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Abstract

In the present paper, we proved a common �xed-point theorem for two-hybrid pair of non-self mappings
satisfying a generalized (F, ξ, η)- contraction condition under joint common limit range property in weak
partial b- metric spaces. Our result is a generalization of many works available in metric space settings. An
example and application to the integral equation are given to support the results proved in this paper.
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1. Introduction

In 1993, Czerwik [13] introduced b-metric space by weakening the triangle inequality and generalized
Banach's contraction principle to this space. This research in�uenced many other potential researchers to
perform and analyze contraction condition variants by using single and multi-valued maps in b-metric space.
One ca see [4, 10, 22, 26, 35]. In 1994, Matthews [27] introduced a generalization of the metric space called
the partial metric space as a part of the study of denotational semantics of data�ow networks in computer
programming. Recently, Shukla [36] introduced the notion of partial b-metric spaces by combining partial
metric spaces and b-metric spaces. He generalized the Banach contraction principle [7] and proved the Kannan
type �xed point theorem in partial b-metric spaces. Furthermore, Mustafa et al. [28] introduced a modi�ed
version of partial b-metric space and proved the �xed point results. In 2019, Ameer et al. [2] proved �xed
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point theorem for hybrid multi-valued type contraction mappings in αK-complete partial b-metric spaces
and applications.

Wardowski [38] introduced a new contraction called F - contraction in metric spaces and proved �xed point
results as a generalization of the Banach contraction principle. Wardowski and Van Dung [39] established
weak F -contraction in metric space and proved �xed point results as an extension of the Banach contraction
principle. Also, Cosentino et al. [12] improved the results due to Wardowski [38] by introducing the concept
of b-metric space and proved some �xed point results. For more details, we refer the reader to [6, 23] and
the references therein.

In 2018, Beg and Pathak [8] proved Nadler's theorem on weak partial metric spaces with application to
homotopy result. Later, in 2019, Kanwal et al. [21] de�ne the notion of weak partial b-metric spaces and
weak partial Hausdor� b-metric spaces along with the topology of weak partial b-metric space. Moreover,
they generalized Nadler's theorem using weak partial Hausdor� b-metric spaces in the context of a weak
partial b-metric space.

Later, Sintunavarat and Kumam [37] initiated the concept of common limit range (CLR) property in
order to exhibit its sharpness over the (EA) property due to Aamri and El Moutawakil [1]. Persuaded by
the ideas of Sintunavarat and Kumam [37], Imdad et al. [19] introduced the notion of common limit range
property for a hybrid pair of mappings and proved some �xed point results in symmetric (semi-metric) space.
Besides this, Imdad et al. [18] established the joint common limit range notion and proved the common �xed
point theorem for a pair of non-self mappings in metric space.

Naimpally et al. [29] generalized Goebel's [16] result to a hybrid of multi-valued and single-valued
maps satisfying a contractive condition. Henceforth, several �xed point theorems for multi-valued maps are
extended by Naimpally et al. [29].

The contributions of Aserkar and Gandhi in [3], Wardowski and Van Dung [39], Secelean [34], Joshi et
al. [20], Nashine et al. [30, 31], upon this particular study has in�uenced us to prove a common �xed point
theorem for two hybrid pairs of non-self mappings satisfying a generalized (F, ξ, η)-contraction condition
under joint common limit range (JCLR) property in weak partial b-metric space with application to a non-
linear hybrid ordinary di�erential equation. Our results generalize and improve several known works of the
existing literature.

2. Preliminaries

We will require the following preliminary de�nitions and theorems for establishing our result.
Czerwik [13] gave a generalization of metric space to b-metric space as bellow;

De�nition 2.1. [13] LetM be a non empty set and s ≥ 1 be a given real number. A function d : M ×M →
[0,∞) is called a b- metric if for all x, y, z ∈M the following condition satis�ed:

(B1) d(x, y) = 0 i� x = y,

(B2) d(x, y) = d(y, x) and

(B3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (M,d) is called a b-metric space. The number s ≥ 1 is called the coe�cient of (M,d).

Example 2.2. [9] Let p ∈ (0, 1), and

X = lp(R) :=
{
x = {xn} ⊂ R :

∞∑
n=1

|xn|p <∞
}
,

together with the functional d : lp(R)× lp(R)→ R,

d(x, y) =
( ∞∑
n=1

|xn − yn|p
) 1

p
.
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where x = xn, y = yn ∈ lp(R). Then (M,d) is a b-metric space with the coe�cient s = 2
1
p > 1.

De�nition 2.3. [27] A partial metric space is a pair (M,p) consisting of a non-empty set M together with
a function p : M ×M → R, called the partial metric, such that for all x, y, z ∈ M we have the following
properties:

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) ≤ p(x, y),

(P3) p(x, y) = p(y, x) and

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

From (P1) and (P2) we have

p(x, y) = 0⇒ p(x, y) = p(x, x) = p(y, y)⇒ x = y.

As an example, the pair (R+, p), where and p : M ×M → R+ is de�ned as p(x, y) = max{x, y} for all
x, y ∈ R+, is a partial metric space.

Shukla [36] gave an extension by combining partial metric space and b-metric space to partial b-metric
space.

De�nition 2.4. [36] A partial b- metric on a non-empty set M is a function b : M ×M → R+ such that
for all x, y, z ∈M :

(Pb1) x = y if and only if b(x, x) = b(x, y) = b(y, y),

(Pb2) b(x, x) ≤ b(x, y),

(Pb3) b(x, y) = b(y, x) and

(Pb4) there exist a real number s ≥ 1 such that b(x, y) ≤ s[b(x, z) + b(z, y)]− b(z, z).

A partial b-metric space is a pair (M, b) such that X is a non-empty set and b is a partial b- metric on
M . The number s ≥ 1 is called the coe�cient of (M, b).

Mustafa et al. [28] gave an extension of partial b-metric space as follows;

De�nition 2.5. [28] Let M be a non empty set and s ≥ 1 be a given real number. A function pb : M ×M →
R+ is called a partial b- metric if for all x, y, z ∈M the following condition are satis�ed:

(PB1) x = y ⇐⇒ pb(x, x) = pb(x, y) = pb(y, y),

(PB2) pb(x, x) ≤ pb(x, y),

(PB3) pb(x, y) = pb(y, x) and

(PB4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)− pb(z, z)] + 1−s
2 [pb(x, x) + pb(y, y)].

The pair (M,pb) is called a partial b-metric space. The number s ≥ 1 is called the coe�cient of (M,pb).

Example 2.6. [36] Let M = R+, q > 1 be a constant and pb : M ×M → R+ be de�ned by

pb(x, y) = [max{x, y}]q + |x− y|q,

for all x, y ∈M . Then, (M,pb) is a partial b-metric space with the coe�cient s = 2q > 1, but it is neither a
b-metric nor a partial metric space.
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In 2018, Beg and Pathak [8] gave a generalized notion of weak partial metric space as follows:

De�nition 2.7. [8] Let M be a non empty set. A function q : M ×M → R+ is called a weak partial metric
on M if for all x, y, z ∈M the following conditions satis�ed:

(WP1) q(x, x) = q(x, y)⇐⇒ x = y,

(WP2) q(x, x) ≤ q(x, y),

(WP3) q(x, y) = q(y, x) and

(WP4) q(x, y) ≤ q(x, z) + q(z, y).

The pair (M, q) is called a weak partial metric space.
Some examples of weak partial metric spaces are the following.

Example 2.8. [8]

(1) (R+, q), where q : R+ × R+ → R+ is de�ned as

q(x, y) = |x− y|+ 1,

for all x, y ∈ R+.

(2) (R+, q), where q : R+ × R+ → R+ is de�ned as

q(x, y) =
1

4
|x− y|+ max{x, y},

for all x, y ∈ R+.

(3) (R+, q), where q : R+ × R+ → R+ is de�ned as

q(x, y) = max{x, y}+ e|x−y| + 1,

for all x, y ∈ R+.

In 2019, Kanwal et al. [21] gave a generalized concept from weak partial metric space to weak partial b-
metric space as follows:

De�nition 2.9. [21] Let M 6= ∅ and s ≥ 1, a function %b : M ×M → R+ is called a weak partial b-metric
on M if for all x, y, z ∈M , following conditions are satis�ed:

(WPB1) %b(x, x) = %b(x, y)⇐⇒ x = y,

(WPB2) %b(x, x) ≤ %b(x, y),

(WPB3) %b(x, y) = %b(y, x) and

(WPB4) %b(x, y) ≤ s[%b(x, z) + %b(z, y)].

The pair (M,%b) is called a weak partial b- metric space.
Some of the examples of weak partial b-metric space are:

Example 2.10. [21]
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(1) (R+, %b), where %b : R+ × R+ → R+ is de�ned as

%b(x, y) = |x− y|2 + 1,

for all x, y ∈ R+.

(2) (R+, q), where %b : R+ × R+ → R+ is de�ned as

%b(x, y) =
1

2
|x− y|2 + max{x, y},

for all x, y ∈ R+.

De�nition 2.11. [21] A sequence {xn} in (M,%b) is said to converges a point x ∈M , if and only if

%b(x, x) = lim
n→∞

%b(x, xn).

De�nition 2.12. [21] Let (M,%b) be a weak partial b-metric space. Then

(i) A Cauchy sequence in metric space (M,%sb) is Cauchy sequence in M .

(ii) If the metric space (M,%sb) is complete, so is weak partial b-metric space (M,%b).

(iii) If %b is a weak partial b-metric on M , the function %sb : M ×M → R+ given by

%sb(x, y) = %b(x, y)− 1

2
[%b(x, x) + %b(y, y)],

de�ne a b metric on M . Further, a sequence {xn, } in (M,%sb) converges to a point x ∈M , i�

lim
n,m→∞

%sb(xn, xm) = lim
n→∞

%b(sn, s) = %b(s, s).

Motivated by Kanwal et al. [21] we de�ne multivalued notion in weak partial b-metric space, which is an
extension of the concept given by Aydi et al. [5].

Let (M,%b) be a weak partial b-metric space and CB%b(M) be class of all nonempty, closed and bounded
subsets of (M,%b). For A,B ∈ CB%b(M) and x ∈M , de�ne:

%b(x,A) = inf{%b(x, a) : a ∈ A};
δ%b(A,B) = sup{%b(a,B) : a ∈ A};
δ%b(B,A) = sup{%b(b, A) : b ∈ B}.

Note that
%b(x,A) = 0 =⇒ %sb(x,A) = 0, (1)

where
%sb(x,A) = inf{%sb(x,A), x ∈ A}.

Remark 2.13. [21] Let (M,%b) be a weak partial b-metric space and A a nonempty subset of M , then

a ∈ Ā⇐⇒ %b(a,A) = %b(a, a).

De�nition 2.14. [21] Let (M,%b) be a weak partial b-metric space. For A,B ∈ CB%b(M), the mapping
H+
%b

: CB%b × CB%b → [0,∞) de�ned by

H+
%b

(A,B) =
1

2
{δ%b(A,B) + δ%b(B,A)},

is called H+
%b
-type Hausdor� metric induced by %b.



L. Wangwe, S. Kumar , Adv. Theory Nonlinear Anal. Appl. 5 (2021), 531�550. 536

The following explanations for developing the F -contraction de�nition are from Wardowski and Van
Dung [39].

Let F : R+ → R be a mapping satisfying

(F1) F is strictly increasing, i.e. for all α, β ∈ R+, α < β implies F (α) < F (β);

(F2) for each sequence {αn}n∈N of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;

(F3) there exists k ∈ (0, 1) satisfying limα→0+ α
kF (α) = 0.

We denote the family of all functions F satisfying conditions (F1−F3) by Ω. Some examples of functions
F ∈ Ω are:

(1) F (a) = ln a,

(2) F (a) = a+ ln a.

(3) F (a) = ln(a2 + a).

Motivated by Wardowski and Van Dug [39], we introduce the notion of F -weak partial b-metric space.

De�nition 2.15. Let (M,%b) be a weak partial b-metric space. A map T : M →M is said to be an F -weak
contraction on (M,%b) if there exists F ∈ Ω and τ > 0 such that for all x, y ∈ X satisfying %b(fx, fy) > 0,
the following condition holds:

τ + F (%b(fx, fy)) ≤ F
(

max
{
%b(x, y), %b(x, fx), %b(y, fy),

%b(x, fy) + %b(y, fx)

2

})
.

Motivated by Piri and Rahrovi [33], we establish the concept of multivalued F -weak partial b-metric
space as follows:

De�nition 2.16. [33] Let (M,%b) be a weak partial b-metric space. A map T : M → CB%b(M) is said to
be multivalued F -weak contraction on (M,%b) if there exists F ∈ Ω and τ > 0 such that for all x, y ∈ X
satisfying H+

%b
(Tx, Ty) > 0, the following holds:

τ + F (H+
%b

(Tx, Ty)) ≤ F (N(x, y)),

where,

N(x, y) = max

{
%b(x, y), %b(x, Tx), %b(y, Ty),

%b(x, Ty) + %b(y, Tx)

2

}
.

In 1984, Khan et al. [24] established an altering distances concept between the points in metric space as
follows:

De�nition 2.17. [24] (ξ, η) ∈ Ψ i� ξ, η are continuous functions from [0,∞)→ [0,∞) and s ≥ 1 be a given
real number are called an altering distance function if satis�es:

(i) ξ is continuous and non-decreasing.

(ii) ξ(t) = 0 if and only if t = 0.

(iii) sξ(t) ≤ ξ(t)− η(t) if and only if t = 0.

Imdad et al. [18], have established the concept of joint common limit range property for two hybrid pairs
of non-self mappings as follows:
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De�nition 2.18. Let (M,d) be a metric space whereas Y an arbitrary non-empty set with F,G : Y →
CB(X) and f, g : Y →M . Then the pairs of hybrid mappings (F, f) and (G, g) are said to have the (JCLR)
property, if there exists two sequences {xn} and {yn} in Y and A,B ∈ CB(X) such that

lim
n→∞

Fxn = A, lim
n→∞

Gyn = B,

lim
n→∞

fxn = lim
n→∞

gyn = t ∈ A ∩B ∩ f(Y ) ∩ g(Y ),

i.e., there exists u, v ∈ Y such that t = fu = gv ∈ A ∩B.

Imdad et al. [17] de�ned that a map is said to be coincidentally idempotent if it satis�es the condition
given in the following de�nition.

De�nition 2.19. [17] Let (M,d) be a metric space whereas Y an arbitrary non-empty set with T : Y →
CB(M) and g : Y → M . The mapping g is said to be a coincidentally idempotent with respect to the
mapping T , if u ∈M , gu ∈ Tu with gu ∈ Y imply ggu = gu that is, g is idempotent at coincidence point of
the pair (T, g).

In 2020, Aserkar and Gandhi in [3] gave the following results in b-metric space for weakly compatible
mappings in pairs that satisfy the common limit range property.

The theorem of Aserkar and Gandhi in [3] is as follows:

Theorem 2.20. [3] Let (M,d) be a b-metric space with s ≥ 1 and F,G, P,Q : M → M . Suppose that
ξ, η ∈ ψ and L ≥ 0 such that

(i) (F,Q) satis�es CLRP and (G,P ) satis�es CLRQ.

(ii) sξ(d(Fx,Gy)) ≤ ξ(N1(x, y))− η(N1(x, y)) + LN2(x, y), where

N1(x, y) = max

{
d(Py,Qx),

d(Qx,Fx) ∗ d(Py,Gy)

1 + d(Fx,Gy)
,

(d(Py, Fx))2 + (d(Qx,Gy))2

d(Py, Fx) + d(Qx,Gy)
,

d(Qx,Fx) ∗ d(Qx,Gy) + d(Py,Gy) ∗ d(Py, Fx)

d(Qx,Gy) + d(Py, Fx)

}
,

and

N2(x, y) = min
{
d(Qx,Fx), d(Qx,Gy), d(Py, Fx), d(Py,Gy)

}
,

for all x, y ∈M .

(iii) The pair (F,Q) and (G,P ) are weakly compatible.

Then F,G, P,Q have a unique common �xed point.

Motivated by the results obtained by Aserkar and Gandhi [3]. In the following section, we wish to
establish the proof of common �xed point for two hybrid pairs of coincidentally idempotent non-self mappings
in weakly partial b-metric space, which satis�es joint common limit range property in a generalized (F, ξ, η)-
contraction. We provide an illustrative example to support the theorem proved. Also, an application for a
hybrid di�erential equation will be provided to support the results.
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3. Main Results

We commence by extending De�nition 2.18 to weak partial b-metric space for non-self mappings as
follows:

De�nition 3.1. Let (M,%b) be a weak partial b- metric space with f, g : X →M and G,T : X → CB%b(M).
Then the pairs of hybrid mappings (G, f) and (T, g) are said to have joint common limit range property,
denoted by (JCLR)-property. If there exists two sequences {xn} and {yn} in X and A,B ∈ CB%b(M) such
that

lim
n→∞

Gxn = A, lim
n→∞

Tyn = B,

lim
n→∞

fxn = lim
n→∞

gyn = t,

with t ∈ f(X)∩g(X) ∩A ∩B, that is, there exists u, v ∈ X such that t = fu = gv ∈ A ∩B.

Next, we extend De�nition 2.19 to weak partial b-metric space as follows:

De�nition 3.2. Let (M,%b) be a weak partial b- metric space with f : X → M and G : X → CB%b(M).
The mapping is said to be a coincidentally idempotent with respect to the mapping G, if u ∈ M , fu ∈ Gu
with fu ∈M imply ffu = fu that is, f is idempotent at coincidence point of the pair (G, f).

Now, we prove the following theorem which is an extended version of Theorem 2.20 and De�nition 2.16
in weak partial b-metric space for two hybrid pairs of non-self mappings, which satis�es joint common limit
range property.

Theorem 3.3. Let f, g : X → M be two self mappings of a weak partial b-metric space (M,%b) with s ≥ 1
and G,T : X → CB%b(M) be two multivalued mappings from X into CB%b(M). Assume that ξ, η ∈ ψ and
L ≥ 0 such that

(i) the hybrid pair (G, f) and (T, g) satis�es JCLR property,

(ii) there exists τ > 0 with H+
%b

(Gx, Ty) > 0 such that

τ + F (sξ(H+
%b

(Gx, Ty))) ≤ F (ξ(N1(x, y))− η(N1(x, y)) + LN2(x, y)), (2)

where

N1(x, y) = max

{
%b(gy, fx),

%b(fx,Gx) ∗ %b(gy, Ty)

1 + %b(Gx, Ty)
,

(%b(gy,Gx))2 + (%b(fx, Ty))2

%b(gy,Gx) + %b(fx, Ty)
,

%b(fx,Gx) ∗ %b(fx, Ty) + %b(gy, Ty) ∗ %b(gy,Gx)

%b(fx, Ty) + %b(gy,Gx)

}
,

and

N2(x, y) = min
{
%b(fx,Gx), %b(fx, Ty), %b(gy,Gx), %b(gy, Ty)

}
,

for all x, y ∈M ,

(iii) if X ⊂M and the pairs (G, f) and (T, g) are coincidentally commuting and coincidentally idempotent.

Then the pair (G, f) and (T, g) have a common �xed point in u ∈M and %b(u, u) = 0.
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Proof. Since the hybrid pairs (G, f) and (T, g) satis�es the JCLR property, by De�nition 3.1 there exists
two sequences {xn} and {yn} in X and A,B ∈ CB%b(M) such that

lim
n→∞

fxn = t ∈ A = lim
n→∞

Gxn, lim
n→∞

gyn = t ∈ B = lim
n→∞

Tyn,

for some u, v ∈ X and t = fv = gu ∈ A ∩ B. We assert that gu ∈ Tu. If not, then using x = xn and y = u
in (2), we get

τ + F (sξ(H+
%b

(Gxn, Tu))) ≤ F (ξ(N1(xn, u))− η(N1(xn, u)) + LN2(xn, u)), (3)

where

N1(xn, u)) = max

{
%b(gu, fxn),

%b(fxn, Gxn) ∗ %b(gu, Tu)

1 + %b(Gxn, Tu)
,

(%b(gu,Gxn))2 + (%b(fxn, Tu))2

%b(gu,Gxn) + %b(fxn, Tu)
,

%b(fxn, Gxn) ∗ %b(fxn, Tu) + %b(gu, Tu) ∗ %b(gu,Gxn)

%b(fxn, Tu) + %b(gu,Gxn)

}
, (4)

Taking limit as n→∞ in (4), we get

≤ max

{
%b(gu, gu),

%b(gu,A) ∗ %b(gu, Tu)

1 + %b(A, Tu)
,

(%b(gu,A))2 + (%b(gu, Tu))2

%b(gu,A) + %b(gu, Tu)
,

%b(gu,A) ∗ %b(gu, Tu) + %b(gu, Tu) ∗ %b(gu,A)

%b(gu, Tu) + %b(gu,A)

}
,

≤ max

{
%b(t, t),

%b(t, A) ∗ %b(gu, Tu)

1 + %b(A, Tu)
,

(%b(t, A))2 + (%b(gu, Tu))2

%b(t, A) + %b(gu, Tu)
,

%b(t, A) ∗ %b(gu, Tu) + %b(gu, Tu) ∗ %b(t, A)

%b(gu, Tu) + %b(t, A)

}
, (5)

using De�nition 2.12 and (1) in (5), we get

≤ max

{
0,

0 ∗ %b(gu, Tu)

1 + %b(A, Tu)
,
(0)2 + (%b(gu, Tu))2

0 + %b(gu, Tu)
,

0 ∗ %b(gu, Tu) + %b(gu, Tu) ∗ 0

%b(gu, Tu) + 0

}
,

≤ max

{
0, 0,

%b(gu, Tu))2

%b(gu, Tu)
, 0

}
,

≤ max
{

0, 0, %b(gu, Tu), 0
}
,

= %b(gu, Tu). (6)
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Consequently, we have

N2(xn, u)) = min
{
%b(fxn, Gxn), %b(fxn, Tu), %b(gu,Gxn), %b(gu, Tu)

}
,

≤ min
{
%b(gu,A), %b(gu, Tu), %b(gu,A), %b(gu, Tu)

}
,

≤ min
{
%b(t, A), %b(gu, Tu), %b(t, A), %b(gu, Tu)

}
,

≤ min
{

0, %b(gu, Tu), 0, %b(gu, Tu)
}

= 0. (7)

Using (7) and (6) in (3), one obtains

τ + F (sξH+
%b

(A, Tu)) ≤ F (ξ%b(gu, Tu)− η%b(gu, Tu) + L(0)),

τ + F (sξH+
%b

(A, Tu)) ≤ F (ξ%b(gu, Tu)− η%b(gu, Tu)).

Since τ > 0, in viewing the properties of η, ξ, and F is strictly increasing, by (F1) we have

H+
%b

(A, Tu) < %b(gu, Tu)

sξH+
%b

(A, Tu) ≤ (ξ − η)%b(gu, Tu)

As t = fv = gu ∈ A ∩B, it follows that

H+
%b

(A, Tu)) ≤ ξ − η
sξ

{
%b(gu, Tu)

}
.

Thus,

%b(gu, Tu) < H+
%b

(A, Tu) <
ξ − η
sξ

{
%b(gu, Tu)

}
,

a contradiction. Hence gu ∈ Tu which shows that the pair (T, g) has a coincidence point u in M .
Similar, we assert that fv ∈ Gv. Suppose that fv 6= Gv, then using x = v and y = yn in (2), one gets

τ + F (sξ(H+
%b

(Gv, Tyn))) ≤ F (ξ(N1(v, yn))− η(N1(v, yn)) + LN2(v, yn, )), (8)

where

N1(v, yn)) = max

{
%b(gyn, fv),

%b(fv,Gv) ∗ %b(gyn, T yn)

1 + %b(Gv, Tyn)
,

(%b(gyn, Gv))2 + (%b(fv, Tyn))2

%b(gyn, Gv) + %b(fv, Tyn)
,

%b(fv,Gv) ∗ %b(fv, Tyn) + %b(gyn, Tyn) ∗ %b(gyn, Gv)

%b(fv, Tyn) + %b(gyn, Gv)

}
,

Taking limit as n→∞ in (9), we have

≤ max

{
%b(fv, fv),

%b(fv,Gv) ∗ %b(fv,B)

1 + %b(Gv,B)
,

(%b(fv,Gv))2 + (%b(fv,B))2

%b(fv,Gv) + %b(fv,B)
,

%b(fv,Gv) ∗ %b(fv,B) + %b(fv,B) ∗ %b(fv,Gv)

%b(fv,B) + %b(fv,Gv)

}
,
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≤ max

{
%b(t, t),

%b(fv,Gv) ∗ %b(t, B)

1 + %b(Gv,B)
,

(%b(fv,Gv))2 + (%b(t, B))2

%b(fv,Gv) + %b(t, B)
,

%b(fv,Gv) ∗ %b(t, B) + %b(t, B) ∗ %b(fv,Gv)

%b(t, B) + %b(fv,Gv)

}
, (9)

using De�nition 2.12 and (1) in (5), we get

≤ max

{
0,
%b(fv,Gv) ∗ 0

1 + %b(Gv,B)
,
(%b(fv,Gv))2 + (0)2

%b(fv,Gv) + 0
,

%b(fv,Gv) ∗ 0 + 0 ∗ %b(fv,Gv)

0 + %b(fv,Gv)

}
,

≤ max

{
0, 0,

%b(fv,Gv))2

%b(fv,Gv)
, 0

}
,

≤ max
{

0, 0, %b(fv,Gv), 0
}
,

= %b(fv,Gv). (10)

Consequently, we have

N2(v, yn, )) = min
{
%b(fv,Gv), %b(fv, Tyn), %b(gyn, Gv), %b(gyn, Tyn)

}
,

≤ min
{
%b(fv,Gv), %b(fv,B), %b(fv,Gv), %b(fv,B)

}
,

≤ min
{
%b(fv,Gv), %b(t, B), %b(fv,Gv), %b(t, B)

}
,

≤ min
{
%b(fv,Gv), 0, %b(fv,Gv), 0

}
= 0. (11)

Using (11) and (10) in (8), one obtains

τ + F (sξH+
%b

(Gv,B)) ≤ F (ξ%b(fv,Gv)− η%b(fv,Gv) + L(0)),

τ + F (sξH+
%b

(Gv,B)) ≤ F (ξ%b(fv,Gv)− η%b(fv,Gv)).

Since τ > 0, in viewing the properties of η, ξ, and F is strictly increasing, by (F1) we have

H+
%b

(Gv,B) < %b(fv,Gv)

sξH+
%b

(Gv,B) ≤ (ξ − η)%b(fv,Gv)

As t = fv = gu ∈ A ∩B, it follows that

H+
%b

(Gv,B)) ≤ ξ − η
sξ

{
%b(fv,Gv)

}
.

Thus,

%b(fv,Gv) < H+
%b

(Gv,B) <
ξ − η
sξ

{
%b(fv,Gv)

}
,

a contradiction. Hence fv ∈ Gv which shows that the pair (G, f) has a coincidence point v in M .
Next we show that gu ∈ Tu and fv ∈ Gv, if not, then using x = u and y = v in (2), we get
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τ + F (sξ(H+
%b

(Gu, Tv))) ≤ F (ξ(N1(u, v))− η(N1(u, v)) + LN2(u, v)), (12)

where

N1(u, v)) = max

{
%b(gv, fu),

%b(fu,Gu) ∗ %b(gv, Tu)

1 + %b(Gu, Tv)
,

(%b(gv,Gu))2 + (%b(fu, Tv))2

%b(gv,Gu) + %b(fu, Tv)
,

%b(fu,Gu) ∗ %b(fu, Tv) + %b(gv, Tv) ∗ %b(gv,Gu)

%b(fu, Tv) + %b(gv,Gu)

}
,

using (1), we have

≤ max

{
%b(gv, fu), 0, 0, 0

}
,

= %b(gv, fu). (13)

and

N2(u, v) = min
{
%b(fu,Gu), %b(fu, Tv), %b(gv,Gu), %b(gv, Tv)

}
,

≤ min
{

0, 0, 0, 0
}
,

= 0. (14)

Using (14) and (13) in (12), one gets

τ + F (sξH+
%b

(Gu, Tv)) ≤ F (ξ%b(gv, fu))− η%b(gv, fu) + L(0)), (15)

τ + F (sξH+
%b

(Gu, Tv)) ≤ F (ξ%b(gu,Gv))− η%b(gu,Gv),

In viewing the properties of τ, η, ξ, and F is strictly increasing, by (F1) we have

H+
%b

(Gu, Tv) ≤ %b(gv, fu) (16)

=⇒ sξH+
%b

(Gu, Tv) ≤ (ξ − η)%b(gv, fu)

As t = fv = gu ∈ A ∩B, it follows that

H+
%b

(Gu, Tv) ≤ ξ − η
sξ

%b(gv, fu) (17)

Thus,

%b(gv, fu) < H+
%b

(Gu, Tv) <
ξ − η
sξ

%b(gv, fu),

a contradiction. Hence gu ∈ Tu and fv ∈ Gv which shows that the pair (T, g), (G, f) has a coincidence
point u = v in M .

Suppose that X ∈M . Since v is a coincidence point of the pair (G, f) which is coincidentally commuting
and coincidentally idempotent. With respect to mapping G, we have fv ∈ Gv and ffv = fv, therefore
fv = ffv ∈ f(Gv) ⊂ G(fv) which shows that fv is a common �xed point of the pair (G, f). Similarly, u
is a coincidence point of the pair (T, g) which is coincidentally commuting and coincidentally idempotent
concerning mapping T , one can easily show that gu is a common �xed point of the pair (T, g).

Moroever, if u and v are coincidence points which are coincidentally commuting and coincidentally
idempontent, then there exists u ∈ C(T, g) and v ∈ C(G, f) such that gu = Tu, fv = Gv.

Hence u = v = gu = fv, consequently, u is a common �xed point of the two hybrid pairs of mappings
(G, f) and (T, g) in M .
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Example 3.4. Let X = [0, 2] ⊂ [0,∞) = M be a weak partial b-metric space equipped with metric
%b(x, y) = |x− y|2 + 1, for all x, y ∈M . Let G,T : X →M be de�ned as

Gx =


[35 ,

3
2 ], if 0 ≤ x ≤ 1,

[14 ,
1
2 ], if 0 ≤ x < 2.

Tx =


[32 , 2], if 0 ≤ x < 1,

[12 , 2], if 1 ≤ x ≤ 2.

Suppose f, g : X →M be de�ned as

fx =


1, if 0 ≤ x ≤ 1,

3x
5 , if 1 < x ≤ 2.

gx =


3x
2 , if 0 ≤ x < 1,

1, if 1 ≤ x ≤ 2.

Let F : R+ → R be de�ned by F (a) = ln a + a and ξ, ψ : [0,∞) → [0,∞) such that ξ(t) = 1
10 t, η(t) =

t+1
2 , L = 5, s = 2 and τ = 1, then, Equation 2 takes the form

sξ(H+
%b

(Gx, Ty))

ξ(N1(x, y))− η(N1(x, y)) + LN2(x, y)
esξ(H

+
%b

(Gx,Ty))−[ξ(N1(x,y))−η(N1(x,y))+LN2(x,y)] ≤ e−τ . (18)

Choosing two sequence {xn} = {1 − 1
2n} and {yn} = {1 + 1

2n} in X, one can see that the pairs (G, f) and
(T, g) satis�es (JCLR) property, i.e.

lim
n→∞

f
{

1− 1

2n

}
= 1 ∈

[3

5
,
3

2

]
= lim

n→∞
G
{

1− 1

2n

}
,

lim
n→∞

g
{

1 +
1

2n

}
= 1 ∈

[1

2
,
3

2

]
= lim

n→∞
T
{

1 +
1

2n

}
.

Now to verify condition (2) we distinguish the following cases;
Case I
For x ∈ [0, 1], y ∈ [1, 2] and applying De�nition 2.14, we have

H+
%b

(Gx, Ty) = H+
%b

([
3

5
,
3

2

]
,

[
1

2
, 2

])

=
1

2

{
sup

([
3

5
,
3

2

]
,

[
1

2
, 2

])
+ sup

([
1

2
, 2

]
,

[
3

5
,
3

2

])}
. (19)

sup

([
3

5
,
3

2

]
,

[
1

2
, 2

])
= max

{
%b

(
3

5
,

[
1

2
, 2

])
, %b

(
3

2
,

[
1

2
, 2

])}

= max

{
1.01, 1.25

}
= 1.25. (20)
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sup

([
1

2
, 2

]
,

[
3

5
,
3

2

])
= max

{
%b

(
1

2
,

[
3

5
,
3

2

])
, %b

(
2,

[
3

5
,
3

2

])}

= max

{
1.01, 1.25

}
= 1.25. (21)

By applying (20) and (21) in (19) we get

H+
%b

(Tx,Gy) = 1.25.

Similarly we calculate the following metric

%b(gy, fx) = %b(1, 1) = 1,

varrhob(fx,Gx) = %b

(
1,

[
3

5
,
3

2

])
= 1.16,

%b(gy, Ty) = %b

(
1,

[
1

2
, 2

])
= 1.25,

%b(Gx, Ty) = %b

([
3

5
,
3

2

]
,

[
1

2
, 2

])
= 1.25,

%b(gy,Gx) = %b

(
1,

[
3

5
,
3

2

])
= 1.16,

%b(fx, Ty) = %b

(
1,

[
1

2
, 2

])
= 1.25.

It follows that,

N1(x, y) = max

{
1,

1.16 ∗ 1.25

1 + 1.25
,
(1.16)2 + (1.25)2

1.16 + 1.25
,

1.16 ∗ 1.25 + 1.25 ∗ 1.16

1.25 + 1.16

}
= 1.207,

and

N2(x, y) = min
{

1.16, 1.25, 1.16, 1.25
}

= 1.16.

Therefore, (13) reduces to

2× 0.1× 1.25

0.1× 1.207− 1.1035 + 5× 1.16
e2×0.1×1.25−[0.1×1.207−1.1035+5×1.16] ≤ e−τ ,

0.25

4.8172
e0.25−4.8172 ≤ e−1,

0.25

4.5672
e−4.5672 ≤ e−1,

which is true.
Case II For x ∈ [1, 2], y ∈ [0, 1] and using De�nition 2.14, we have

H+
%b

(Gx, Ty) = H+
%b

([
1

4
,
1

2

]
,

[
3

2
, 2

])

=
1

2

{
sup

([
1

4
,
1

2

]
,

[
3

2
, 2

])
+ sup

([
3

2
, 2

]
,

[
1

4
,
1

2

])}
. (22)
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sup

([
1

4
,
1

2

]
,

[
3

2
, 2

])
= max

{
%b

(
1

4
,

[
3

2
, 2

])
, %b

(
1

2
,

[
3

2
, 2

])}
= max

{
2.5625, 2

}
= 2.5625. (23)

sup

([
3

2
, 2

]
,

[
1

4
,
1

2

])
= max

{
%b

(
3

2
,

[
1

4
,
1

2

])
, %b

(
2,

[
1

4
,
1

2

])}
= max

{
2, 3.25

}
= 3.25. (24)

By applying (23) and (24) in (22) we get

H+
%b

(Gx, Ty) = 2.90625,

Similarly we calculate the following metric

%b(gy, fx) = %b

(
0,

3

5

)
= 1.36,

%b(fx,Gx) = %b

(3

5
,
[1

4
,
1

2

])
= 1.01,

%b(gy, Ty) = %b

(
0,
[3

2
, 2
])

= 3.25,

%b(Gx, Ty) = %b

([1

4
,
1

2

]
,
[3

2
, 2
])

= 2.90625,

%b(gy,Gx) = %b

(
0,
[1

4
,
1

2

])
= 1.0625,

%b(fx, Ty) = %b

(6

5
,
[3

2
, 2
])

= 1.09.

It follows that,

N1(x, y) = max
{

1.36,
1.01 ∗ 3.25

1 + 2.90625
,
(1.0625)2 + (1.09)2

1.0625 + 1.09
,

1.01 ∗ 1.09 + 3.25 ∗ 1.0625

1.09 + 1.0625

}
= 2.115691057,

and

N2(x, y) = min
{

1.01, 1.09, 1.0625, 3.25
}

= 1.01.

Therefore, (13) reduces to

0.58125

3.703723516
e0.58125−3.703723516 ≤ e−τ .

0.58125

3.703723516
e−3.122473516 ≤ e−1.

which is true.
Notice that for x, y ∈ [0, 1] and x, y ∈ [1, 2], Equation (13) is true. Thus, all conditions of Theorem 3.3

are satis�ed, and the hybrid pairs (G, f) and (T, g) has the common �xed point in M . Consider v = 1 be a
coincidence point of the pair (G, f), then we have

(1) f1 = 1 ∈ G1 = [35 ,
3
2 ],
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(2) ff1 = f1 = 1,

(3) f1 = ff1 ∈ f(G1) ⊂ G(f1) and

Similarly, if we consider u = 1 as a coincidence point of the pair (T, g), prove that u = v = 1 and 1 is a
unique common �xed point for the two pairs of hybrid mappings (G, f) and (T, g).

4. Some Applications

In this section, we will discuss an approximation of a non-linear hybrid ordinary di�erential equation.
Dhage [14] named it as a hybrid di�erential equation with a linear perturbation of �rst type (HDE), which
will validate Theorem 3.3 for two pairs of hybrid mapping in weak partial b-metric space.

First, we will de�ne some essential notions which will be useful in developing our results. One can see in
[32] and the reference therein.

Assume that J = [t0, t0 + a] of a real line R for some t0, a ∈ R with t0 ≥ 0, a > 0 be given.
Consider in the function space C(J ,R) of continuous real valued functions de�ned on J . Let us de�ne

a norm ‖.‖ and order relation ≤ in C(J ,R) by

‖x‖ = sup
t∈J
|x(t)|,

x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ J . Then, we see that C(J ,R) is a Banach space with respect to the
partial order relation ≤.

The Hybrid di�erential equations have been investigated in di�erent dimensions by several researchers
one can see, [11, 14, 25] and the references therein.

Consider the initial value problem (IV P ) of �rst order ordinary non-linear di�erential equation (HDE).{
x
′
(t) = f(t, x(t)) + g(t, x(t)),

x(t0) = x0 ∈ R, (25)

for all t ∈ J , where f, g : J × R→ R are continuous functions.
Also, Consider (IV P ) of (HDE).{

x
′
(t) + λx(t) = µe−λtp(t, x(t)) + f̃(t, x(t)) + g̃(t, x(t)),

x(t0) = x0 ∈ R, (26)

for all t ∈ J , where f̃ , g̃ : J × R→ R are continuous functions and

f̃(t, x) = f(t, x) + λx,

g̃(t, x) = g(t, x)− µe−λtp(t, x),

λ ≥ 0 with µ ≤ λ
1−e−a .

Pathak [32] proved the following Lemma to satisfy HDE:

Lemma 4.1. [32] A function u ∈ C(J ,R) is a solution of HDE (25) if and only if it is a solution of a
non-linear integral equation

x(t) = x0 e
−λ(t−t0) + µe−λt

� t

t0

p(s, x(s))ds+ e−λt
� t

t0

eλs[f̃(s, x(s)) + g̃(s, x(s))]ds. (27)

for all t ∈ J .
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By Lemma 4.1, the HDE (25) is equivalent to the operator equation

x(t) = Px(t) +Qx(t). (28)

for all t ∈ J , where

Px(t) = x0e
−λ(t−t0) + µe−λt

� t

t0

p(s, x(s))ds, (29)

Qx(t) = e−λ(t)
� t

t0

eλs[f̃(s, x(s)) + g̃(s, x(s))]ds. (30)

for all t ∈ J .

De�nition 4.2. [15] An operator T : E → E is partially non-linear D-contraction if there exists a D-function
ψ such that

‖Tx− Ty‖ ≤ ψ(‖x− y‖),

for all comparable elements x, y ∈ E, where 0 < ψ(t) < t for t > 0.

From the continuity of integral, it follows that P and Q de�nes the maps P,Q : E → E. The following
applicable hybrid �xed point theorem proved in [14].

Theorem 4.3. [14] Let (E,�, ‖.‖) be a regular partial ordered complete normed linear space such that the
order relation � and the norm ‖.‖ in E are compatible. Let P,Q : E → E be two nondencreasing operators
such that

(i) P is partially bounded and partially non-linear D-contraction,

(ii) Q is partially Continuous and partially compact, and

(iii) there exists an element x0 ∈ E such that

x(t) � Px(t) +Qx(t).

Then the operator equation x � Px+Qx has a solution x∗ in E and the sequence {xn}∞n=0 of successive
iterations de�ned by

xn+1 = Pxn +Qxn, n = 0, 1, 2 . . . ,

converge monotonically to x∗.

Consider in the function space C(J ,R) of continuous real valued functions de�ned on J . Let us de�ne
a norm ‖.‖ of weak partial b-metric on M by

eb(x, y) = sup
t∈J
|x(t)− y(t)|p + α, (31)

∀x, y ∈ C(J ,R), p > 1 and α > 0.
We rewrite the integral equation (27) in the form of a �xed point problem

x(t) = Tx(t).

For a map T de�ned by

Tx(t) = x0(t) +

� t

t0

K(s, x(s))ds, t ∈ [J ,R], (32)
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with

x0(t) = x0e
−λ(t−t0),

and

K(s, x(s)) = µe−λtp(s, x(s)) + eλ(s−t)[f̃(s, x(s)) + g̃(s, x(s))].

Our main results of this section are as follows.

Theorem 4.4. Let (M,�, ‖.‖) be a weak partial b- ordered complete normed linear space such that the order
relation � and the norm ‖.‖ inM are coincidentally idempotent. Let f, g : X →M and P,Q : X → CB%b(M)
be two hybrid pairs of non-decreasing operators such that

(i) for any x(t), y(t) ∈ C(J ,R) there exists a D-contraction function that satisfy

‖Tx(t)− Ty(t)‖ ≤ (ψ(t))p‖x(t)− y(t)‖p + α. (33)

where 0 ≤ ψ(t) < 1. Then Equation (27) has a �xed point x ∈M .

Proof. Using equation (31) and (32) in (33) we obtain

‖Tx(t)− Ty(t)‖ = sup
t∈J

∣∣∣∣∣
� t

t0

[K(s, x(s))−K(s, y(s))]ds

∣∣∣∣∣
p

+ α,

≤ sup
t∈J

[( � t

t0

ds
) 1

q

(� t

t0

|K(s, x(s))−K(s, y(s))|pds

) 1
p
]p

+ α,

≤ sup
t∈J

(
t− t0

) p
q

(� t

t0

|K(s, x(s))−K(s, y(s))|pds

)
+ α,

≤ sup
t∈J

(
t− t0

)p−1(� t

t0

ψ(t)p|x(t)− y(t)|pds

)
+ α,

≤
(
t− t0

)p−1
(t− t0)

(
ψ(t)p|x(t)− y(t)|p

)
+ α,

≤
(
t− t0

)p(
ψ(t)p|x(t)− y(t)|p

)
+ α,

≤
((
t− t0

)
ψ(t)

)p
|x(t)− y(t)|p + α,

= (ψ(t))p|x(t)− y(t)|p + α.

Hence, the condition of hybrid di�erential equation (25) is satis�ed and so Equation (27) has a solution.
Therefore, the condition of Theorem (3.3) validated for two pairs of hybrid mappings which are coincidentally
idempotent.

5. Conclusion

The main contribution of this study to �xed point theory is the coincidence result given in Theorem
2.1. This theorem provides the coincidence conditions for a substantial class of non-self mappings on various
abstract spaces. This paper, Motivated by the results obtained by Aserkar and Gandhi [3] in metric space.

We proved a �xed point theorem for common �xed point for two hybrid pairs of coincidentally idempotent
non-self mappings in weakly partial b-metric space, which satis�es joint common limit range property in a
generalized (F, ξ, η)-contraction, which generalizes some well-known results in the literature. These results
have some applications in many areas of applied mathematics, especially in hybrid di�erential equations.

Acknowledgement: The authors are thankful to the learned reviewers for their valuable comments.
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