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Abstract

The main purpose of this paper, is to study the regional controllability concept of a semi-linear time-fractional
di�usion systems involving Caputo derivative of order α ∈ (0, 1). The main result is obtained by using an
extension of the Hilbert Uniqueness Method (HUM) in addition to a �xed point technique and under several
assumptions on the data of the considered equation. At the end, some numerical simulations are given to
illustrate the e�ciently of our result.
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1. Introduction

Controllability is one of the fundamental concepts in the �eld of control theory, it plays a central role in
the analysis and control of both �nite and in�nite dimensional systems ([5],[2]). There are several faces to
this concept, for instance, exact controllability, null controllability and approximate controllability, the most
adequate one in applications is the approximate controllability which consists of steering a system into an
arbitrary small neighborhood of �nite state from an arbitrary initial state, several researchers studied this
concept for systems which are represented by linear and nonlinear evolution equations, in particular there
have been many papers on the approximate controllability of semi-linear systems, using several approach,
for example the Hilbert Uniqueness Method (HUM) introduced by Lions where the �xed point theory and
the semi-group theory are e�ectively used ([11],[12]).
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From a practical point of view, it is needed to control such systems only in a subregion of its evolution
domain, this is the aim of regional controllability. This concept has been widely developed using partial
di�erential equations and has some interesting results ([18],[19]).

In the last decades, a considerable interest has been shown in the so-called fractional calculus, which is a
generalization of integer order integration and di�erentiation to arbitrary order . Di�erent forms of fractional
operators have been introduced by Riemann-Liouville and Caputo along time [10].

Fractional partial di�erential equations (FPDEs) have many applications in physics, chemistry, engineer-
ing, aerodynamics, biology, �nance, control, for example the viscoelastic behavior of geological strata and of
metals and glasses have been modeled by Caputo derivative ([16]). Due to the memory character of fractional
derivative, that can describe many phenomena that integer derivative cannot characterize like the anamalous
di�usion models. Several researchers studied the existence of mild solutions of fractional systems which is
based on the probability density function ( [9], [4],[20],[21] and the references therein), Ren and Mahmudov
[15] investigated the fractional di�erential equations . Wang and Zhou [17] studied the optimal control for
a class of controllability for a class of semi-linear fractional systems in Banach space. Duraisamy et al. [3]
investigated the controllability problem for a class of fractional impulsive evolution systems of mixed type
in an in�nite dimensional Banach space by a new estimation technique of the measure of noncompactness.

Several authors have established the regional controllability (internal, boundary, gradient... ) results for
linear time-fractional di�usion systems ([6],[7],[8],[1]).

The motivation of this work rose from both the development of regional analysis and fractional calculus,
especially for the semi-linear fractional equations.

The rest of this work is organized as follows. In section 2 we present some basic de�nitions of fractional
operators, in section 3 we present the problem statement, some properties and the mathematical concepts of
the regional controllability problem. In section 4 we study the optimal control using HUM approach for time
fractional semi-linear systems and we �nish by given an algorithm and a successful numerical application in
the last section.

2. Some Basic De�nitions

In this section, we introduce the de�nition of some fractional operators ( fractional integrals, fractional
derivatives), we also give some results which will be used throughout this paper.

De�nition 2.1. [10] The left (resp. right) sided fractional integral of a function y at a point t of order
α ∈]0, 1] can be written as

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds, 0 < t ≤ T,

respectively

IαT−y(t) =
1

Γ(α)

∫ T

t
(s− t)α−1y(s)ds, 0 ≤ t < T.

De�nition 2.2. [10] We de�ne the left (resp. right) Riemann-Liouville fractional derivative of y at a point
t of order α ∈]0, 1] with the formula

RLDα
0+f(t) =

d

dt
I1−α
0+

f(t) 0 < t ≤ T,

respectively

RLDα
T−f(t) = − d

dt
I1−α
T− f(t) 0 ≤ t < T.

De�nition 2.3. [10] The Caputo fractional derivative (left sided) of y at a point t of order α ∈]0, 1] is
de�ned by the following equations :

CDα
0+y(t) = I1−α

0+
d

dt
(y(t)) 0 ≤ t < T. (1)
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We recall the following proposition.

Proposition 2.4. ([10],[6]) Let ϕ be a function de�ned on [0, T ]. We de�ne the re�exion operator of a
function ϕ, denoted Q, by

(Qϕ)(t) = ϕ(T − t),

then we have the two following results

QIαT−ϕ(t) = Iα0+Qϕ(t) QRLDα
T−ϕ(t) =RL Dα

0+Qϕ(t). (2)

3. Problem Statement

Let Ω be an open bounded subset of Rn with smooth boundary ∂Ω. For a time T > 0, let Q = Ω×]0, T ]
and Σ = ∂Ω×]0, T ], then we consider the following Fractional di�usion semi-linear system of order α ∈]0, 1]
: 

CDα
0+y(x, t) = Ay(x, t) +Ny(x, t) +Bu(t) in Q

y(ξ, t) = 0 on Σ
y(x, 0) = y0(x) in Ω

(3)

Where CDα
0+ is the Caputo fractional derivative of order α de�ned by (1), A is the in�nitesimal generator

of a C0 semi-group {S(t)}t≥0 on the Hilbert space X = L2(Ω), N a locally Lipschitz continuous nonlinear
operator, B is bounded linear operator from Rp

into X where p is the number of actuators, u is given in
U = L2(0, T,Rp

) and y0 ∈ X.
System (3) admits a mild solution in C(0, T ; X) satisfying the following integral equation [21],[4]:

yu(t) = Sα(t)y0 +

∫ t

0
(t− τ)α−1Kα(t− τ)[Ny(τ) +Bu(τ)]dτ (4)

where Sα(t) =

∫ ∞
0

φα(θ)S(tαθ)dθ, Kα(t) = α

∫ ∞
0

θφα(θ)S(tαθ)dθ

and
φα(θ) =

1

α
θ−1− 1

αWα(θ−
1
α ) ≥ 0.

The function φα is called "the Wright function" and its given by means of a probability density, Wα de�ned
by :

Wα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)

n!
sin(nπα).

We associate to system (3), the following linear system :
CDα

0+y(x, t) = Ay(x, t) +Bu(t) in Q
y(ξ, t) = 0 in Σ
y(x, 0) = y0(x) in Ω

(5)

We recall some lemmas
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Lemma 3.1. [1](Fractional Green's formula) Let's consider 0 < α ≤ 1, then for any Φ ∈ C∞(Q), we have∫ T

0

∫
Ω

[CDα
0+y(x, t)−Ay(x, t)]Φ(x, t)dxdt =

∫ T

0

∫
Ω

[RLDα
T−Φ(x, t)−A∗Φ(x, t)]y(x, t)dxdt

+

∫
Ω
y(x, T )IαT−Φ(x, T )dx

−
∫

Ω
y(x, 0)IαT−Φ(x, 0)dx

+

∫ T

0

∫
∂Ω

∂y(x, t)

∂νA
Φ(x, t)dνdt

−
∫ T

0

∫
∂Ω
y(x, t)

∂Φ(x, t)

∂νA∗
dνdt.

Where A∗ is the adjoint operator of A.

Lemma 3.2. [21] For any t ≥ 0, the operators Sα(t) and Kα(t) are linear and bounded, i.e., there exist
M > 0 such that

|| Sα(t) ||L(X,X)≤M and || Kα(t) ||L(X,X)≤
Mα

Γ(1 + α)
. (6)

Lemma 3.3. [21] The operators {Sα(t)}t≥0 and {Kα(t)}t≥0 are continous.

Lemma 3.4. [21] Let's consider α1 ∈]0, α[ and t > 0, consider the mapping

h : [0, t[ −→ R+

s 7−→ (t− s)α−1.

Therefore

h(s) ∈ L
1

1−α1 [0, t],

||(t− s)α−1||
L

1
1−α1 [0,t]

=
t(1+a)(1−α1)

(1 + a)1−α1
.

Where a =
α− 1

1− α1
.

Let ω be a non empty regular subset of Ω, then the restriction operator is de�ned by

χω : L2(Ω) −→ L2(ω)
y 7−→ y|ω ,

and we denote by χ∗ω its adjoint.

We give the two following de�nitions.

De�nition 3.5. The system (3) is said to be exactly regionally controllable in ω ( ω-controllable) at time T
if for all yd ∈ L2(ω), there exist a control u ∈ U such that χωyu(T ) = yd.

De�nition 3.6. The system (3) is said to be approximately regionally controllable in ω (approximately
ω-controllable) at time T if for all yd ∈ L2(ω), for all ε > 0, there exist a control u ∈ U such that ||
χωyu(T )− yd ||L2(ω)≤ ε.

Question: Given a desired state "yd", can we �nd a control u∗ which steers the studies system (3) to yd,
only in a subregion ω of Ω ?
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4. HUM Approach

The purpose of this section is to explore the Hilbert Uniqueness Method for fractional semi linear system,
which is an extension of HUM approach [12] developed in the case of distributed semi linear system on [19]
Let's consider

G =
{
f ∈ L2(Ω) f = 0 in Ω \ ω

}
and

C = {h ∈ L2(Ω) : h = 0 in ω},

We have G ⊆ C⊥.
For g ∈ G we consider the auxiliary system{

QRLDα
T−ϕ(t) = QA∗ϕ(t) t ∈ [0, T ]

lim
t→0+

QI1−α
T− ϕ(t) = g, (7)

by the relation (2) of proposition (2.4), system (7) is equivalent to{
RLDα

0+Qϕ(t) = A∗Qϕ(t) t ∈ [0, T ]

lim
t→0+

I1−α
0+

Qϕ(t) = g, (8)

which has the following mild solution [20] :

ϕ(t) = (T − t)α−1K∗α(T − t)g. (9)

Where K∗α is the adjoint of Kα and it can be written as follows:

K∗α(t) = α

∫ ∞
0

θφα(θ)S∗(tαθ)dθ.

Consider the system (3) controlled by u(t) = B∗ϕ(t){
CDα

0+y(t) = Ay(t) +Ny(t) + BB∗ϕ(t) t ∈ [0, T ]
y(0) = y0

(10)

which, we decompose to the following three systems{
CDα

0+ψ0(t) = Aψ0(t) t ∈]0, T ]
ψ0(0) = y0,

(11)

{
CDα

0+ψ1(t) = Aψ1(t) + BB∗ϕ(t) t ∈]0, T ]
ψ1(0) = 0,

(12){
CDα

0+ψ2(t) = Aψ2(t) +N(ψ0 + ψ1 + ψ2) t ∈]0, T ]
ψ2(0) = 0.

(13)

For a given g ∈ G we de�ne the mapping:

|| . ||G : g 7−→ || B∗ϕ(.) ||L2(0,T ;Rp) .

We have the following lemma.

Lemma 4.1. [8] If the linear system (5) is approximately ω-controllable then || . ||G de�ne a norm in G
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We denote the completion of G with respect to norm || . ||G again by G.
Let µ : G→ C⊥ be the nonlinear operator de�ned by

µg = Λg + Kg,

where Λg = P(ψ1(T )), Kg = P(ψ2(T )) and P = χ∗ωχω.
The problem of regional controllability of system (3) is reduced to the equation

µg = χ∗ωyd − P(ψ0(T )),

which is equivalent to
Λg = χ∗ωyd − P(ψ0(T ))−Kg. (14)

If the linear system (5) is approximately ω-controllable, then Λ is isomorphism ( [6]), in this case, by applying
the inverse operator of Λ to equation (14), we have

g = Λ−1χ∗ωyd − Λ−1P(ψ0(T ))− Λ−1Kg.

Now we de�ne the operator
K̃(g) = Λ−1χ∗ωyd − Λ−1P(ψ0(T ))− Λ−1Kg. (15)

Then the ω-controllability of system (3) under certain conditions becomes a problem of �nding a �xed point
of the operator K̃ .
Under the following conditions:

(H1) α ∈
]

1

2
, 1

]
.

(H2) The linear system (5) is approximately ω− controllable.
(H3) The nonlinear operator N satis�es the condition

|| N(x) ||L2(0,T ;X)≤ c || x ||
2

L2(0,T ;X) 0 < c ≤ 1, (16)

We obtain the following theorem.

Theorem 4.2. Let ϕ de�ned by (9) and g the initial state of system (8).
If the hypotheses (H1)-(H3) are satis�ed, then g is a unique �xed point of operator K̃ given by formula (15).
Therefore u∗(t) = B∗ϕ(t) steers the system (3) to the desired regional state yd in ω at t = T .

Proof. The proof of this theorem is technical, therefore it is convenient to divide it into two steps:
Step 1: We prove that K̃ is a compact operator, so it is su�cient to prove that K is a compact operator.
Let's consider k > 0 and a set

Bk = {f ∈ G | ||f ||G ≤ k}.

We have
K(Bk) = {P(ψ2(T ) | g ∈ Bk)},

where g is the initial state of system (8).
Remarque that:

K(Bk) ⊆ {P(ψ2(t) / g ∈ Bk)} := B̃k.

Then it is su�cient to show that B̃k is relatively compact.
Since ψ2(.) ∈ C(0, T ; X) is a mild solution of system (13), we have

ψ2(t) =

∫ t

0
(t− s)α−1Kα(t− s)N [ψ0(s) + ψ1(s) + ψ2(s)]ds t > 0, (17)



A.Tajani, F-Z. EL Alaoui, A. Boutoulout, Adv. Theory Nonlinear Anal. Appl. 1 (2022), 1�13. 7

also there exists cp > 0 such that
||P(ψ2(t)||C⊥ ≤ cp||ψ2(t)||X.

∗ We show that B̃k is uniformly bounded.
From the integral equation (17) and lemma (3.2), we obtain

||ψ2(t)||X ≤
∫ t

0
||(t− s)α−1Kα(t− s)N [ψ0(s) + ψ1(s) + ψ2(s)]||Xds

≤ Mα

Γ(1 + α)

∫ t

0
(t− s)α−1||N [ψ0(s) + ψ1(s) + ψ2(s)]||Xds

Using lemma (3.4) we get (t−s)α−1 ∈ L2[0, t] , also by the condition (16) and the Cauchy-Schwarz Inequality,
we obtain

||ψ2(t)||X ≤ Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

|| ψ0(.) + ψ1(.) + ψ2(.) ||2L2(0,T ;X),

Then by Minkowski's Inequality and Young Inequality, we obtain

|| ψ0(.) + ψ1(.) + ψ2(.) ||2L2(0,T ;X)≤ 3
[
|| ψ0(.) ||2L2(0,T ;X) + || ψ1(.) ||2L2(0,T ;X) + || ψ2(.) ||2L2(0,T ;X)

]
.

Hence

||ψ2(t)||X ≤ 3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

[
|| ψ0(.) ||2L2(0,T ;X) + || ψ1(.) ||2L2(0,T ;X) + || ψ2(.) ||2L2(0,T ;X)

]
. (18)

Since ψ0 and ψ1 are, respectively, solution of system (11) and (12), we have

ψ0(s) = Sα(s)y0 for all s > 0

ψ1(s) =

∫ s

0
(s− τ)α−1Kα(s− τ)BB∗ϕ(τ)dτ for all s > 0,

Using lemma (3.2)
|| ψ0(.) ||2L2(0,T ;X)≤ TM

2 || y0 ||2X . (19)

We also have

|| ψ1(s) ||X ≤ Mα

Γ(1 + α)

∫ s

0
(s− τ)α−1 || BB∗ϕ(τ) ||X ds

using Cauchy-Schwartz inequality and lemma (3.4)

|| ψ1(s) ||X ≤ Mα

Γ(1 + α)

sα−
1
2

(2α− 1)
1
2

M1 || B∗ϕ(τ) ||L2(0,T ;Rp)

≤ Mα

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

M1 || g ||G,

where M1 = ||B||L(X,Rp), this implies that

|| ψ1(.) ||2L2(0,T ;X) ≤
[

Mα

Γ(1 + α)

]2 T 2α

(2α− 1)
M2

1 || g ||2G . (20)

Substituting (19) and (20) in (18), we get

||ψ2(t)||X ≤ 3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

[
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2α

(2α− 1)
M2

1 || g ||2G

]

+
3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

∫ t

0
|| ψ2(s) ||2

X
ds,
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and under the assumption

Ac(g) := T

[
3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

]2 [
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2α

(2α− 1)
M2

1 || g ||2G

]
< 1

by the generalization of Gronwall's lemma (theorem 2.2, [13]), we obtain

||ψ2(t)||X ≤
Ac(g)

T (1−Ac(g))
. (21)

Therefore,

sup
||g||G≤k

||P(ψ2(t))||C⊥ ≤ Ac(k)cpΓ(1 + α)(2α− 1)
1
2

3MαcTα+ 1
2 (1−Ac(k))

< +∞.

Hence B̃k is uniformly bounded.
∗ Let us show that B̃k is equicontinuous.

For 0 ≤ t1 < t2 ≤ T ,for any g ∈ Bk, we have

ψ2(t2)− ψ2(t1) =

∫ t2

0
(t2 − s)α−1Kα(t2 − s)N(ψ0(s) + ψ1(s) + ψ2(s))ds

−
∫ t1

0
(t1 − s)α−1Kα(t1 − s)]N(ψ0(s) + ψ1(s) + ψ2(s))ds

=

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Kα(t2 − s)N(ψ0(s) + ψ1(s) + ψ2(s))ds

+

∫ t1

0
(t1 − s)α−1[Kα(t2 − s)−Kα(t1 − s)]N(ψ0(s) + ψ1(s) + ψ2(s))ds

+

∫ t2

t1

(t2 − s)α−1Kα(t2 − s)N(ψ0(s) + ψ1(s) + ψ2(s))ds

||ψ2(t2)− ψ2(t1)||X ≤ T1 + T2 + T3.

Where

T1 = ||
∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]Kα(t2 − s)N(ψ0(s) + ψ1(s) + ψ2(s))ds ||X

T2 = ||
∫ t1

0
(t1 − s)α−1[Kα(t2 − s)−Kα(t1 − s)]N(ψ0(s) + ψ1(s) + ψ2(s))ds ||X

T3 = ||
∫ t2

t1

(t2 − s)α−1Kα(t2 − s)N(ψ0(s) + ψ1(s) + ψ2(s))ds ||X .

We have

T1 ≤ αM

Γ(1 + α)

∫ t1

0
|(t2 − s)α−1 − (t1 − s)α−1|||N(ψ0(.) + ψ1(.) + ψ2(.))||Xds

≤ αM

Γ(1 + α)
||(t2 − s)α−1 − (t1 − s)α−1||L2[0,t1]||N(ψ0(.) + ψ1(.) + ψ2(.))||L2(0,t1;X)

≤ αMc

Γ(1 + α)

[
||(t2 − s)α−1||L2[0,t1] + ||(t1 − s)α−1||L2[0,t1]

]
||ψ0(.) + ψ1(.) + ψ2(.)||2L2(0,T ;X)

and

T3 ≤ αM

Γ(1 + α)

∫ t2

t1

|(t2 − s)α−1|||N(ψ0(.) + ψ1(.) + ψ2(.))||Xds

≤ αM

Γ(1 + α)
||(t2 − s)α−1

L2[t1,t2]
||N(ψ0(.) + ψ1(.) + ψ2(.))||L2(t1,t2;X)

≤ αMc

Γ(1 + α)
||(t2 − s)α−1||L2[t1,t2]||ψ0(.) + ψ1(.) + ψ2(.)||2L2(0,T ;X)
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hence by inequalities (19), (20) and (21), we have

||ψ0(.) + ψ1(.) + ψ2(.)||2L2(0,T ;X) ≤M

where

M = 3TM2 || y0 ||2X +3

[
Mα

Γ(1 + α)

]2 T 2α

(2α− 1)
M2

1 || g ||2G

+ 3T


3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

[
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2αM2
1 || g ||2G

(2α− 1)

]

1− T

[
3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

]2 [
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2αM2
1 || g ||2G

(2α− 1)

]


2

and by lemma (3.4), we obtain

T1 ≤
αMc

Γ(1 + α)

(t2 − t1)α−
1
2

(2α− 1)
1
2

M.

T3 ≤ αMc

Γ(1 + α)

(t2 − t1)α−
1
2

(2α− 1)
1
2

M.

Therefore
T1 −→ 0
t2−t1−→0

and T3 −→ 0
t2−t1−→0

.

For T2

If t1 = 0, 0 < t2 ≤ T , we have T2 = 0.
For t1 > 0 and ε > 0 small enough independent of the choose the function g, we obtain

T2 ≤
∫ t1−ε

0
(t1 − s)α−1 || Kα(t2 − s)−Kα(t1 − s)||X||N(ψ0(.) + ψ1(.) + ψ2(.))||X

+

∫ t1

t1−ε
(t1 − s)α−1 || Kα(t2 − s)−Kα(t1 − s)||X||N(ψ0(.) + ψ1(.) + ψ2(.))||X

≤ cM(t
2(α−1)
1 − ε2(α−1))

1
2

Γ(1 + α)(2α− 1)
1
2

sup
s∈[0,t1−ε]

|| Kα(t2 − s)−Kα(t1 − s)||X +
2αMcMεα−

1
2

Γ(1 + α)(2α− 1)
1
2

.

By using the continuity of Kα(t) ( lemma (3.3)) we obtain

T2 −→ 0
ε−→0

t2−t1−→0

.

Then
||P(ψ2(t2)− P(ψ2(t1))||C⊥ ≤ cp[T1 + T2 + T3]

We obtain
||P(ψ2(t2)− P(ψ2(t1))||C⊥ −→

ε,t2−t1−→0
0, .

We have proved that B̃k is uniformly bounded and equicontinuous, then by ArzÃ¨la-Ascoli theorem B̃k is
relatively compact, therefore K(Bk) is relatively compact, then the operator K is compact which gives K̃ is
compact.
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Step 2. We proof that K̃(Bk) ⊂ Bk.
From (15) and (21), we have

|| K̃(g) ||G ≤ || Λ−1χ∗ωyd − Λ−1P(ψ0(T )) ||G + || Λ−1Kg ||G
≤ || Λ−1χ∗ωyd − Λ−1P(ψ0(T )) ||G + || Λ−1 ||L(C⊥,G)

×

3Mαccp
Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

[
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2αM2
1 || g ||2G

(2α− 1)

]

1− T

[
3Mαc

Γ(1 + α)

Tα−
1
2

(2α− 1)
1
2

]2 [
TM2 || y0 ||2X +

[
Mα

Γ(1 + α)

]2 T 2αM2
1 || g ||2G

(2α− 1)

] .

The last inequality imply that for large enough k > 0 we have

∀g ∈ G such that || g ||G≤ k =⇒ || K̃(g) ||G≤ k.

Hence by Schauder's �xed point theorem we deduce that the operator K̃ has a �xed point.

Then we give the following algorithm

Algorithm

• Step 1: Initialization

� The fractional order of derivative α

� Initial state and desired state z0, zd.

� The region ω.

� Actuator (D, f)

� Error estimate ε

• Step 2: Repeat

� Choose ϕ0.

� Resolution of (8) and obtaining ϕ.

� Resolution of (11) and obtaining ψ0.

� Resolution of (12) and obtaining ψ1.

� Resolution of (13) and obtaining ψ2.

� Resolutation of (14) and obtaining K̃(ϕ0).

Until ||ϕ0 − K̃(ϕ0)|| ≤ ε.

• Step 3: The control is u∗ =< ϕ(t), f >L2(D).

To test the e�ciency of this algorithm, we give the following application.

5. Applications

To illustrate the e�ectiveness of the result above, we consider two examples with di�erent data ( fractional
order derivative, the considered subregion, the desired state and the actuator structure).
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5.1. Example 1:

Let's consider Ω = [0, 1] and the one dimensional semilinear di�usion system described by:
C
D
α

0+z(x, t) =
∂2

∂x2
z(x, t) + χDu(t) +

∞∑
j=1

(< z, ϕj >)2ϕj(x) in [0, 1]× ]0, 1]

z(ξ, t) = 0 on {0, 1} × ]0, 1]
z(x, 0) = 0 in [0, 1]

Where α = 0.6, D = [0.2, 0.4] and the sub-region under consideration is ω = [0.30, 0.55].

The operator
∂2

∂x2
has complete system of eingenfunctions ϕi(x) =

√
2 sin(iπx) ([14]) corresponding to the

eigenvalues λi = −i2π2 .
Let's consider

zd(x) =


0 0 ≤ x < 0.30
0.99× (x+ 0.1)× (0.9− x) 0.30 ≤ x ≤ 0.55
0 0.55 < x ≤ 1.

Using the previous algorithm the simulation gives the �gure 1.
In �gure 1 we remark that the desired state and the reached one are very close in w=[0.30,0.55], therefore

Figure 1: The desired state (continues line) and reached state (dashed line) in ω .

the regional desired state zd is reached with error || χωzu(t)− zd ||2L2(ω)= 2.0× 10−6.
The �gure 2 shows the evolution of the control function with respect to time where the transfer cost

|| u∗ ||2L2(0,T )= 0.5, we remark that the value of u doesn't exceed 6.
We give the following table which represent the evolution error-actuator support. We remark that the

Actuator support Error

[0.1,0.3] 2× 10−2

[0.5,0.75] 5× 10−2

[0.25,0.75] 1.1× 10−1

[0.2,0.6] 2.1× 10−1

algorithm is very "a�ect" to the choose of the actuator support D.
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Figure 2: Control input function

Example 2:

In this example, we consider the following system excited by a zonal actuator:
C
D

0.7

0+z(x, t) =
∂2

∂x2
z(x, t) + χDu(t) +

∞∑
j=1

(< z, ϕj >)2ϕj(x) in [0, π]× ]0, 2]

z(ξ, t) = 0 on {0, π} × ]0, 2]
z(x, 0) = 0 in [0, π]

Where D = [0.2, 0.3] and the sub-region under consideration is ω = [1, 1.5].
Moreover, let

yd(x) = −0.85
√
x(x− π)(x− 2)(x− 1),

the desired state in ω.
Using the algorithm above, we have the �gure 3.

Figure 3 shows that the desired state is very close to the reached one on ω with the error 2.7× 10−4 .

Remark 5.1. When α = 1, the semilinear system (5.1) is controllable in ω under the same conditions, this
is the case of parabolic systems. This case demonstrate the advantage of this study in order to generalize the
controllability results for ordinary systems.

Conclusion

In this work we have extended the notion of regional controllability to Caputo time-fractional semi-
linear system using an extension of Hilbert Uniqueness method and we have validated the theoretical result
with some numerical simulations, which are obtained with success and demonstrated the relevance of the
regional approach and the fractional calculus. This result could provide some insight into the control theory
analysis of fractional order system and can also be enlarged to the case of another fractional systems like
Riemann-Liouville, Hadamard and Caputo-Fabrizio systems.
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