, Lorestan University, P.O. Box 465, Khoramabad, Lorestan, Iran

^b Department of Mathematics, Texas A and M University-Kingsville, Texas 78363, USA

Abstract

In this paper, a simple proof for the existence iterative scheme using two Hilbert spaces due to Kazmi et al. [K.R. Kazmi, R. Ali, M. Furkan, Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings, Numer. Algor., 2017] is provided.

Keywords: Weak convergence; Strongly convergence; Hilbert space. 2010 MSC: 47H09, 47H10

1. Introduction

To see the definitions of maximal monotone operators and α -inverse strongly monotone mappings one can refer to for example [1, 2, 3, 4, 6, 7, 8]. The following theorem have been proved in [5, Theorem 3.1].

Theorem 1.1. [5, Theorem 3.1] Let H_1 and H_2 be two real Hilbert spaces and $C \subseteq H_1$, $Q \subseteq H_2$ two nonempty, closed and convex sets, $A : H_1 \to H_2$ a bounded linear operator with its adjoint operator A^* , $M_1 : H_1 \to 2^{H_1}$ and $M_2 : H_2 \to 2^{H_2}$ two multi-valued maximal monotone operators, $f : C \to H_1$ and $g : Q \to H_2$ two θ_1 - and θ_2 -inverse strongly monotone mappings, respectively, $S : C \to H_1$ a nonexpansive mapping, $\{T_i\}_{i=0}^{\mathbb{N}} : C \to C$ a finite family of nonexpansive mappings, and W_n a W-mapping generated by T_1, \dots, T_N and $\lambda_{n,1}, \dots, \lambda_{n,N}$ for every $n \in \mathbb{N} \cup \{0\}$. Assume that $\Gamma = \Omega \cap \Phi \neq \emptyset$. Suppose that the iterative

Email addresses: sori.eQlu.ac.ir (Ebrahim Soori), Ravi.AgarwalQtamuk.edu (Ravi P. Agarwal)

sequences $\{u_n\}$, $\{y_n\}$ and $\{x_n\}$ are generated by the following hybrid iterative algorithm:

$$\begin{aligned} x_{0} \in C, \quad C_{0} &= C \\ u_{n} &= (1 - \alpha_{n})x_{n} + \alpha_{n}P_{C}(\sigma_{n}Sx_{n} + (1 - \sigma_{n})W_{n}x_{n}); \\ z_{n} &= U(u_{n}); \quad w_{n} = V(Az_{n}); \quad y_{n} = z_{n} + \gamma A^{*}(w_{n} - Az_{n}); \\ C_{n} &= \{z \in C : \|y_{n} - z\|^{2} \leq (1 - \alpha_{n}\sigma_{n})\|x_{n} - z\|^{2} + \alpha_{n}\sigma_{n}\|Sx_{n} - z\|^{2}\}; \\ Q_{n} &= \{z \in C : \langle x_{n} - z, x_{0} - x_{n} \rangle \geq 0\}; \\ x_{n+1} &= P_{C_{n}} \cap Q_{n}x_{0}, n \geq 0. \end{aligned}$$

$$(1.1)$$

where $U := J_{\lambda}^{M_1}(I - \lambda f), V := J_{\lambda}^{M_2}(I - \lambda g), A(Range(U)) \subseteq Q, \gamma \in (0, \frac{1}{\|A\|^2})$. Let $\{\lambda_{n,i}\}_{i=1}^N$ be a sequence in [0,1] such that $\lambda_{n,i} \to \lambda_i, (i = 1, 2, \cdots, \mathbb{N}), \lambda \in (0, \alpha)$ with $\alpha = 2\min\{\theta_1, \theta_2\}, and \{\alpha_n\}, \{\sigma_n\}$ two real sequences in (0,1) satisfying the conditions:

(i)
$$\lim_{n \to \infty} \sigma_n = 0,$$

(ii) $\lim_{n \to \infty} \frac{\|x_n - u_n\|}{\alpha_n \sigma_n} = 0.$

Then $\{x_n\}$ converges strongly to $z \in \Gamma$, where $z = P_{\Gamma}x_0$.

In this paper, some simple proof is introduced for the existence of the above Theorem.

2. A simple proof for Kazmi et al.'s iterative scheme

The following relations between the relations (3.25) in [5], i.e.,

$$\lim_{n \to \infty} \|fu_n - fp\| = 0$$

and (3.26) in [5], i.e,

$$||y_n - z_n||^2 \le L_1 ||x_n - y_n|| + 2\gamma K_1 ||w_n - Az_n|| + \alpha_n \sigma_n K$$

have been proved to prove the relation (3.27) i.e.:

$$\lim_{n \to \infty} \|y_n - z_n\| = 0$$

as follows:

"Since

$$\begin{aligned} \|y_n - p\|^2 &= \|z_n + \gamma A^*(w_n - Az_n) - p\|^2 \\ &= \langle z_n + \gamma A^*(w_n - Az_n) - p, y_n - p \rangle \\ &= \frac{1}{2} \Big[\|(z_n - p) + \gamma A^*(w_n - Az_n)\|^2 + \|y_n - p\|^2 + \|(z_n - y_n) \\ &+ \gamma A^*(w_n - Az_n)\|^2 \Big] \\ &\vdots \\ &- Az_n \| - \|y_n - z_n\|^2 - \|\gamma A^*(w_n - Az_n)\|^2 - 2\gamma \langle y_n - z_n, A^*(w_n - Az_n) \rangle \Big] \end{aligned}$$

which in turn yields

$$\begin{aligned} \|y_n - p\|^2 &\leq \|z_n - p\|^2 - \|y_n - z_n\|^2 + 2\gamma \|Az_n - Ap\| \|w_n - Az_n\| \\ &+ 2\gamma \|y_n - z_n\| \|A^*\| \|w_n - Az_n\| \\ &\leq \|z_n - p\|^2 - \|y_n - z_n\|^2 + 2\gamma \|w_n - Az_n\| (\|Az_n - Ap\| + \|A^*\| \|y_n - z_n\|), \end{aligned}$$

and this together with (3.3) and (3.5) implies that

$$||y_n - z_n||^2 \le ||z_n - p||^2 - ||y_n - p||^2 + 2\gamma ||Az_n - Ap|| ||w_n - Az_n||$$

$$\vdots$$

$$\le L_1 ||x_n - y_n|| + 2\gamma K_1 ||w_n - Az_n|| + \alpha_n \sigma_n K,$$

Now, a simple proof to prove the relation (3.27) i.e.,

$$\lim_{n \to \infty} \|y_n - z_n\| = 0$$

instead of the above relations is proved in the following remark:

Remark 1. Simple proof:

Using the relation $y_n = z_n + \gamma A^*(w_n - Az_n)$ in the algorithm (3.1) in [5, Theorem 3.1], obviously, it is concluded that

$$||y_n - z_n|| \le \gamma ||A^*|| ||w_n - Az_n||,$$
(2.1)

then from the relation (3.21) in [5] i.e., $\lim_{n\to\infty} \|w_n - Az_n\| = 0$, it is implied that $\lim_{n\to\infty} \|y_n - z_n\| = 0$.

Also the following relations between the relations (3.42) and (3.43) in [5] have been proved:

$$\begin{aligned} \left| \left\langle Sx_{n}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - x^{*} \right\rangle \right| \\ &= \left| \left\langle Sx_{n}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \\ &+ \left\langle Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - x^{*} \right\rangle \right| \\ &\leq \left| \left\langle Sx_{n} - Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \right| \\ &+ \left| \left\langle Sx^{*}, x^{*} - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \right| \\ &\leq \left\| Sx_{n} - Sx^{*} \right\| \left\| x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\| + \left\| Sx^{*} \right\| \left\| x^{*} - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\|. \end{aligned}$$

$$(2.2)$$

Remark 2. Note that the weak convergence

$$\frac{|u_n - x_n||}{\alpha_n} + x_n \rightharpoonup x^*, \tag{2.3}$$

have been claimed in [5] (see page 15, line 8), but this is not valid since a real number can't be added with a member of a Hilbert space in general.

Remark 3. In [5, line 8 in page 15], $\frac{u_n - x_n}{\alpha_n} + x_n \rightarrow x^*$ must be replaced instead of the conclusion $\frac{||u_n - x_n||}{\alpha_n} + x_n \rightarrow x^*$. Indeed, from the fact that $x_n \rightarrow x^*$ ([5, line 10 page 14]) and $\lim_{n \to \infty} \frac{||u_n - x_n||}{\alpha_n} = 0$ ([5, line 6 page 15]), it is implied that

$$\lim_{n \to \infty} \langle \frac{u_n - x_n}{\alpha_n} + x_n - x^*, y \rangle = \lim_{n \to \infty} \langle \frac{u_n - x_n}{\alpha_n}, y \rangle + \lim_{n \to \infty} \langle x_n - x^*, y \rangle$$
$$\leq \lim_{n \to \infty} \frac{\|u_n - x_n\|}{\alpha_n} \|y\| + \lim_{n \to \infty} \langle x_n - x^*, y \rangle = 0$$

for each $y \in H$ (H is a real Hilbert space). Now, line 3 in page 16 in [5] in the above of the equation (3.43) should be changed by:

$$\leq \|Sx_n - Sx^*\| \|x - \frac{u_n - x_n}{\alpha_n} - x_n\| + |\langle Sx^*, x^* - \frac{u_n - x_n}{\alpha_n} - x_n\rangle|$$

Remark 4. Note that the authors have taken limit on n on both side of the equation (2.2) to get the equation (3.43) in [5] as follows:

$$\lim_{n \to \infty} \left\langle Sx_n, x - \frac{u_n - x_n}{\alpha_n} - x_n \right\rangle = \left\langle Sx^*, x - x^* \right\rangle,\tag{2.4}$$

this means that the strong convergence $x^* - \frac{u_n - x_n}{\alpha_n} - x_n$ have been used instead of the weak convergence. But if $x^* - \frac{u_n - x_n}{\alpha_n} - x_n$ converges strongly to 0, since moreover, $\lim_{n \to \infty} \frac{\|u_n - x_n\|}{\alpha_n} = 0$ [5, line 6 in page 15], it is implied that

$$\lim_{n \to \infty} \|x^* - x_n\| \le \lim_{n \to \infty} \|x^* - \frac{u_n - x_n}{\alpha_n} - x_n\| + \lim_{n \to \infty} \frac{\|u_n - x_n\|}{\alpha_n} = 0,$$

then $\{x_n\}$ converges strongly to x^* while the aim of Theorem 3.1 is to prove that $\{x_n\}$ converges strongly to x^* in the step VI. Hence this is a scientific error in the article.

Now, the following proof instead of (2.2) is given in the following remark:

Remark 5.

$$\begin{aligned} \left| \left\langle Sx_{n}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - x^{*} \right\rangle \right| \\ &= \left| \left\langle Sx_{n}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \\ &+ \left\langle Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle - \left\langle Sx^{*}, x - x^{*} \right\rangle \right| \\ &\leq \left| \left\langle Sx_{n} - Sx^{*}, x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \right| \\ &+ \left| \left\langle Sx^{*}, x^{*} - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \right| \\ &\leq \left\| Sx_{n} - Sx^{*} \right\| \left\| x - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\| + \left| \left\langle Sx^{*}, x^{*} - \frac{u_{n} - x_{n}}{\alpha_{n}} - x_{n} \right\rangle \right|. \end{aligned}$$

$$(2.5)$$

then from the weak convergence of $x^* - \frac{u_n - x_n}{\alpha_n} - x_n$, we conclude the relation (3.43) in [5].

Remark 6. Another problem in theorem 3.1 in [5] is that the authors have used from the continuity of S from the weak topology to the norm topology in [5](see page 16 line 4) while this can not be valid in general. For example, let $H = L^2(\mathbb{R})$ equipped with the standard inner product. In $L^2(\mathbb{R})$, the strong convergence and the weak convergence is not equivalent. Indeed, define a sequence $\{f_n\}$ by $f_n(x) = \chi_{(n,n+1)}(x)$ where χ is the characteristic function. Then one can check that $\{f_n\}$ converges weakly, but not strongly, to zero in $L^2(\mathbb{R})$. Suppose $S : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be the identity mapping that is nonexpansive, too. But, if S is continuous from the weak topology to the norm topology, then the strong convergence and the weak convergence in $L^2(\mathbb{R})$ are equivalent which is a contradiction. Then we should to consider S as a continuous mapping from the weak topology to the norm topology in theorem 3.1.

References

- R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, in: Topological Fixed Point Theory and its Applications, vol. 6, Springer, New York, 2009.
- [2] C.E. Chidume, O.M. Romanus and U.V. Nnyaba, An iterative algorithm for solving split equality fixed point problems for a class of nonexpansive-type mappings in Banach spaces, Numer Algor, 82 (2019), 987-1007.
- [3] Z. Jouymandi, F. Moradlou, Extragradient Methods for Solving Equilibrium Problems, Variational Inequalities, and Fixed Point Problems, Numer. Funct .Anal. Optim., 38:11, (2017), 1391-1409.
- [4] Z. Jouymandi and F. Moradlou, Extragradient methods for split feasibility problems and generalized equilibrium problems in Banach spaces, Math. Methods Appl. Sci., (2017), DOI: 10.1002/mma.4647.
- [5] K.R. Kazmi, R. Ali, M. Furkan, Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings, Numer Algor, (2017), https://doi.org/10.1007/s11075-017-0448-0.

- [6] A.E. Ofem and D.I. Igbokwe, A New Faster Four step Iterative Algorithm for Suzuki Generalized Nonexpansive Mappings with an Application, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 482-506.
- [7] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5 (2001),387-404.
- [8] L. Wangwe and S. Kumara, Some common fixed-point theorems for a pair of *p*-hybrid mappings via common limit range property in *G*-metric space, Results in Nonlinear Anal. 4 (2021), 87-104.