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Abstract

In this work, a new class of sequential random di�erential equations of Airy type is introduced. The existence
and uniqueness criteria for stochastic process solutions for the introduced class are discussed. Some notions
on β−di�erential dependance are also introduced. Then, new results on the β−dependance are discussed.
At the end, some illustrative examples are discussed.
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1. Introduction

The theory of fractional calculus has been distinguished in di�erent �elds of applied mathematics and
many investigations have been stated as modeling, existence of solutions and various methods for solving
fractional di�erential problems [2, 4, 5, 8, 9, 10, 15, 18, 20, 21, 22, 24, 27, 29, 33, 34].
Recently, the concept of fractional calculus and random di�erential equations have appeared as important
and interesting subjects; this new random fractional theory has become very interesting to many researchers.
To cite some papers related to this subject, we cite [1, 36, 19, 38, 39].
To investigate the theory of fractional di�erential equations with randomness, we have to use the mean
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square calculus because of its importance for stochastic processes, see [16, 17, 31].
Many of random problems have been formulated by the Airy equation (and its solutions called Airy functions)
which is given by

Z ′′ − tZ = 0, t ∈ R.

In [11], the authors have been concerned with the initial value problems for space-time-fractional Airy problem
given by:

∂αu(x1, t)

∂tα
=
∂βu(x1, t)

∂xβ1
, 0 < α ≤ 1, 2 < β ≤ 3, x1 ∈ R,

with u(x1, 0) = 1
6x

β
1 .

In [30], M.D. Ovidio and E. Orsingher have expressed the law of the stable process Hv(t), t > 0 in terms of
Airy functions.
In [28], the authors have been concerned with the M-Wright function in time-fractional di�usion process and
they have shown that the auxiliary functions can be expressed in terms of the Airy functions.
An example from quantum mechanics is given in the paper [26] where the exact solution of Schrodinger
equation, for the motion of a particle in a homogeneous external �eld, can be expressed in terms of the Airy
functions. Solutions of the Schrodinger equation involving the Airy functions are also given in [35].
For some other applications of Airy equations (and Airy functions) in elasticity theory, �uid mechanics and
quantum physics, the reader is invited to see the research works [3, 6, 23, 25].
We cite also the paper [7], where the authors have studied the following random fractional initial value
problem of Airy type:{

(cDα
0+
Y )(t)−BtβY (t) = 0, t > 0, n− 1 < α ≤ n, β > 0,

Y (j)(0) = Aj , j = 0, 1, . . . , n− 1.
(1)

Motivated by the above works, in the present paper we shall study a very important class of random frac-
tional problem that generalizes the classical Airy-type di�erential equations both in the random and in
the fractional senses. Speci�cally, we will deal with the following sequential random fractional generalized
Airy-type problem:

Dα1 · · ·DαnY (t) = a1A1f1(t, Y (t)) + a2A2f2

(
t,DβY (t)) + a3A3f3

(
t, IρY (t)

)
,

X0 = Y (0),

Xi = Y (αi+1)(0), i = 1, . . . , n− 1, n ∈ N∗,
t ∈ J = [0, T ] , αi ∈]0, 1], 0 < β < 1, 0 < ρ,

(2)

where: D(·) represents the mean square derivative in the sense of Caputo, Y (·) is a second random function,
fi : J × L2(Ω)→ L2(Ω), i = 1, 2, 3, Xi are second random variables i = 0, . . . , n− 1, and A1, A2, A3 are also
second random variables. a1, a2, ak are real positive numbers.
It is to note that if n = 2, α1 = α2 = 1, a2 = a3 = 0, then we obtain the standard Airy equation.
Under some other considerations on the input data of (2), we can obtain the generalized Airy problem of [7].
These are two reasons that have motivated the study of the above problem. And, to the best of our knowledge,
there is no paper dealing with such random Airy type problem.
This paper is organized as follows: In section 2, we recall some de�nitions and lemmas that we need in
the rest of the paper. In section 3, we present our main results for problem (2). Section 4 is devoted to
introduce new concepts on random data dependence. In section 5, we provide some examples of applications
to illustrate our theoretical results. At the end, a conclusion follows.

2. Basic Concepts

Let J := [0, T ] and consider a complete probability space
(
Ω, S, P

)
. Over this space, we consider the

stochastic process of order two Y (t;ω) = {Y (t), t ∈ J, ω ∈ Ω} that satis�es E
(
Y 2(t)

)
<∞, t ∈ J).
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Then, we consider:
(1:) L2(Ω) the Banach space of random variables Y (t) : Ω→ R;E(Y 2) <∞, and
(2:) C = C(J,L2(Ω)) the set of all second order stochastic processes which are mean square continuous over
J. This set is a Banach space equipped with the following norm:

||Y ||C = sup
t∈J
||Y (t)||2, where, ||Y (t)||2 = (E(Y 2(t)))

1
2 .

We recall the following de�nitions, see [12, 13, 14, 16].

De�nition 2.1. Let Y (t) ∈ C, t ∈ J, β > 0. The mean square Riemann-Liouville integral of Y of β−order
is given by:

IβY (t) :=

∫ t

0

(t− s)β−1

Γ(β)
Y (s)ds, t ∈ J.

De�nition 2.2. Let Y (t) ∈ C, t ∈ J, β > 0, β ∈]n − 1, n], n = [β] + 1, n ∈ N∗. The mean square Caputo

derivative of Y is given by

DβY (t) := In−βY (n)(t).

Lemma 2.1. Let β > 0. The solutions of DβY (t) = 0 are the following:

Y (t) = C0 + C1t+ · · ·+ Cn−1t
n−1,

with Ci ∈ R, i = 0, 1, . . . , n− 1, (n = [β] + 1).

In view of this lemma, we can easily con�rm that

IβDβY (t) = Y (t) + C0 + C1t+ · · ·+ Cn−1t
n−1.

3. Existence and Uniqueness Criteria

We begin our main result by proving the following random integral lemma.

Lemma 3.1. The random di�erential problem (2) has the following random integral representation

Y (t) =
n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
Xi +X0

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1A1f1(s, Y (s)) + a2A2f2

(
s,DβY (s)) + a3A3f3

(
s, IρY (s)

))
ds.

(3)

Proof. To prove the result, we begin by considering the following homogenous linear di�erential problem:

Dα1 · · ·DαnY (t) = W (t), (4)

where, W (t) := a1A1f1(t, Y (t)) + a2A2f2

(
t,DβY (t)) + a3A3f3

(
t, IρY (t)

)
.

Applying the mean square Riemann-Liouville integral of order α1, to (4), we can write

Dα2 · · ·DαnY (t) = γ1 + Iα1W (t). (5)

Again, thanks to the square Riemann-Liouville integral of order α2, we can state that

Dα3 · · ·DαnY (t) = γ2 + Iα2γ1 + Iα1+α2W (t). (6)

Consequently,

Dα3 · · ·DαnY (t) = γ2 +
tα2

Γ(α2 + 1)
γ1 + Iα1+α2W (t). (7)
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Using the same arguments as before, we get the following formula

Y (t) =

n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
γi + γn + I

∑n
i=1 αiW (t), (8)

where, γi ∈ R, i = 1 . . . , n.
For t = 0, in (8) we have

Y (0) = γn

and by the �rst initial condition in (2), we get γn = X0. By di�erentiating of (8) αi+1-times for i = 1, . . . , n−1,
and by taking t = 0, we obtain

Y (αn)(0) =γn−1,

...

Y (α2)(0) =γ1.

Also, we can see that

γ1 =X1,

...

γn−1 =Xn−1.

Substituting γi, i = 0, . . . , n− 1, in (8), we get the desired representation. The proof is thus achieved.

Let now consider the Banach space de�ned by:

F := {Y ∈ C,DβY ∈ C},

which is equipped with the norm
||Y ||F = max(||Y ||C , ||DβY ||C).

Let also introduce the random integral operator H : F → F :

HY (t) =
n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
Xi +X0

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1A1f1(s, Y (s)) + a2A2f2

(
s,DβY (s)) + a3A3f3

(
s, IρY (s)

))
ds.

To facilitate the fastidious calculation, we consider the following notations and assumptions:

(H1) : There are three real positive numbers K1,K2,K3 > 0, such that for all Y1, Y2 ∈ L2(Ω), t ∈ J, the
following inequalities are valid:

‖f1(t, Y1)− f1(t, Y2)‖2 ≤ K1‖Y1 − Y2‖2,
‖f2(t, Y1)− f2(t, Y2)‖2 ≤ K2‖Y1 − Y2‖2,
‖f3(t, Y1)− f3(t, Y2)‖2 ≤ K3‖Y1 − Y2‖2.

(H2) : There exist three positive real numbers 0 ≤ r1, r2, r3, such that

‖f1(t, 0)‖2 ≤ r1,

‖f2(t, 0)‖2 ≤ r2,

‖f3(t, 0)‖2 ≤ r3.
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ρ =
n−1∑
i=1

T
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
‖Xi‖2 + ‖X0‖2,

ρ1 =
n−1∑
i=1

T
∑n
i=i+1 αi−β

Γ(
∑n

i=i+1 αi − β + 1)
‖Xi‖2,

φ =
T
∑n
i=1 αi

Γ
(∑n

i=1 αi + 1
)(a1‖A1‖2r1 + a2‖A2‖2r2 + a3‖A3‖2r3

)
,

φ1 =
T
∑n
i=1 αi

Γ
(∑n

i=1 αi + 1
)(a1‖A1‖2K1 + a2‖A2‖2K2 + a3‖A3‖2K3

)
,

σ =
T
∑n
i=1 αi−β

Γ
(∑n

i=1 αi − β + 1
)(a1‖A1‖2r1 + a2‖A2‖2r2 + a3‖A3‖2r3

)
,

σ1 =
T
∑n
i=1 αi−β

Γ
(∑n

i=1 αi − β + 1
)(a1‖A1‖2K1 + a2‖A2‖2K2 + a3‖A3‖2K3

)
.

(9)

Now, we prove the existence of a unique stochastic process solution for our above Airy type problem.

Theorem 3.1. Suppose satis�ed the hypotheses (H.1) and (H.2). Then (2) has a unique stochastic process

solution, under the condition that R < 1, where

R := max(φ1, σ1).

Proof. To prove this theorem, we shall consider an arbitrary real positive number r, such that

r > max(
ρ+ φ

1− φ1
,
ρ1 + σ

1− σ1
).

We begin �rst by showing that HBr ⊂ Br, where

Br = {Y ∈ F : ‖Y ‖F ≤ r}.

So, let t ∈ J, Y ∈ Br. It is clear that by de�nition, we have

‖HY (t)‖2 ≤
n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
‖Xi‖2 + ‖X0‖2

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1‖A1‖2‖f1(s, Y (s))‖2 + a2‖A2‖2‖f2

(
s,DβY (s))‖2

+ a3‖A3‖2‖f3

(
s, IρY (s)

)
‖2
)
ds.

Using both (H.1) and (H.2), we can state that

‖f1(t, Y (t))− f1(t, 0) + f1(t, 0)‖2 ≤ ‖f1(t, Y (t))− f1(t, 0)‖2 + ‖f1(t, 0)‖2
≤ K1‖Y ‖2 + r1 ≤ K1‖Y ‖F + r1.

With the same arguments, we get

‖f2(t,DβY (t))− f2(t, 0) + f2(t, 0)‖2 ≤ ‖f2(t,DβY (t))− f2(t, 0)‖2 + ‖f2(t, 0)‖2
≤ K2‖DβY ‖2 + r2 ≤ K2‖Y ‖F + r2,
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‖f3(t, IρY (t))− f3(t, 0) + f3(t, 0)‖2 ≤ ‖f3(t, IρY (t))− f3(t, 0)‖2 + ‖f3(t, 0)‖2
≤ K3‖IρY ‖2 + r3 ≤ K3‖Y ‖F + r3.

Therefore, it yields that

‖HY (t)‖2 ≤
n−1∑
i=1

T
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
‖Xi‖2 + ‖X0‖2

+
T
∑n
i=1 αi

Γ
(∑n

i=1 αi + 1
)(a1‖A1‖2(K1‖Y ‖C + r1) + a2‖A2‖2(K2‖DβY ‖C + r2)

+ a3‖A3‖2(K3‖IρY ‖C + r3)

)
.

So, we obtain

‖HY ‖C ≤
n−1∑
i=1

T
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
‖Xi‖2 + ‖X0‖2

+
T
∑n
i=1 αi

Γ
(∑n

i=1 αi + 1
)(a1‖A1‖2(K1‖Y ‖F + r1) + a2‖A2‖2(K2‖Y ‖F + r2) + a3‖A3‖2(K3‖Y ‖F + r3)

)
≤ ρ+ φ+ φ1r < r.

(10)

On the other side, we can write

‖DβHY ‖C ≤
n−1∑
i=1

T
∑n
i=i+1 αi−β

Γ(
∑n

i=i+1 αi − β + 1)
‖Xi‖2

+
T
∑n
i=1 αi−β

Γ
(∑n

i=1 αi − β + 1
)(a1‖A1‖2(K1‖Y ‖F + r1) + a2‖A2‖2(K2‖Y ‖F + r2) + a3‖A3‖2(K3‖Y ‖F + r3)

)
≤ ρ1 + σ + σ1r < r.

(11)

Thanks to (10) and (11), we can deduce that

‖HY ‖F ≤ r.

We have thus proved that HBr ∈ Br.
Now, we prove that H is contractive.
Let Y1, Y2 ∈ F, t ∈ J . We have

HY1(t)−HY2(t) =

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1A1(f1(s, Y1(s))− f1(s, Y2(s)))

+ a2A2(f2

(
s,DβY1(s))− f2

(
s,DβY2(s))) + a3A3(f3

(
s, IρY1(s)

)
− f3

(
s, IρY2(s)

)
)

)
ds,

which leads to

‖HY1(t)−HY2(t)‖2 ≤
∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1‖A1‖2‖f1(s, Y1(s))− f1(s, Y2(s))‖2

+ a2‖A2‖2‖f2

(
s,DβY1(s))− f2

(
s,DβY2(s))‖2 + a3‖A3‖2‖f3

(
s, IρY1(s)

)
− f3

(
s, IρY2(s)

)
‖2
)
ds.
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Thanks to (H.1), we have the following estimate

‖HY1 −HY2‖C ≤
T
∑n
i=1 αi

Γ
(∑n

i=1 αi + 1
)

×
(
a1‖A1‖2(K1‖Y1 − Y2‖C) + a2‖A2‖2(K2‖DβY1 −DβY2‖C) + a3‖A3‖2(K3‖IρY1 − IρY2‖C)

)
≤ φ1‖Y1 − Y2‖F .

(12)

Some easy calculation will allow us to state that

‖Dβ(HY1 −HY2)‖C ≤
T
∑n
i=1 αi−β

Γ
(∑n

i=1 αi − β + 1
)

×
(
a1‖A1‖2(K1‖Y1 − Y2‖C) + a2‖A2‖2(K2‖DβY1 −DβY2‖C) + a3‖A3‖2(K3‖IρY1 − IρY2‖C)

)
≤ σ1‖Y1 − Y2‖F .

(13)

The inequalities (12) and (13) allow us to say that

‖HY1 −HY2‖F ≤ max(φ1, σ1)‖Y1 − Y2‖F .

At the end of this proof, we can conclude that problem (2) has a unique stochastic process solution on J.

4. Random Data and β−Dependance

Using the introduced norm of the above Banach space, we shall be concerned with introducing some
random dependance de�nitions for the above fractional Airy type problem. Then, we prove some random
variables data dependance results for the same problem.
To do this, we shall �rst consider the following auxiliary problem:

Dα1 · · ·DαnY (t) = a1A1f1(t, Y (t)) + a2A2f2

(
t,DβY (t)) + a3A3f3

(
t, IρY (t)

)
, 0 ≤ ai,

X̃0 = Y (0),

X̃i = Y (αi+1)(0), i = 1, . . . , n− 1, n ∈ N∗,
t ∈ J = [0, T ] , αi ∈]0, 1], 0 < β < 1, 0 < ρ.

(14)

We introduce the following �rst de�nition.

De�nition 4.1. The solution Y of (2) is continuously and β-di�erentially dependent on the random data

Xi, i = 0, . . . , n− 1, n ∈ N∗, if

∀ε > 0,∃δi > 0, i = 0, . . . , n− 1, such that ‖Xi − X̃i‖2 ≤ δi the inequality ‖Y − Ỹ ‖F ≤ ε

holds.

At this moment, we are able to present to the reader the following main result.

Theorem 4.1. Suppose that the conditions of Theorem 3.2 are valid. Then the solution of (2) is continuously
and β-di�erentially dependent on Xi, i = 0, . . . , n− 1, n ∈ N∗.

Proof. Let Y and Ỹ be the unique random solution of (2) and (14), where:

Ỹ (t) =

n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
X̃i + X̃0

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1A1f1(s, Ỹ (s)) + a2A2f2

(
s,DβỸ (s)) + a3A3f3

(
s, IρỸ (s)

))
ds.

(15)
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We have

Y (t)− Ỹ (t) =

n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
(Xi − X̃i) + (X0 − X̃0)

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1A1(f1(s, Y (s))− f1(s, Ỹ (s))) + a2A2(f2

(
s,DβY (s))− f2

(
s,DβỸ (s)))

+ a3A3(f3

(
s, IρY (s)

)
− f3

(
s, IρỸ (s)

)
)

)
ds.

(16)

So, we get

‖Y (t)− Ỹ (t)‖2 ≤
n−1∑
i=1

t
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
‖Xi − X̃i‖2 + ‖X0 − X̃0‖2

+

∫ t

0

(t− s)
∑n
i=1 αi−1

Γ
(∑n

i=1 αi
) (

a1‖A1‖2‖f1(s, Y (s))− f1(s, Ỹ (s))‖2 + a2‖A2‖2‖f2

(
s,DβY (s))− f2

(
s,DβỸ (s))‖2

+ a3‖A3‖2‖f3

(
s, IρY (s)

)
− f3

(
s, IρỸ (s)

)
‖2
)
ds.

(17)

Consequently, we obtain

‖Y − Ỹ ‖C ≤
n−1∑
i=1

T
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
δi + δn + φ1‖Y − Ỹ ‖F . (18)

With the same arguments as before, we have

‖Dβ(Y − Ỹ )‖C ≤
n−1∑
i=1

T
∑n
i=i+1 αi−β

Γ(
∑n

i=i+1 αi − β + 1)
δi + σ1‖Y − Ỹ ‖F . (19)

By the inequalities (22) and (23), we get

‖Y − Ỹ ‖F ≤ max(
n−1∑
i=1

T
∑n
i=i+1 αi

Γ(
∑n

i=i+1 αi + 1)
δi + δn,

n−1∑
i=1

T
∑n
i=i+1 αi−β

Γ(
∑n

i=i+1 αi − β + 1)
δi) + max(φ1, σ1)‖Y − Ỹ ‖F .

(20)

This leads to

‖Y − Ỹ ‖F ≤
max

(∑n−1
i=1

T
∑n
i=i+1 αi

Γ(
∑n
i=i+1 αi+1)

δi + δn,
∑n−1

i=1
T

∑n
i=i+1 αi−β

Γ(
∑n
i=i+1 αi−β+1)

δi
)

1−R
,

(21)

where R = max(φ1, σ1).
The proof is thus complete.

5. Applications

This section deals with two examples to review the main results by a numerical point of view.

Example 5.1. We consider the following initial value problem

D0.7D0.4Y (t) = 1.5A1
cosY (t)+Y (t)

33(t2+2)
+
√

3A2
D

1
25 Y (t)+sinD

1
25 Y (t)

t+31

+1
2A3

2 cos I
3
2 Y (t)+2 sin I

3
2 Y (t)

exp (
√
t+23)

, (22)
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such that E(X2
0 ) = 1, E(X2

1 ) = 3, E(A2
1) = 4, E(A2

2) = 1, E(A2
3) = 16, where t ∈ J = [0, 7].

We have K1 = 1
66 ,K2 = 1

31 ,K3 = 2
exp 23 , r1 = 1

33(t2+2)
, r2 = 0, r3 = 2

exp (
√
t+23)

.

We get ρ = 5.2515, ρ1 = 3.9203, φ = 0.3694, φ1 = 0.8234, σ = 0.3482, σ1 = 0.7763, and R = max(φ1, σ1) =
0.8234 < 1.
Thanks to Theorem 3.2, the problem (22) has a unique stochastic process solution on J = [0, 7].

Example 5.2. Consider the following problem

D0.6D0.6D0.9Y (t) = 0.75A1f1(t, Y (t)) + 2A2f2

(
t,D

2
33Y (t)) +A3f3

(
t, I3Y (t)

)
, (23)

such that E(X2
0 ) = 2, E(X2

1 ) = 1, E(X2
2 ) = 5, E(A2

1) = 9, E(A2
2) = 16, E(A2

3) = 1, where t ∈ J = [0, 5], and

f1(t, Y (t)) =
1

2t+ 43
(sinY (t) + cosY (t)),

f2(t,D
2
23Y (t)) =

1√
t+ exp (27)

(D
2
23Y (t) + cosD

2
23Y (t)),

f3(t, I3Y (t)) =
I3Y (t)

t3 + 47
.

We have K1 = 1
43 ,K2 = 1

exp (27) ,K3 = 1
47 , r1 = 1

2t+43 , r2 = 1√
t+exp (47)

, r3 = 0.

Using our data, we �nd ρ = 19.7213, ρ1 = 17.1148, φ = 0.6992, φ1 = 0.9835, σ = 0.6718, σ1 = 0.9450, and
R = max(φ1, σ1) = 0.9835 < 1.
Then, by Theorem 4.2, the problem (23) is continuously and 2

33−di�erentially dependent on Xi, i = 0, 1, 2.

6. Conclusion

We have studied a class of random fractional problems using mean square calculus notions. The considered
problem generalizes the classical Airy di�erential equation both in the random and in the fractional senses.
We have established new su�cient conditions to prove the existence of a unique stochastic process solution.
Some notions on β−di�erential dependance have also been introduced in the paper and new results on
such dependance have been established. At the end, two illustrative examples have also been discussed. In
the future, the Ulam-Hyers stability for problem (2) will be analysed, then it will be compared with the
β−dependance results of the present paper. This paper is in progress...
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