

Spectral Theorem for Compact Self-adjoint Operator in Γ-Hilbert space

Nirmal Sarkara ${ }^{\text {a }}$, Sahin Injamamul Islam ${ }^{\text {a }}$, Ashoke Das ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Raiganj University, Raiganj, India.

Abstract

In this article, we investigate some basic results of self-adjoint operator in Γ-Hilbert space. We proof some similar results on self-adjoint operator in this space with some specific norm. Finally we will prove that the spectral theorem for compact self-adjoint operator in Γ-Hilbert space and the converse is also true.

Keywords: compact operator, self-adjoint operator, Spectral theorem, Γ-Hilbert space.
2010 MSC: 46C50, 47B07.

1. Introduction

The theory of Hilbert spaces was first introduced and studied by David Hilbert (1862-1943). Hilbert space operators represent the physical quantities in real-life applications, that's why physicist and mathematicians are interested to classify the operators in Hilbert space. The concepts of spectral theory play a central role in Hilbert spaces, trying to classify linear operators.
The concepts of Γ-Hilbert space was first commenced by D.K Bhattacharya and T.E. Aman in their research paper [1]. This definition gives the generalization of Hilbert spaces in real or complex field. Further development of this literature was found in 2017 by A. Ghosh, A. Das, and T.E. Aman in their paper [2]. They defined γ-orthogonality, proved the Unique decomposition theorem and Representation theorem in Γ-Hilbert space. In [3] A. Das and S. Islam introduce self-adjoint operator and characterize these operator in Γ-Hilbert space.

Spectral theorem for self-adjoint operator is a generalization of the conventional theorem from Linear algebra, which states that "every Hermitian matrix is unitarily similar to a real diagonal matrix". This is

[^0]Received February 9, 2021, Accepted November 23, 2021, Online November 25, 2021
our motivation to study Spectral theory for a self-adjoint operator in Γ-Hilbert space. Before studying the spectral theory for compact self-adjoint operator, we have to prove some basic results in this space. Also, we present the spectral theorem in functional calculus form. Here we consider both finite-dimensional and infinite-dimensional complex Hilbert spaces. We have made some small changes in the definition of Γ-Hilbert space after consulting with the main authors [1].

2. Preliminaries

In this paper, we shall denote the set of all bounded linear operator on a Γ-Hilbert space H_{Γ} is $\mathcal{B}\left(H_{\Gamma}\right)$. An operator is called finite rank (dimensional) if its range is finite dimension. A complex number η is an eigenvalue of T if $T x=\eta x$ holds for any non zero vector $x \in H_{\Gamma}$. The set of all eigen values of T denoted by $\sigma_{p}(T)$.

At first, we recall some important definitions :
Definition 2.1. [1] Let H be a linear space over the field \mathbb{C} and Γ be a semi group with respect to addition. A mapping $\langle\cdot, .,\rangle:. H \times \Gamma \times H \longrightarrow \mathbb{C}$ is called a Γ-inner product on H if the following conditions are satisfied: (i) $\langle x, \gamma, y\rangle$ is linear in each variable.
(ii) $\langle x, \gamma, y\rangle=\overline{\langle y, \gamma, x\rangle}$ for all $x, y \in H$ and for all $\gamma \in \Gamma$.
(iii) $\langle x, \gamma, x\rangle>0$ for all $x \neq \theta$ and for all $\gamma \in \Gamma$.
(iv) $\langle x, \gamma, x\rangle=0$ if $x=\theta$.

Definition 2.2. ($H, \Gamma,\langle., .,\rangle$.$) is called a \Gamma$-inner product space over \mathbb{C}. A complete Γ-inner product space is called Γ-Hilbert space and is denoted by H_{Γ}.

Now consider as

$$
\|x\|_{\gamma}=\langle x, \gamma, x\rangle^{\frac{1}{2}}
$$

then it is easy to prove that $\|x\|_{\gamma}$ satisfy all the conditions of norm. The author in [2] has all ready proved the following results.

Definition 2.3. [2] Let $x, y \in H_{\Gamma}$, then x, y are γ-orthogonal if and only if $\langle x, \gamma, y\rangle=0$. In symbol we write $x \perp_{\gamma} y$.

Let M is a subset of H_{Γ} then define γ-orthogonal compliment of M as
$M^{\perp_{\gamma}}=\left\{x \in H_{\Gamma}: x \perp_{\gamma} y\right.$ for all $\left.y \in H_{\Gamma}\right\}$.
Definition 2.4. A sequence $\left(x_{n}\right)$ in H_{Γ} is said to be γ-orthonormal if for any $\gamma \in \Gamma$ it follows two conditions

1. $\left\langle x_{n}, \gamma, x_{m}\right\rangle=1$ when $n=m$;
2. $\left\langle x_{n}, \gamma, x_{m}\right\rangle=0$ when $n \neq m$.

Theorem 2.5. [2] For all $x, y \in H_{\Gamma}$ and any $\gamma \in \Gamma$

1. Cauchy-Schwartz's inequality: $|\langle x, \gamma, y\rangle| \leq\|x\|_{\gamma}\|y\|_{\gamma}$.
2. Parallelogram Law : $\quad\|x+y\|_{\gamma}^{2}+\|x-y\|_{\gamma}^{2}=2\|x\|_{\gamma}^{2}+2\|y\|_{\gamma}^{2}$.
3. Pythagorean Theorem: $x \perp_{\gamma} y$ if and only if

$$
\|x+y\|_{\gamma}^{2}=\|x\|_{\gamma}^{2}+\|y\|_{\gamma}^{2} .
$$

Theorem 2.6. [2] (Projection Theorem). Let M be a closed subspace of H_{Γ}. Then $M^{\perp_{\gamma}}$ is a closed subspace and $H_{\Gamma}=M \oplus M^{\perp \gamma}$.

2.1. A bounded linear Operator on Γ-Hilbert space

Definition 2.7. A linear operator T on a Γ-Hilbert space H_{Γ} is said to be bounded if there exists $C>0$ such that $\|T x\|_{\gamma} \leq C\|x\|_{\gamma}$ for all $x \in H_{\Gamma}$ and for any $\gamma \in \Gamma,\|T\|_{\gamma}$ is defined by

$$
\|T\|_{\gamma}=\inf \left\{C>0:\|T x\|_{\gamma} \leq C\|x\|_{\gamma} \quad \text { for all } x \in H_{\Gamma}\right\}
$$

then $\|T\|_{\gamma}$ is said to be the operator γ norm of T.
Definition 2.8. A linear operator $T: H_{\Gamma} \longrightarrow H_{\Gamma}$ is compact if for every bounded sequence $\left(x_{n}\right)$ in H_{Γ}, there exists a convergent sub sequence of $\left(T x_{n}\right)$ in H_{Γ}.

Lemma 2.9. If T is compact operator and M is a closed subspace of H_{Γ}, then the restriction operator $\left.T\right|_{M}$ is also compact.

Theorem 2.10. [5] Every finite-dimensional bounded operator is compact.

2.2. Self-adjoint Operator on Γ-Hilbert space

Definition 2.11. [3] A bounded linear operator $T: H_{\Gamma} \longrightarrow H_{\Gamma}$ on Γ-Hilbert space is called self-adjoint if and only if for all $x, y \in H_{\Gamma}$, we have $\langle T x, \gamma, y\rangle=\langle x, \gamma, T y\rangle$.
i.e. T is self-adjoint if and only if $T=T^{*}$.

We start with some basic properties of self-adjoint operator on Γ-Hilbert space.
Theorem 2.12. [3] Let T be a self-adjoint operator on H_{Γ} and for any γ, then

$$
\|T\|_{\gamma}=\sup \left\{|\langle T x, \gamma, x\rangle|:\|x\|_{\gamma}=1\right\} .
$$

3. Main Results

Proposition 3.1. Let A, B be an operator on $a \Gamma$-Hilbert space H_{Γ}. Then A^{*} and B^{*} is also an operator on Γ - Hilbert space H_{Γ} and the following properties hold:

1. $(A+B)^{*}=A^{*}+B^{*}$
2. $(A B)^{*}=B^{*} A^{*}$
3. $(\lambda A)^{*}=\bar{\lambda} A^{*}$
4. $\left(B^{*}\right)^{*}=B$
5. $\left\|B^{*}\right\|_{\gamma}=\|B\|_{\gamma}$

Proof. all the proofs are straight forward.

Theorem 3.2. Let $T \in \mathcal{B}\left(H_{\Gamma}\right)$, then $\|T\|_{\gamma}=\sup \left\{\|T x\|_{\gamma}:\|x\|_{\gamma}=1\right\}$ for any $\gamma \in \Gamma$.
Proof. Let us consider $M=\sup \left\{\|T x\|_{\gamma}:\|x\|_{\gamma}=1\right\}$. Since T is bounded so $\|T x\|_{\gamma} \leq\|T\|_{\gamma}\|x\|_{\gamma}$. Now $\|x\|_{\gamma}=1$ implies that $\|T x\|_{\gamma} \leq\|T\|_{\gamma}$. By previous definition, we have $M \leq\|T\|_{\gamma}$. On the other hand for any vector $x \in H_{\Gamma}$, we have

$$
\|T x\|_{\gamma}=\left\|T\left(\|x\| \frac{x}{\|x\|}\right)\right\|_{\gamma}=\left\|T\left(\frac{x}{\|x\|}\right)\right\|_{\gamma}\|x\|_{\gamma} \leq M\|x\|_{\gamma} .
$$

So $\|T\|_{\gamma} \leq M$. Therefore $\|T\|_{\gamma}=M$.

Theorem 3.3. Let T be a Self-adjoint Operator on H_{Γ}, then $\sigma_{p}(T) \subseteq \mathbb{R}$ for any $\gamma \in \Gamma$.
Proof. Let $\xi \in \sigma_{p}(T)$ and $T x=\xi x \quad(x \neq \theta)$. Then

$$
\xi\|x\|_{\gamma}^{2}=\langle T x, \gamma, x\rangle=\langle x, \gamma, T x\rangle=\bar{\xi}\|x\|_{\gamma}^{2} .
$$

Which gives us $\xi=\bar{\xi}$ and the proof is complete.

Theorem 3.4. Suppose x and y are eigenvectors of a Self-adjoint operator T on H_{Γ} corresponding to distinct eigenvalues, then $x \perp_{\gamma} y$.

Proof. Let $\eta, \mu \in \sigma_{p}(T)$ such that $T x=\eta x(x \neq \theta)$ and $T y=\mu y(y \neq \theta)$. Then

$$
\eta\langle x, \gamma, y\rangle=\langle T x, \gamma, y\rangle=\langle x, \gamma, T y\rangle=\mu\langle x, \gamma, y\rangle,
$$

which implies $(\eta-\mu)\langle x, \gamma, y\rangle=0$. Since η and μ are distinct real numbers, then $\langle x, \gamma, y\rangle=0$. Hence $x \perp_{\gamma} y$.

Theorem 3.5. Let H_{Γ} be a complex Hilbert space and T be a bounded operator on H_{Γ}, then T is self-adjoint if and only if $\langle T x, \gamma, x\rangle \in \mathbb{R}$ for all $x \in H_{\Gamma}$ for all $\gamma \in \Gamma$.

Proof. Suppose T is self-adjoint then we have,

$$
\langle T x, \gamma, x\rangle=\langle x, \gamma, T x\rangle=\overline{\langle T x, \gamma, x\rangle} .
$$

Hence $\langle T x, \gamma, x\rangle \in \mathbb{R}$.
Conversely, let $\langle T x, \gamma, x\rangle \in \mathbb{R}$ for all $x \in H_{\Gamma}$ and for all $\gamma \in \Gamma$.
If $c \in \mathbb{C}$ and $x, y \in H_{\Gamma}$ then

$$
\langle T(x+c y), \gamma,(x+c y)\rangle \in \mathbb{R},
$$

implies that

$$
\langle T(x+c y), \gamma, x\rangle=\overline{\langle T(x+c y), \gamma, x\rangle},
$$

that is

$$
\langle T(x+c y), \gamma, x\rangle=\langle x, \gamma, T(x+c y)\rangle .
$$

simplify the above equation gives us

$$
c\langle T y, \gamma, x\rangle+\bar{c}\langle T x, \gamma, y\rangle=\bar{c}\langle x, \gamma, T y\rangle+c\langle y, \gamma, T x\rangle
$$

that is

$$
c\langle T y, \gamma, x\rangle+\bar{c}\langle T x, \gamma, y\rangle=\bar{c}\left\langle T^{*} x, \gamma, y\right\rangle+c\left\langle T^{*} y, \gamma, x\right\rangle .
$$

By first taking $c=1$ and then $c=i$ we obtain as two equations

$$
\langle T y, \gamma, x\rangle+\langle T x, \gamma, y\rangle=\left\langle T^{*} x, \gamma, y\right\rangle+\left\langle T^{*} y, \gamma, x\right\rangle
$$

and

$$
i\langle T y, \gamma, x\rangle-i\langle T x, \gamma, y\rangle=-i\left\langle T^{*} x, \gamma, y\right\rangle+i\left\langle T^{*} y, \gamma, x\right\rangle
$$

By cancel i from last equation and add those two equation implies

$$
\langle T y, \gamma, x\rangle=\left\langle T^{*} y, \gamma, x\right\rangle
$$

Hence

$$
\langle T y, \gamma, x\rangle=\langle x, \gamma, T y\rangle
$$

for all $x, y \in H_{\Gamma}$ for all $\gamma \in \Gamma$. Thus $T=T^{*}$.

Theorem 3.6. Let T be a bounded Self-adjoint operator on H_{Γ}, then either $\|T\|_{\gamma}$ or $-\|T\|_{\gamma}$ is an eigenvalue of T for any $\gamma \in \Gamma$.

Proof. By theorem (2.12) there exist a sequence $\left(y_{n}\right)$ in H_{Γ} with $\left\|y_{n}\right\|_{\gamma}=1$
for all n such that $\left\langle T y_{n}, \gamma, y_{n}\right\rangle \longrightarrow \xi$, where $\xi=\|T\|_{\gamma}$ or $\xi=-\|T\|_{\gamma}$.
Now

$$
\begin{aligned}
& \left\|T y_{n}-\xi y_{n}\right\|_{\gamma}^{2}=\left\|T y_{n}\right\|_{\gamma}^{2}-2 \xi\left\langle T y_{n}, \gamma, y_{n}\right\rangle+\xi^{2} \\
\leq & 2 \xi^{2}-2 \xi\left\langle T y_{n}, \gamma, y_{n}\right\rangle \quad \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Since T is compact, there exists a sub sequence $\left(T y_{n j}\right)$ of $\left(T y_{n}\right)$ such that $T y_{n j} \rightarrow y$. So $\left(T y_{n}-\xi y_{n}\right) \longrightarrow 0$ as $n \rightarrow \infty$. That is $y_{n} \longrightarrow \frac{1}{\xi} T y$ where $\mathrm{y}=\lim T y_{n_{j}}=\frac{1}{\xi} T y$. Hence ξ is an eigen value of T .

Corollary 3.7. If T be a compact self-adjoint operator on H_{Γ}, then

$$
\|T\|_{\gamma}=\max \left\{|\langle T x, \gamma, x\rangle|:\|x\|_{\gamma}=1\right\} .
$$

Theorem 3.8. (The Spectral theorem) Let T be a bounded compact self-adjoint operator on H_{Γ}. Then for any $\gamma \in \Gamma$

1. there exists a system of orthonormal eigenvectors $\psi_{1}, \psi_{2}, \psi_{3}, \ldots$ of T and corresponding eigenvalues ξ_{1}, ξ_{2}, ξ_{3}, \ldots such that $\left|\xi_{1}\right| \geq\left|\xi_{2}\right| \geq\left|\xi_{3}\right| \geq \ldots$.
2. If ξ_{n} is infinite, then $\xi_{n} \longrightarrow 0$ as $n \rightarrow \infty$.
3. If $T x=\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}$ for all $x \in H_{\Gamma}$, then the series on the right hand side converges in the operator norm of $\mathcal{B}\left(H_{\Gamma}\right)$.

Proof. 1. Let $H_{1}=H$ and $T_{1}=T$. Theorem (3.6) guarantees that, there exists an eigenvalue ξ_{1} of T_{1} and an eigenvector ψ_{1} such that $\left\|\psi_{1}\right\|_{\gamma}=1$ and $\left|\xi_{1}\right|=\left\|T_{1}\right\|_{\gamma}$. Since span $\left\{\psi_{1}\right\}$ is a closed subspace of H_{1}, then theorem (2.6) gives us $H_{1}=\operatorname{span}\left\{\psi_{1}\right\} \oplus \operatorname{span}\left\{\psi_{1}\right\}^{\perp_{\gamma}}$.

Again let $H_{1}=\operatorname{span}\left\{\psi_{1}\right\}^{\perp_{\gamma}}$. Clearly H_{2} is a closed subspace of H_{1} and $T\left(H_{2}\right) \subseteq H_{2}$. Now let $T_{2}=\left.T_{1}\right|_{H_{2}}$.
Then T_{2} is self-adjoint operator and also compact in $\mathcal{B}\left(H_{2}\right)$. If $T_{2}=0$, then it is trivially true. Assume that $T_{2} \neq 0$. Then by Theorem (3.6), there exists an eigenvalue ξ_{2} of T_{2} with $\left|\xi_{2}\right|=\left\|T_{2}\right\|_{\gamma}$ and a corresponding eigenvector ψ_{2} such that $\left\|\psi_{2}\right\|_{\gamma}=1$.
Since T_{2} is a restriction of $T_{1},\left|\xi_{2}\right|=\left\|T_{2}\right\|_{\gamma} \leq\left\|T_{1}\right\|_{\gamma}=\left|\xi_{1}\right|$.
By the construction, ξ_{1} and ξ_{2} are orthonormal. Now let $H_{3}=\operatorname{span}\left\{\psi_{1}, \psi_{2}\right\}^{\perp_{\gamma}}$. Clearly $H_{3} \subseteq H_{2}$. It is easy to show that $T\left(H_{3}\right) \subseteq H_{3}$. The operator $T_{3}=\left.T\right|_{H_{3}}$ is compact and self-adjoint. Hence by theorem (3.6) there exits an eigen value ξ_{3} of T_{3} and a corresponding eigen vector ψ_{3} with $\left\|\psi_{3}\right\|_{\gamma}=1$. Here $\left|\xi_{3}\right|=\left\|T_{3}\right\|_{\gamma}$ and hence $\left|\xi_{3}\right| \leq\left|\xi_{2}\right| \leq\left|\xi_{1}\right|$.
Repeating the above process in the same manner, in some stage either $\mathrm{n}, T_{n}=0$ or there exists a sequence ξ_{n} of eigenvalues of T and corresponding vector ψ_{n} with $\left\|\psi_{n}\right\|_{\gamma}=1$ and $\left|\xi_{n}\right|=\left\|T_{n}\right\|_{\gamma}$. Also $\left|\xi_{n}\right| \geq\left|\xi_{n+1}\right|$ for each n.
2. If possible let ξ_{n} does not converges to 0 , there exists $\epsilon>0$ such that $\left|\xi_{n}\right| \geq \epsilon$ for infinitely many n. If $m \neq n$ then

$$
\left\|T \psi_{n}-T \psi_{m}\right\|_{\gamma}^{2}=\left\|\xi \psi_{n}-\xi \psi_{m}\right\|_{\gamma}^{2}=\xi_{n}^{2}+\xi_{m}^{2}>\epsilon^{2}
$$

This implies that $T \psi_{n}$ has no convergent sub sequence, which contradict the fact that T is compact. Hence $\xi_{n} \longrightarrow 0$ as $n \rightarrow \infty$.
3. Here we consider two cases.

Case 1: If $T_{n}=0$ for some n .

$$
\text { Let } \quad x_{n}=x-\sum_{k=1}^{n}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k} \text {. }
$$

Then x_{n} and ψ_{i} are γ-orthogonal for $1 \leq i \leq n$. Hence

$$
0=T_{n} x_{n}=T x-\sum_{k=1}^{n} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k} .
$$

That is

$$
T x=\sum_{k=1}^{n} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k} .
$$

Case 2: If $T_{n} \neq 0$ for infinitely many n. For $x \in H_{\gamma}$ by case 1 , we have

\[

\]

Finally we get the result

$$
T x=\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k} .
$$

It is natural to ask that the converse of the above theorem is true or not, the answer is given in the next theorem. Before that we give an example.

Example 3.9. Let us consider $H_{\Gamma}=\ell^{2}$ and $\Gamma=(0, \infty)$ with Γ inner product $\langle x, \gamma, y\rangle=\sum_{k=0}^{\infty} x_{k} \gamma y_{k}$, where $x=\left(x_{1}, x_{2}, \ldots.\right)$ and $y=\left(y_{1}, y_{2}, \ldots.\right)$ are elements of ℓ^{2}. Define $T: \ell^{2} \rightarrow \ell^{2}$ by

$$
T\left(x_{1}, x_{2}, . .\right)=\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)
$$

Then T is compact self-adjoint. Also $T e_{n}=\frac{1}{n} e_{n}$, thus $\frac{1}{n}$ is an eigenvalue with an eigen vector e_{n}. Since $\frac{1}{n} \longrightarrow 0$ as $n \rightarrow \infty$. Then by spectral theorem (3.8) T can be represented as for all $x \in \ell^{2}$.

$$
T(x)=\sum_{k=0}^{\infty} \frac{1}{n}\left\langle x, \gamma, e_{n}\right\rangle e_{n}
$$

Theorem 3.10. Suppose that $\psi_{1}, \psi_{2}, \psi_{3}, \ldots$ sequence of orthonormal vectors in H_{Γ} and $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ be a sequence of real number such that $\left\{\xi_{n}\right\}$ is finite or converges to 0 . Then for any $\gamma \in \Gamma$ and $x \in H_{\Gamma}$ the operator defined by

$$
T x=\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}
$$

is compact and self-adjoint.
Proof. We prove it in two cases.
Case 1: $\left\{\xi_{n}\right\}$ is finite Consider

$$
T x=\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}
$$

Then

$$
\|T x\|_{\gamma}^{2}=\langle T x, \gamma, T x\rangle=\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}\left|\left\langle x, \gamma, \psi_{k}\right\rangle\right|^{2} \leq \max _{k}\left|\xi_{n}\right|\|x\|_{\gamma}^{2}
$$

Therefore, T is bounded and T is a finite rank operator. Hence T is compact.

Case 2: $\left\{\xi_{n}\right\}$ is infinite and $\xi_{n} \longrightarrow 0$ as $n \rightarrow \infty$. Then by the spectral theorem (3.8), we have

$$
\|T x\|_{\gamma}^{2}=\sum_{k=1}^{\infty}\left|\xi_{k}\right|^{2}\left|\left\langle x, \gamma, \psi_{k}\right\rangle\right|^{2} \leq \max _{k \geq n}\left|\xi_{n}\right|\|x\|_{\gamma}^{2}
$$

Thus T is bounded operator. Now define $T_{n} x=\sum_{k=1}^{n} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}$.
Then

$$
\begin{aligned}
&\left\|T-T_{n}\right\|_{\gamma}^{2}=\sup _{\|x\|=1}\left\{\left\|\sum_{k=1}^{\infty}\left|\xi_{k}\right|\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}\right\|_{\gamma}^{2}\right. \\
& \leq \sup _{k>n}\left|\xi_{n}\right|^{2} \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since each T_{n} is finite rank and hence compact, so T is compact. Now

$$
\begin{aligned}
\langle T x, \gamma, y\rangle & =\left\langle\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle \psi_{k}, \gamma, y\right\rangle \\
& =\sum_{k=1}^{\infty} \xi_{k}\left\langle x, \gamma, \psi_{k}\right\rangle\left\langle\psi_{k}, \gamma, y\right\rangle \\
& =\sum_{k=1}^{\infty} \xi_{k}\left\langle\psi_{k}, \gamma, y\right\rangle\left\langle x, \gamma, \psi_{k}\right\rangle \\
& =\sum_{k=1}^{\infty} \overline{\xi_{k}} \overline{\left\langle y, \gamma, \psi_{k}\right\rangle}\left\langle x, \gamma, \psi_{k}\right\rangle\left(\text { as } \xi_{k} \text { real number for all } \mathrm{k}\right) \\
& =\left\langle x, \gamma, \sum_{k=1}^{\infty} \xi_{k}\left\langle y, \gamma, \psi_{k}\right\rangle \psi_{k}\right\rangle=\langle x, \gamma, T y\rangle .
\end{aligned}
$$

Hence T is self-adjoint.

Acknowledgments

The authors would like to thank Dr.T.E. Aman for his valuable suggestions to improve this paper. The first author would like to acknowledge the financial support form University Grant Commission (UGC-NET JRF).

References

[1] T.E. Aman, D.K. Bhattacharya, Γ-Hilbert Space and linear quadratic control problem, Rev. Acad. Canar. Cienc, XV(Nums. 1-2), (2003), 107-114.
[2] A. Ghosh, A. Das, T.E. Aman, Representation Theorem on Г-Hilbert Space, International Journal of Mathematics Trends and Technology (IJMTT), V52(9), December (2017), 608-615.
[3] S. Islam, On Some bounded Operators and their characterizations in Γ-Hilbert Space, Cumhuriyet Science Journal, 41 (4) (2020), 854-861.
[4] J.B. Conway, A Course in Functional Analysis, 2nd ed., USA: Springer, (1990), 26-60.
[5] L. Debnath, P. Mikusinski, Introduction to Hilbert Space with applications, 3rd ed, USA: Elsevier, (2005), 145-210.
[6] B.V. Limaye, Functional Analysis, 2nd ed., Delhi New age International(p) Limited, (1996).
[7] B.K. Lahiri, Elements Of Functional Analysis, 5th ed, Calcutta, The World Press, (2000).

[^0]: Email addresses: nrmlsrkr@gmail.com (Nirmal Sarkar), sahincool92@gmail.com (Sahin Injamamul Islam), ashoke.avik@gmail.com (Ashoke Das)

