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Abstract

In this article, we derive a generalised nonlinear Picone's identity for p sub-Laplacian on the Heisenberg
group. As an application of Picone's identity, we prove a Hardy type inequality and Picone's inequality. We
also establish some qualitative results involving the system of nonlinear equations involving p-sub-Laplacian.
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1. Introduction

It is well known that Picone type identities play an important role in the study of qualitative properties
of elliptic partial di�erential equations. The classical Picone's identity [25] is as follows: If u ≥ 0 and v > 0
are su�ciently smooth functions, then

|∇u|2 +
u2

v2
|∇v|2 − 2

u

v
∇u∇v = |∇u|2 −∇

(
u2

v

)
∇v ≥ 0. (1)

For some of the applications of this identity, we refer to [1, 2, 3, 22] and the references cited therein. W.
Allegretto and Y.X. Huang [4] obtained Picone's identity for p-Laplace equations. Their identity is as follows:

|∇u|p + (p− 1)
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|∇v|p − pu
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∇u|∇v|p−2∇v = |∇u|p −∇(

up

vp−1
)|∇v|p−2∇v. (2)
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J. Tyagi [26] generalised (1) and proved the following nonlinear Picone type identity:

α|∇u|2 − |∇u|
2

f ′(v)
+

(
u
√
f ′(v)∇v
f(v)

− ∇u√
f ′(v)

)2

= α|∇u|2 −∇
(
u2

f(v)

)
∇v, (3)

where f(y) 6= 0, ∀ 0 6= y ∈ R and α > 0 is such that f ′(y) ≥ 1
α , ∀ 0 6= y ∈ R.

K. Bal [5] established a nonlinear Picone's identity for p-Laplace operators. They showed that

|∇u|p − pup−1∇u|∇v|p−2∇v
f(v)

+
upf ′(v)|∇v|p

[f(v)]2
= |∇u|p −∇(

up

f(v)
)|∇v|p−2∇v.

where f ′(y) ≥ (p− 1)[f(y)
p−2
p−1 ] for all y.

T. Feng [14] further generalised Picone's identity for p-Laplace equations as follows:

|∇u|p − g′(u)|∇v|p−2∇v.∇u
f(v)

+
g(u)f ′(v)|∇v|p

[f(v)]2
= |∇u|p −∇

(
g(u)

f(v)

)
|∇v|p−2∇v.

where v > 0, u ≥ 0, g(u) and f(v) satisfy that for p > 1, q > 1, 1
p + 1

q = 1,

g(u)f ′(v)|∇v|p

[f(v)]2
≥ p

q

[
g′(u)|∇v|p−1

pf(v)

]q
,

where g(u), g′(u) > 0 for u > 0; g(u), g′(u) = 0 for u = 0; f(v), f ′(v) > 0.
For some interesting Picone type identities and related results in Euclidean domains, we refer to [6, 11,

12, 15, 18, 19, 28].
Research works available for Picone type identities in Heisenberg group are not as exhaustive as it is in

the case of Euclidean domain. Niu et al. [24] obtained Picone's identity for p-sub-Laplacian in bounded
domains of Heisenberg group. Their identity is as follows:

|∇Hu|p + (p− 1)
up

vp
|∇Hv|p − p

up−1

vp−1
∇u|∇Hv|p−2∇v = |∇Hu|p −∇(

up

vp−1
)|∇Hv|p−2∇v. (4)

For some further results involving Picone's identity and its applications on the Heisenberg groups, we
refer to [16, 17, 20, 21, 27] and references therein. For a nonlinear Picone identity for biharmonic operator
on the Heisenberg group, see [13].

Motivated by the above research works, aim of this article is to prove a nonlinear analogue of Picone's
identity for p-sub-Laplacian on the Heisenberg group. Our main result is stated below:

Theorem 1.1. Let Ω ⊆ Hn and u ≥ 0, v > 0 be di�erentiable functions. Suppose f, g : R → (0,∞) are
continuously di�erentiable functions such that f(y), f ′(y) > 0 if y > 0; f(0) = 0, f ′(0) = 0 and g(y) >
0, g′(y) > 0. We further assume that

f(u)g′(v)

g2(v)
≥ (p− 1)

(
f ′(u)

pg(v)

) p
p−1

. (5)

Let us denote

L(u, v) = |∇Hnu|p − f ′(u)|∇Hnv|p−2∇Hnv.∇Hnu

g(v)
+
f(u)g′(v)|∇Hnv|p

(g(v))2
.
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)
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Then
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(i) L(u, v) = R(u, v) ≥ 0;

(ii) L(u, v) = 0 a.e. in Ω if and only if

∇Hn

(u
v

)
= 0, (6)

|∇Hnu| =
(
f ′(u)

pg(v)

) 1
p−1

|∇Hnv|, (7)

(p− 1)

(
f ′(u)

pg(v)

) p
p−1

=
f(u)g′(v)

(g(v))2
. (8)

Remark 1.1. If we choose f(s) = sp and g(s) = sp−1, then our result reduces to (4).

The article is organized as follows: In Section 2, we recall some brief results on the Heisenberg group.
Section 3 deals with the proof of Theorem 1.1. In section 4, we discuss some applications of the Theorem
1.1.

2. Preliminaries

In this section, we present some de�nitions related to the Heisenberg group. The Heisenberg group
Hn = (R2n+1, ·), is a non-commutative group equipped with the product

(x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(〈y1, x2〉 − 〈x1, y2〉)),

where x1, y1, x2, y2 ∈ Rn, t1, t2 ∈ R and 〈·, ·〉 is the usual scalar product in Rn. With this operation Hn is
a Lie group and the Lie algebra of Hn is generated by the left-invariant vector �elds

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, . 3, . . . , n.

Xi, Yi and T satisfy

[Xi, Yj ] = −4δijT, [Xi, Xj ] = [Yi, Yj ] = [Xi, T ] = [Yi, T ] = 0.

The norm on Hn is given by

||ξ||Hn = (|z|4 + t2)
1
4 = ((x2 + y2)2 + t2)

1
4 .

The distance between ξ = (z, t) and ξ′ = (z′, t′) on Hn is de�ned as follows:

d(ξ, ξ′) = d((z′, t′)−1 . (z, t)).

The Heisenberg gradient is de�ned as

∇Hn = (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn)

and hence the Heisenberg Laplacian is de�ned as

∆Hn =
n∑
i=1

X2
i + Y 2

i = ∇H · ∇H.

The p-sub-Laplacian is de�ned as

∆Hn,pu = ∇Hn(|∇Hn |p−2∇Hnu).
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De�nition 2.1 (S1,p(Ω) and S1,p
0 (Ω) Space). For an open subset Ω ⊆ Hn and 1 < p <∞, we de�ne

S1,p(Ω) = {u : Ω→ R such that u, |∇Hnu| ∈ Lp(Ω)}.

The space S1,p(Ω) is equipped with the norm

‖u‖S1,p(Ω) =
(
‖u‖Lp(Ω) + ‖∇Hnu‖Lp(Ω)

) 1
p
.

By S1,p
0 (Ω), we denote the closure of C∞0 (Ω) with respect to the norm

‖u‖
S1,p
0 (Ω)

=

(∫
Ω
|∇Hnu|pdzdt

) 1
p

.

For further details on Heisenberg group, see [7, 9].

3. Proof of Theorem 1.1

It is easy to see that

∇Hn

(
f(u)

g(v)

)
=

1

g2(v)
(g(v)f ′(u)∇Hnu− g′(v)f(u)∇Hnv). (9)

On using (9), we obtain

R(u, v) = |∇Hnu|p −∇Hn

(
f(u)

g(v)

)
|∇Hnv|p−2∇Hnv

= |∇Hnu|p − f ′(u)

g(v)
|∇Hnv|p−2∇Hnu · ∇Hnv +

f(u)g′(v)

g2(v)
|∇Hnv|p

= L(u, v).

Next, we show that L(u, v) ≥ 0. Let q be conjugate of p, i.e., 1
p + 1

q = 1. Then

L(u, v) = |∇Hnu|p − f ′(u)

g(v)
|∇Hnv|p−2∇Hnu · ∇Hnv +

f(u)g′(v)

g2(v)
|∇Hnv|p

= p

(
1

p
|∇Hnu|p +

1

q

(
f ′(u)|∇Hnv|p−1

pg(v)

)q)
− f ′(u)|∇Hnu||∇Hnv|p−1

g(v)︸ ︷︷ ︸
T1

+
f(u)g′(v)|∇Hnv|p

g2(v)
− p

q

(
f ′(u)|∇Hnv|p−1

pg(v)

)q
︸ ︷︷ ︸

T2

+
f ′(u)|∇Hnv|p−2

g(v)
(|∇Hnu||∇Hnv| − ∇Hnu · ∇Hnv)︸ ︷︷ ︸

T3

.

Now, we will show that Ti ≥ 0, i = 1, 2, 3. Let us recall Young's inequality

ab ≤ ap

p
+
bq

q
, (10)
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where 1
p + 1

q = 1. Equality in (10) holds if and only if ap = bq. On choosing a = |∇Hnu| and b =

f ′(u)|∇Hnv|p−1

pg(v)
in (10), we obtain

f ′(u)|∇Hnv|p−1|∇Hnu|
pg(v)

≤ 1

p
|∇Hnu|p +

1

q

(
f ′(u)|∇Hnv|p−1

pg(v)

)q
.

This shows that T1 ≥ 0.
(5) shows that T2 ≥ 0. Since ∇Hnu · ∇Hnv ≤ |∇Hnu||∇Hnv|, we obtain T3 ≥ 0. This completes the proof

of (i).
It is easy to see that if (6) and (7) are satis�ed then T2 = 0 and T3 = 0. By the equality case of Young's

inequality (10), it is easy to see that T1 = 0 if (7) is satis�ed. Thus L(u, v) = 0 if (6), (7) and (8) are
satis�ed.

Finally, we need to show that if L(u, v) = 0 then (6), (7) and (8) are satis�ed. If L(u, v) = 0, then

p

(
1

p
|∇Hnu|p +

1

q

(
f ′(u)|∇Hnv|p−1

pg(v)

)q)
− f ′(u)|∇Hnu||∇Hnv|p−1

g(v)
= 0, (11)

f(u)g′(v)|∇Hnv|p

g2(v)
− p

q

(
f ′(u)|∇Hnv|p−1

pg(v)

)q
= 0 (12)

and
f ′(u)|∇Hnv|p−2

g(v)
(|∇Hnu||∇Hnv| − ∇Hnu · ∇Hnv) = 0. (13)

From (11) and equality case of (10), we obtain

|∇Hnu|p =

(
f ′(u)|∇Hnv|p−1

pg(v)

)q
,

which gives (7). It is easy to see that (12) implies (8). If u(x) 6= 0, then u = cv, for some constant c. This

shows that ∇Hn

(u
v

)
= 0. If u(x) = 0 for some x ∈ Ω, then consider the set N = {x ∈ Ω : u(x) = 0} and

then ∇Hnu = 0, f(u) = 0, f ′(u) = 0 in N. Thus (6) holds. This proves (ii).

4. Applications of Theorem 1.1

Theorem 4.1. Let 0 < v ∈ C2(Ω) be such that

−∆Hn,pv ≥ λh(x)g(v) in Ω,

where h ∈ L∞(Ω) is a nonnegative weight function. Let 0 ≤ u ∈ S1,p
0 (Ω) and f(u) ∈ S1,p

0 (Ω). Further, if f
and g satisfy conditions of Theorem 1.1, we have∫

Ω
|∇Hnu|pdx ≥ λ

∫
Ω
h(x)f(u)dx. (14)

Proof. Let K be a compact subset of Ω and 0 ≤ φ ∈ C∞0 (Ω). By Theorem 1.1,

0 ≤
∫
K
L(φ, v)dx ≤

∫
Ω
L(φ, v)dx =

∫
Ω
R(φ, v)dx

=

∫
Ω
|∇Hnφ|pdx−

∫
∇Hn

(
f(φ)

g(v)

)
|∇Hnv|p−2∇Hnvdx

=

∫
Ω
|∇Hnφ|pdx+

∫
Ω

f(φ)

g(v)
∆Hn,pvdx

≤
∫

Ω
|∇Hnφ|pdx− λ

∫
Ω
h(x)f(φ)dx.

As φ tends to u, we obtain (14).
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Remark 4.1. On choosing f(u) = up and g(v) = vp−1, we obtain Hardy type inequality proved by Niu et al.
[23, Theorem 2.1].

Theorem 4.2. Suppose that h1(x) and h2(x) are continuous functions such that h1(x) < h2(x) on Ω ⊂ Rn.
If f and g satisfy conditions of Theorem 1.1 and there exists u ∈ C2(Ω) such that

−∆Hn,pu =
h1(x)f(u)

u
in Ω,

u > 0, g(u) > 0 in Ω,

u =0 = g(u) on ∂Ω.

(15)

Then any nontrivial solution v of
−∆Hn,pv = h2(x)g(v) in Ω (16)

changes sign.

Proof. Assume that v does not change sign, then

0 ≤
∫

Ω
L(u, v)dx =

∫
Ω
R(u, v)dx

=

∫
Ω
|∇Hnu|pdx−

∫
Ω
∇Hn

(
f(u)

g(v)

)
|∇Hnv|p−2∇Hnvdx

=

∫
Ω
|∇Hnu|pdx+

∫
Ω

f(u)

g(v)
∆Hn,pvdx

=

∫
Ω

(h1(x)− h2(x))f(u)dx

< 0,

which is a contradiction. This completes the proof.

Theorem 4.3. Let f and g satisfy conditions of Theorem 1.1 and (u, v) ∈ C2(Ω) × C2(Ω) be a positive
solution to the system

−∆Hn,pu = g(v) in Ω,

−∆Hn,pv =
(g(v))2u

f(u)
in Ω,

u > 0, v > 0, g(u), f(v) > 0 in Ω,

u =0 = g(u) on ∂Ω,

(17)

then |∇Hnu| =
(
f ′(u)

pg(v)

)1/p−1

|∇Hnv|.

Proof. For any φ1, φ2 ∈ S1,p
0 (Ω),∫

Ω
|∇Hnu|p−2∇Hnu∇Hnφ1dx =

∫
Ω
g(v)φ1dx, (18)

∫
Ω
|∇Hnv|p−2∇Hnv∇Hnφ2dx =

∫
Ω

(g(v))2u

f(u)
φ2dx. (19)

On choosing φ1 = u, φ2 = f(u)
g(v) , we get ∫

Ω
|∇Hnu|pdx =

∫
Ω
g(v)udx (20)
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Ω
|∇Hnv|p−2∇Hnv∇Hn

(
f(u)

g(v)

)
dx =

∫
Ω
ug(v)dx. (21)

On using (20) and (21), we get∫
Ω
|∇Hnv|p−2∇Hnv∇Hn

(
f(u)

g(v)

)
dx =

∫
Ω
ug(v)dx

=

∫
Ω
|∇Hnu|pdx,

which gives ∫
Ω
L(u, v)dx =

∫
Ω
R(u, v)dx = 0.

On applying Theorem 1.1, we get |∇Hnu| =
(
f ′(u)
pg(v)

)1/p−1
|∇Hnv| a.e. in Ω.

Next, we prove a generalised Picone type inequality in the spirit of [10].

Theorem 4.4. Let Ω be a bounded domain in Hn and f, g satisfy the conditions in Theorem 1.1. Let
0 ≤ u ∈ S1,p

0 (Ω), and 0 ≤ v ∈ S1,p
0 (Ω) be such that −∆Hnv ≥ 0 is a bounded Radon measure. We further

assume that v 6≡ 0 in Ω and v = 0 on ∂Ω. Then∫
Ω
|∇Hnu|pdx ≥

∫
Ω

f(u)

g(v)
(−∆Hnv)dx. (22)

Proof. Since v ≥ 0 and v = 0 on ∂Ω, therefore by strong maximum principle [8] either v > 0 or v ≡ 0 in Ω.
Since v 6≡ 0 in Ω, v > 0 in Ω. Let vm(ξ) = v(ξ) + 1

m , then −∆Hnvm = −∆Hnv and vm → v in S1,p(Ω) and

almost everywhere. Now, we consider 0 ≤ u ∈ S1,p
0 (Ω), then there exists a sequence {un} in C∞0 (Ω) such

that un ≥ 0 for each n and un → u in S1,p
0 (Ω). By using Theorem 1.1, we obtain∫

Ω
|∇Hnun|pdx ≥

∫
Ω

f(un)

g(vm) + 1
m

(−∆Hnvm)dx. (23)

Fatou's lemma and Lebesgue dominated convergence theorem implies that as n,m→∞, we obtain∫
Ω
|∆Hnu|2dx ≥

∫
Ω

f(u)

g(v)
(−∆Hnv)dx. (24)

This completes the proof.

Remark 4.2. Theorem 4.4 reduces to the classical Picone's inequality for p-sub-Laplacian on the Heisenberg
in case of f(u) = u2 and g(v) = vp−1. See [23, Corollary 3.1] for further details.
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