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Abstract

In this paper, a simple proof for the existence iterative scheme using two Hilbert spaces due to Kazmi et al.
[K.R. Kazmi, R. Ali, M. Furkan, Hybrid iterative method for split monotone variational inclusion problem
and hierarchical �xed point problem for a �nite family of nonexpansive mappings, Numer. Algor., 2017] is
provided.
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1. Introduction

To see the de�nitions of maximal monotone operators and α-inverse strongly monotone mappings one
can refer to for example [1, 2, 3, 4, 6, 7, 8]. The following theorem have been proved in [5, Theorem 3.1 ].

Theorem 1.1. [5, Theorem 3.1] Let H1 and H2 be two real Hilbert spaces and C ⊆ H1, Q ⊆ H2 two
nonempty, closed and convex sets, A : H1 → H2 a bounded linear operator with its adjoint operator A∗,
M1 : H1 → 2H1 and M2 : H2 → 2H2 two multi-valued maximal monotone operators, f : C → H1 and
g : Q → H2 two θ1- and θ2-inverse strongly monotone mappings, respectively, S : C → H1 a nonexpansive
mapping, {Ti}Ni=0 : C → C a �nite family of nonexpansive mappings, and Wn a W -mapping generated by
T1, · · · , TN and λn,1, · · · , λn,N for every n ∈ N∪{0}. Assume that Γ = Ω

⋂
Φ 6= ∅. Suppose that the iterative
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sequences {un}, {yn} and {xn} are generated by the following hybrid iterative algorithm:

x0 ∈ C, C0 = C

un = (1− αn)xn + αnPC(σnSxn + (1− σn)Wnxn);

zn = U(un); wn = V (Azn); yn = zn + γA∗(wn −Azn);

Cn = {z ∈ C : ‖yn − z‖2 ≤ (1− αnσn)‖xn − z‖2 + αnσn‖Sxn − z‖2};
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0};
xn+1 = PCn

⋂
Qn
x0, n ≥ 0. (1.1)

where U := JM1
λ (I − λf), V := JM2

λ (I − λg), A(Range(U)) ⊆ Q, γ ∈ (0, 1
‖A‖2 ). Let {λn,i}Ni=1 be a sequence

in [0, 1] such that λn,i → λi, (i = 1, 2, · · · ,N), λ ∈ (0, α) with α = 2 min{θ1, θ2}, and {αn}, {σn} two real
sequences in (0, 1) satisfying the conditions:

(i) lim
n→∞

σn = 0,

(ii) lim
n→∞

‖xn − un‖
αnσn

= 0.

Then {xn} converges strongly to z ∈ Γ, where z = PΓx0.

In this paper, some simple proof is introduced for the existence of the above Theorem.

2. A simple proof for Kazmi et al.'s iterative scheme

The following relations between the relations (3.25) in [5], i.e,

lim
n→∞

‖fun − fp‖ = 0

and (3.26) in [5], i.e,
‖yn − zn‖2 ≤ L1‖xn − yn‖+ 2γK1‖wn −Azn‖+ αnσnK,

have been proved to prove the relation (3.27) i.e.:

lim
n→∞

‖yn − zn‖ = 0,

as follows:
“Since

‖yn − p‖2 =‖zn + γA∗(wn −Azn)− p‖2

=〈zn + γA∗(wn −Azn)− p, yn − p〉

=
1

2

[
‖(zn − p) + γA∗(wn −Azn)‖2 + ‖yn − p‖2 + ‖(zn − yn)

+ γA∗(wn −Azn)‖2
]

...

−Azn‖ − ‖yn − zn‖2 − ‖γA∗(wn −Azn)‖2 − 2γ〈yn − zn, A∗(wn −Azn)〉
]
,

which in turn yields

‖yn − p‖2 ≤‖zn − p‖2 − ‖yn − zn‖2 + 2γ‖Azn −Ap‖‖wn −Azn‖
+ 2γ‖yn − zn‖‖A∗‖‖wn −Azn‖
≤‖zn − p‖2 − ‖yn − zn‖2 + 2γ‖wn −Azn‖(‖Azn −Ap‖+ ‖A∗‖‖yn − zn‖),
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and this together with (3.3) and (3.5) implies that

‖yn − zn‖2 ≤‖zn − p‖2 − ‖yn − p‖2 + 2γ‖Azn −Ap‖‖wn −Azn‖
...

≤L1‖xn − yn‖+ 2γK1‖wn −Azn‖+ αnσnK, ”

Now, a simple proof to prove the relation (3.27) i.e.,

lim
n→∞

‖yn − zn‖ = 0,

instead of the above relations is proved in the following remark:

Remark 1. Simple proof:

Using the relation yn = zn + γA∗(wn − Azn) in the algorithm (3.1) in [5, Theorem 3.1], obviously, it is
concluded that

‖yn − zn‖ ≤γ‖A∗‖‖wn −Azn‖, (2.1)

then from the relation (3.21) in [5] i.e., limn→∞ ‖wn −Azn‖ = 0, it is implied that lim
n→∞

‖yn − zn‖ = 0.

Also the following relations between the relations (3.42) and (3.43) in [5] have been proved:∣∣〈Sxn,x− un − xn
αn

− xn
〉
− 〈Sx∗, x− x∗〉

∣∣
=
∣∣〈Sxn, x− un − xn

αn
− xn

〉
− 〈Sx∗, x− un − xn

αn
− xn〉

+ 〈Sx∗, x− un − xn
αn

− xn〉 − 〈Sx∗, x− x∗
〉∣∣

≤
∣∣〈Sxn − Sx∗, x− un − xn

αn
− xn

〉∣∣
+
∣∣〈Sx∗, x∗ − un − xn

αn
− xn

〉∣∣
≤‖Sxn − Sx∗‖

∥∥x− un − xn
αn

− xn
∥∥+ ‖Sx∗‖

∥∥x∗ − un − xn
αn

− xn
∥∥. (2.2)

Remark 2. Note that the weak convergence

‖un − xn‖
αn

+ xn ⇀ x∗, (2.3)

have been claimed in [5](see page 15, line 8), but this is not valid since a real number can't be added with a
member of a Hilbert space in general.

Remark 3. In [5, line 8 in page 15], un−xnαn
+xn ⇀ x∗ must be replaced instead of the conclusion ‖un−xn‖αn

+

xn ⇀ x∗. Indeed, from the fact that xn ⇀ x∗ ( [5, line 10 page 14]) and lim
n→∞

‖un − xn‖
αn

= 0 ( [5, line 6

page 15]), it is implied that

lim
n→∞

〈un − xn
αn

+ xn − x∗, y〉 = lim
n→∞

〈un − xn
αn

, y〉+ lim
n→∞

〈xn − x∗, y〉

≤ lim
n→∞

‖un − xn‖
αn

‖y‖+ lim
n→∞

〈xn − x∗, y〉 = 0

for each y ∈ H (H is a real Hilbert space). Now, line 3 in page 16 in [5] in the above of the equation (3.43)
should be changed by:

≤ ‖Sxn − Sx∗‖‖x−
un − xn
αn

− xn‖+ |〈Sx∗, x∗ − un − xn
αn

− xn〉|.
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Remark 4. Note that the authors have taken limit on n on both side of the equation (2.2) to get the equation
(3.43) in [5] as follows:

lim
n→∞

〈
Sxn, x−

un − xn
αn

− xn
〉

= 〈Sx∗, x− x∗〉, (2.4)

this means that the strong convergence x∗− un−xn
αn
− xn have been used instead of the weak convergence. But

if x∗ − un−xn
αn

− xn converges strongly to 0, since moreover, lim
n→∞

‖un − xn‖
αn

= 0 [5, line 6 in page 15], it is

implied that

lim
n→∞

‖x∗ − xn‖ ≤ lim
n→∞

‖x∗ − un − xn
αn

− xn‖+ lim
n→∞

‖un − xn‖
αn

= 0,

then {xn} converges strongly to x∗ while the aim of Theorem 3.1 is to prove that {xn} converges strongly to
x∗ in the step VI. Hence this is a scienti�c error in the article.

Now, the following proof instead of (2.2) is given in the following remark:

Remark 5. ∣∣〈Sxn,x− un − xn
αn

− xn
〉
− 〈Sx∗, x− x∗〉

∣∣
=
∣∣〈Sxn, x− un − xn

αn
− xn

〉
− 〈Sx∗, x− un − xn

αn
− xn〉

+ 〈Sx∗, x− un − xn
αn

− xn〉 − 〈Sx∗, x− x∗
〉∣∣

≤
∣∣〈Sxn − Sx∗, x− un − xn

αn
− xn

〉∣∣
+
∣∣〈Sx∗, x∗ − un − xn

αn
− xn

〉∣∣
≤‖Sxn − Sx∗‖‖x−

un − xn
αn

− xn‖+ |〈Sx∗, x∗ − un − xn
αn

− xn〉|. (2.5)

then from the weak convergence of x∗ − un−xn
αn

− xn, we conclude the relation (3.43) in [5].

Remark 6. Another problem in theorem 3.1 in [5] is that the authors have used from the continuity of S
from the weak topology to the norm topology in [5](see page 16 line 4) while this can not be valid in general.
For example, let H = L2(R) equipped with the standard inner product. In L2(R), the strong convergence and
the weak convergence is not equivalent. Indeed, de�ne a sequence {fn} by fn(x) = χ(n,n+1)(x) where χ is the
characteristic function. Then one can check that {fn} converges weakly, but not strongly, to zero in L2(R).
Suppose S : L2(R)→ L2(R) be the identity mapping that is nonexpansive, too. But, if S is continuous from
the weak topology to the norm topology , then the strong convergence and the weak convergence in L2(R) are
equivalent which is a contradiction. Then we should to consider S as a continuous mapping from the weak
topology to the norm topology in theorem 3.1.

References

[1] R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, in:
Topological Fixed Point Theory and its Applications, vol. 6, Springer, New York, 2009.

[2] C.E. Chidume, O.M. Romanus and U.V. Nnyaba, An iterative algorithm for solving split equality �xed point problems for
a class of nonexpansive-type mappings in Banach spaces, Numer Algor, 82 (2019), 987-1007.

[3] Z. Jouymandi, F. Moradlou, Extragradient Methods for Solving Equilibrium Problems, Variational Inequalities, and Fixed
Point Problems, Numer. Funct .Anal. Optim., 38:11, (2017), 1391-1409.

[4] Z. Jouymandi and F. Moradlou, Extragradient methods for split feasibility problems and generalized equilibrium problems
in Banach spaces, Math. Methods Appl. Sci., (2017), DOI: 10.1002/mma.4647.

[5] K.R. Kazmi, R. Ali, M. Furkan, Hybrid iterative method for split monotone variational inclusion problem and hierarchical
�xed point problem for a �nite family of nonexpansive mappings, Numer Algor, (2017), https://doi.org/10.1007/s11075-
017-0448-0.



E. Soori, R.P. Agarwal, Adv. Theory Nonlinear Anal. Appl. 1 (2022), 28�32. 32

[6] A.E. Ofem and D.I. Igbokwe, A New Faster Four step Iterative Algorithm for Suzuki Generalized Nonexpansive Mappings
with an Application, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 482-506.

[7] K. Shimoji and W. Takahashi, Strong convergence to common �xed points of in�nite nonexpansive mappings and applica-
tions, Taiwanese J. Math., 5 (2001),387-404.

[8] L. Wangwe and S. Kumara, Some common �xed-point theorems for a pair of p-hybrid mappings via common limit range
property in G-metric space, Results in Nonlinear Anal. 4 (2021), 87-104.


	1 Introduction
	2 A simple proof for Kazmi et al.'s iterative scheme

