
Advances in the Theory of Nonlinear Analysis and its Applications 5 (2021) No. 2, 246�259.
https://doi.org/10.31197/atnaa. 685326
Available online at www.atnaa.org

Research Article

Controllability of Higher Order Fractional Damped

Delay Dynamical Systems with Time Varying Multiple

Delays in Control

M. Sivabalana, K. Sathiyanathana

aDepartment of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore - 641 020, Tamilnadu,

India.

Abstract

This paper is concerned with the controllability of higher order fractional damped delay dynamical systems
with time varying multiple delays in control, which involved Caputo derivatives of any di�erent orders. A
necessary and su�cient condition for the controllability of linear fractional damped delay dynamical system
is obtained by using the Grammian matrix. Su�cient conditions for controllability of the corresponding non-
linear damped delay dynamical system has established by the successive approximation technique. Examples
have provided to verify the results.
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1. Introduction

Fractional calculus has a long history which goes back to Leibniz, who introduced the notion of � 1
2− order

derivative" in a letter to L'Hospital from 1695. Nowadays, the subject of fractional calculus has proved to
be useful in modelling of many real-world problems in various �elds of science and engineering. Fractional
order models have the tendency to capture non-local relations in space and time, thus forming an improvised
model for analyzing complex phenomena. The most important advantage of using fractional di�erential
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equations is their non-local property, which means that the next state of a system depends not only upon its
current state but also determined by the entire historical states [28]. Studying non-local observed facts, the
notion of fractional derivatives has been familiar as a useful mathematical tool, which follows the general-
ized Mittag-Le�er law, power law and exponential law. Many engineers, technologists, mathematicians and
other scientists have modelled various types of complex physical and biological phenomena using fractional
operators. Magin [24] presented the usefulness of fractional operators in the areas like, bioimaging, biome-
chanics and bioelectrodes. Fractional derivative formulations are used to represent many practical systems
more accurately than integer order ones and gained signi�cance in the �elds of bioengineering, signal pro-
cessing, in electrochemistry, frequency dependent damping behaviour of many visco-elastic materials, �lter
design, circuit theory, dynamics of interfaces between nanoparticles and substrates, continuum and statistical
mechanics, the nonlinear oscillation of earthquakes and robotics [1, 6, 12, 18, 25, 29].

The Mathematical point of view, the fundamentals of fractional calculus and fractional di�erential and
di�erence equations are given in the monographs [22, 27]. Very recently, the analysis of fractal-fractional
malaria transmission model under control strategies using the Liouville Caputo fractional order derivatives
with the exponential decay law and power law was studied by Gomez-Aguilar et al. [16]. Aziz Khan et al.
[4, 5] examined the dynamical study of fractional order mutualism, parasitism food web module and also
stability and numerical simulation of a fractional order plant-nectar pollinator model.

On the other hand, some researchers have generalized integer order controllers to noninteger order con-
trollers. In 1961, fractional order systems in the area of automatic control were investigated by Manabe
[26]. In 2009, Chen et al. [11] discussed the fractional calculus as well as fractional order controllers and
the discretisation techniques. Review, design, optimization, and stability analysis of fractional-order PID
controller established by Ammar Soukkou et al. [32] in 2016. The fractional calculus in dynamic systems
and controls are developed by many researchers [9, 14, 15, 20, 36].

Controllability plays a vital role in the development of the modern mathematical control theory and it
is used to in�uence an object's behaviour of a dynamical system to accomplish a desired goal. The study
of control systems modeled using fractional di�erential equations is signi�cant in various problems of an
applied nature. Nowadays, the controllability has applied in the �elds of industrial and chemical process
control, reactor control, control of electric bulk power systems, aerospace engineering and recently in quantum
systems theory. Controllability theory of linear and nonlinear dynamical systems in �nite-dimensional spaces
has been studied by many researchers [2, 7, 8, 13].

A remarkable feature for delay system is that the system's future evolution depends not only on the
present control state, but also in a period of control history. Such system occurs in automatic control,
biology, economics, medicine and other areas. Mathematical description of these processes can be done
with the help of equations with delay, integral and integrodi�erential equations. Delay di�erential equa-
tions were initially introduced in the 18th century by Laplace and Condorcet. The principal di�culty
in studying delay di�erential equations lies in their special transcendental character. Delay equations al-
ways lead to an in�nite spectrum of frequencies. The determination of this spectrum requires a corre-
sponding determination of zeros of certain analytic functions. Delay di�erential equations are often solved
using numerical methods, asymptotic solutions, and graphical tools. Several attempts have been made
to �nd analytical solutions for delay di�erential equations by solving their characteristic equations under
di�erent conditions. The di�erential equations with delay was investigated by Bellman and Cooke [10]
and Hale [17]. Wiess [34] studied the controllability of delayed di�erential systems and Dauer and Gahl [13]
established the controllability of nonlinear delay dynamical systems by using �xed point technique.

Yonggang and Xiu'e [35] introduced a fractional oscillator equation in which the restoring force is repre-
sented by a term containing fractional derivative and the property of oscillation is retained. In the fractional
oscillator model, numerous speci�c forcing functions and their resonance were analysed by Achar et al. [1].
To�ghi [33] has described and attained the expression of the intrinsic damping force in the fractional os-
cillator system. Some authors extended the interpretation to the fractional oscillator and reported that
fractional oscillations have �nite numbers of zeros. Al-rabth et al. [3] used the di�erential transform method
to solve a fractional oscillator system. Recently, some researchers [7, 19, 21] has discussed the controllability
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of fractional damped dynamical systems.
To the best our knowledge, there are no relevant work has been reported on the control problem of

fractional damped delay dynamical systems of higher order. In this paper, we make an attempt to study the
controllability of the higher order fractional damped delay dynamical systems with time varying delays in
control. Numerical examples are provided to illustrate the theoretical results.

The paper has been developed as follows, in Section 1, the background, motivations and objective of
this paper has been discussed. Some preliminary facts, de�nitions and notations are recalled in the Section
2. In Section 3, necessary and su�cient conditions for controllability results of linear damped delay system
has been established. In Section 4, controllability criteria of corresponding nonlinear fractional damped
delay dynamical systems with time varying multiple delays in control are provided. In Section 5, numerical
examples has given to illustrate the e�ectiveness and applicability of our results. Finally, some concluding
remark has been drawn in Section 6.

2. Preliminaries

In this section, let us recall some notations, basic de�nitions and preliminary facts [22, 27].

De�nition 2.1. Let f be a real-or complex-valued function of the variable t > 0 and let s be a real or complex

parameter. The Laplace transform of f is de�ned as

F (s) =

∫ ∞
0

e−stf(t)dt, for Re(s) > 0.

De�nition 2.2. The Caputo fractional derivative of order α > 0, n− 1 < α ≤ n, is de�ned as

CDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds,

where f (n)(s) = dnf
dsn and the function f(t) has absolutely continuous derivative up to order n − 1. For the

brevity, Caputo fractional derivative CDα
0+

is taken as CDα.

The Laplace transform of Caputo derivative is

L[cDαx(t)](s) = sαL[x(t)](s)−
n−1∑
k=0

xk(0)sα−1−k, n− 1 < α ≤ n.

De�nition 2.3. The Mittag-Le�er functions of various type are de�ned as

Eα(z) = Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, Re(α) > 0,

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z, β ∈ C, Re(α) > 0,

Eγα,β(−λtα) =

∞∑
k=0

(γ)k(−λ)k

k!Γ(αk + β)
tαk,

where (γ)n is a Pochhamer symbol which is de�ned as γ(γ + 1) · · · (γ + n− 1) and(γ)n = Γ(γ+n)
Γ(γ) .

De�nition 2.4. The Laplace transforms of various types of Mittag-Le�er functions are de�ned as

L[Eα,1(±λtα)](s) =
sα−1

(sα ± λ)
, Re(α) > 0,

L[tβ−1Eα,β(±λtα)](s) =
sα−β

(sα ± λ)
, Re(α) > 0, Re(β) > 0,

L[tβ−1Eγα,β(±λtα)](s) =
sαγ−β

(sα ± λ)γ
, Re(s) > 0, Re(β) > 0, |λs−α| < 1.
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De�nition 2.5. The Mittag-le�er matrix function derivative of order p(p ∈ N) is de�ned as(
d

dt

)(p) (
tα−1Eα−β,α(Atα−β)

)
= tα−p−1Eα−β,α−p(At

α−β), (p ∈ N).

3. Linear Damped Delay System

Consider the linear fractional damped delay dynamical systems with time varying multiple delays in
control of the form

CDαx(t)−ACDβx(t) = Bx(t− τ) +

M∑
i=0

Ciu(ρi(t)), t ∈ J = [0, T ],

x(t) = ϕ(t), x′(t) = ϕ′(t), · · · , x(p)(t) = ϕ(p)(t),
u(t) = ψ(t), −τ ≤ t ≤ 0,

(1)

where p−1 < α < p, q−1 < β < q, q ≤ p−1, x ∈ Rn, u ∈ Rm, ρi(t) = t−τi(t) and τi(t) ≥ 0, i = 0, 1, . . . ,M
are time-dependent delays in control, A,B are n×n matrices and Ci are n×m matrices for i = 0, 1, . . . ,M .
Assume the following conditions:
(H1) The functions ρi(t) : J → R, i = 0, 1, . . . ,M , are twice continuously di�erentiable and strictly increasing
in J . Moreover

ρi(t) ≤ t, i = 0, 1, . . . ,M, for t ∈ J.

(H2) Introduce the time lead functions ri(t) : [ρi(0), ρi(T )] → [0, T ], i = 0, 1, . . . ,M , such that ri(ρi(t)) = t
for t ∈ J . Further ρ0(t) = t and for t = T. The following inequalities holds

ρM (T ) ≤ ρM1(T ) ≤ · · · ρm+1(T ) ≤ 0 = ρm(T ) < ρm−1(T ) = · · · = ρ1(T ) = ρ0(T ) = T. (2)

De�nition 3.1. The set y(t) = {x(t), ψ(t, s)} where ψ(t, s) = u(s) for s ∈ [min τi(t), t) is said to be the

complete state of the system (1) at time t .

De�nition 3.2. System (1) is said to be relatively controllable on [0, T ] if for every complete state ϕ(t),
ϕ′(t), · · · , ϕ(p)(t), z ∈ Rn, there exists a control u(t) de�ned on [0, T ], such that the solution of system (1)

satis�es x(T ) = z.

In order to get the solution of system (1), by taking Laplace and inverse Laplace transform of both sides
of the equation (1), and using convolution of Laplace transforms, we have the solution of the form [30, 31]

x(t) =

p−1∑
k=0

xk(0)tkΦα−β,1+k(At
α−β)−

q−1∑
k=0

xk(0)tα−β+kΦα−β,α−β+1+k(At
α−β)

+B

∫ 0

−τ
(t− s− τ)α−1Φα−β,α(A(t− s− τ)α−β)ϕ(s)ds

+

∫ t

o
(t− s)α−1Φα−β,α(A(t− s)α−β)

M∑
i=0

Ciu(ρi(s))ds. (3)

Using the time lead function ri(t), the solution is of the form

x(t) =

p−1∑
k=0

xk(0)tkΦα−β,1+k(At
α−β)−

q−1∑
k=0

xk(0)tα−β+kΦα−β,α−β+1+k(At
α−β)

+B

∫ 0

−τ
(t− s− τ)α−1Φα−β,α(A(t− s− τ)α−β)ϕ(s)ds

+
M∑
i=0

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(ρi(s))ds. (4)
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The solution (4) is expressed as

x(t) =x(t;ϕ) +
M∑
i=0

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(ρi(s))ds,

where

x(t;ϕ) =

p−1∑
k=0

xk(0)tkΦα−β,1+k(At
α−β)−

q−1∑
k=0

xk(0)tα−β+kΦα−β,α−β+1+k(At
α−β)

+B

∫ 0

−τ
(t− s− τ)α−1Φα−β,α(A(t− s− τ)α−β)ϕ(s)ds, (5)

and

Φα−β,1+k(At
α−β) = L−1

[
sα−β−1−k

Sα−βI −A−Bs−βe−sh

]
(t),

Φα−β,α−β+1+k(At
α−β) = L−1

[
sα−β−(α−β+1+k)

Sα−βI −A−Bs−βe−sh

]
(t),

Φα−β,α(Atα−β) = L−1

[
s−β

Sα−βI −A−Bs−βe−sh

]
(t).

Now using the inequality (2) in the above equation, we get

x(t) =x(t;ϕ) +

m∑
i=0

∫ 0

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

+

m∑
i=0

∫ t

0
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(s)ds

+
M∑

i=m+1

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds.

Further simplify we get

x(t) =x(t;ϕ) + σ(t) +
m∑
i=0

∫ t

0
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(s)ds, (6)

where

σ(t) =

m∑
i=0

∫ 0

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

+

M∑
i=m+1

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds. (7)

The controllability Grammian matrix is de�ned by as follows

W =
m∑
i=0

∫ T

0
(T − ri(s))2α−2[Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)][Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)]

∗ds,

where the ∗ denotes the matrix transpose.
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Theorem 3.1. The linear fractional damped delay dynamical system (1) is controllable on [0, T ] if and only

if the controllability Grammian matrix W is positive de�nite.

Proof. Since W is positive de�nite, it is non singular and so its inverse is well de�ned. Let control function
u is de�ned by

u(t) =[(T − ri(t))α−1Φα−β,α(A(T − ri(t))α−β)Ciṙi(t)]
∗W−1[z − x(T ;ϕ)− σ(T )]. (8)

Substituting t = T in (6) and inserting (8) we have,

x(T ) =x(T ;ϕ) + σ(T ) +
m∑
i=0

∫ T

0

[
(T − ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)

]
×
[
(T − ri(t))α−1Φα−β,α(A(T − ri(t))α−β)Ciṙi(t)

]∗
W−1

[
z − x(T ;ϕ)− σ(T )

]
ds,

=z.

Thus system (1) is controllable on [0, T ].

On the other hand, W is not positive de�nite. Then there exists a non zero vector y such that

y∗Wy =y∗
m∑
i=0

∫ T

0
(T − ri(s))2α−2[Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)][Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)]

∗yds

=0,

y∗Φα−β,α(A(T − ri(s))α−β)Ciṙi(s) = 0 on [0, T ].
Let the initial points ϕ(t) = ϕ′(t) = · · · = ϕ(p)(t) = 0 and the �nal point z = y. By assumption, there exists
control input u on [0, T ] such that it steers the response from 0 to z at t = T .
It follows that

z = y =

m∑
i=0

∫ T

0
(T − ri(s))α−1Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)u(s)ds,

then,

y∗y = y∗
m∑
i=0

∫ T

0
(T − ri(s))α−1Φα−β,α(A(T − ri(s))α−β)Ciṙi(s)u(s)ds = 0.

This is a contradiction to y 6= 0. Thus W is positive de�nite. �

4. Nonlinear Damped Delay Dynamical System

Consider the nonlinear fractional damped delay dynamical systems with time varying multiple delays in
control of the form

CDαx(t)−ACDβx(t)

= Bx(t− τ) +

M∑
i=0

Ciu(ρi(t)) + f(t, x(t), x(t− τ),C Dαx(t),C Dβx(t), u(t)) t ∈ J = [0, T ],

x(t) = ϕ(t), x′(t) = ϕ′(t), · · · , x(p)(t) = ϕ(p)(t),
u(t) = ψ(t), −τ ≤ t ≤ 0,

(9)
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where p−1 < α < p, q−1 < β < q, q ≤ p−1, x ∈ Rn, u ∈ Rm, ρi(t) = t−τi(t) and τi(t) ≥ 0, i = 0, 1, . . . ,M
are time-dependent delays in control, A,B are n×n matrices and Ci are n×m matrices for i = 0, 1, . . . ,M ,
and f : J × Rn × Rn × Rn × Rn × Rm → Rn is continuous function. The solution of (9) using the time lead
function ri(t) is given by

x(t) =x(t;ϕ) + σ(t) +
m∑
i=0

∫ t

0
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(s)ds

+

∫ t

0
(t− s)α−1Φα−β,α(A(t− s)α−β)f(s, x(s), x(s− τ),C Dαx(s),C Dβx(s), u(s))ds, (10)

where x(t;ϕ) and σ(t) are de�ned as in (5) and (7).
Consider the space X = {x(t) ∈ C(J : Rn), CDαx(t) ∈ C(J : Rn), CDβx(t) ∈ C(J : Rn) and u ∈

L∞(J,Rm)} be a Banach space endowed with the norm ||x||x = maxt∈J{|x(t)|, |CDαx(t)|, |CDβx(t)|, |u(t)|}.
Further we assume the following hypothesis:
(H3) f : J ×Rn ×Rn ×Rn ×Rn ×Rm → Rn is continuous and there exist positive constants K and L such
that

||f(t, x(t), x(t− τ),C Dαx(t),C Dβx(t), u(t))|| ≤ K, for t ∈ J,

||f(t, x1, y1, xα1, xβ1, z1)− f(t, x2, y2, xα2, xβ2, z2)|| ≤ L

[
||x1 − x2||+ ||y1 − y2||+ ||xα1 − xα2||

+ ||xβ1 − xβ2||+ ||z1 − z2||
]
,

x1, x2, y1, y2, xα1, xα2, xβ1, xβ2 ∈ Rn, z1, z2 ∈ Rm.

For brevity, let us de�ne

ai = sup
∥∥∥(t− ri(s))α−1Φα−β,α

(
A∗(t− ri(s))α−β

)∥∥∥ , bi = sup ‖ṙi(s)‖ , i = 0, 1, 2, . . . ,M,

ci = sup
∥∥∥Φα−β,α

(
A(t− ri(s))α−β

)∥∥∥ , n1 = sup ||x(t;ϕ)||, n2 = sup ||ψ(s)||,

n3 = sup
∥∥∥(T − s)α−1Φα−β,α

(
A(T − s)α−β

)∥∥∥ , n4 = aibi||C∗i ||||W−1||,

n5 =

m∑
i=0

cibi||Ci||Ni +

M∑
i=m+1

cibi||Ci||Mi,

n6 =
m∑
i=0

cibi||Ci||Li, n7 = sup ||ϕ(t)||, n8 = sup ||(t− s)−1Φα−β(A(t− s)α−β)||, n9 = ||Ci||,

n10 = sup ||(t− s)α−β−p+q−1Φα−β,α−β−p+q(A(t− s)α−β)||,

Ni =

∫ 0

ρi(0)
(T − ri(s))α−1ds, Mi =

∫ ρi(T )

ρi(0)
(T − ri(s))α−1ds, Li =

∫ T

0
(T − ri(s))α−1ds.

Theorem 4.1. Assume that the function f satis�es the condition (H3). Suppose that the linear system (1)

is controllable then the nonlinear system (9) is controllable on J .

Proof. To prove the controllability results we apply the successive approximation technique . For that, we
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de�ne

x0(t) =ϕ(t),

xn+1(t) =x(t;ϕ) +

m∑
i=0

∫ 0

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

+

m∑
i=0

∫ t

0
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)un(s)ds

+

M∑
i=m+1

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

+

∫ t

0
(t− s)α−1Φα−β,α(A(t− s)α−β)f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))ds, (11)

where

un(t) =(T − ri(t))α−1Φα−β,α(A∗(T − ri(t))α−β)C∗i ṙi(t)W
−1

[
z − x(T ;ϕ)

−
m∑
i=0

∫ 0

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

−
M∑

i=m+1

∫ ρi(t)

ρi(0)
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)ψ(s)ds

−
∫ t

0
(t− s)α−1Φα−β,α(A(t− s)α−β)f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))ds

]
, (12)

and n = 0, 1, 2, . . . .
Since ϕ(0) is a given vector, and note that {xn(t)} are the known sequence of functions. Now we have to

show that {xn(t)} is a Cauchy sequence in X. Noting that xn+1(t) = ϕ(t) +
n∑
j=0

(xj+1(t) − xj(t)), and it is

necessary to prove that the series
n∑
j=0

(xj+1(t)− xj(t)) converges uniformly with respect to t ∈ J . It is clear

that

||un(t)|| ≤||(T − ri(t))α−1Φα−β,α(A∗(T − ri(t))α−β)||||C∗i ||||ṙi(t)||||W−1||
[
||z||+ ||x(T ;ϕ)||

+
m∑
i=0

∫ 0

ρi(0)
||(T − ri(s))α−1Φα−β,α(A(T − ri(s))α−β)||||Ci||||ṙi(s)||||ψ(s)||ds

+
M∑

i=m+1

∫ ρi(T )

ρi(0)
||(T − ri(s))α−1Φα−β,α(A(T − ri(s))α−β)||||Ci||||ṙi(s)||||ψ(s)||ds

+

∫ T

0
||(T − s)α−1Φα−β,α(A(T − s)α−β)||||f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))||ds

]
≤aibi||C∗i ||

∥∥W−1
∥∥ [||z||+ n1 + n2

m∑
i=0

cibi||Ci||
∫ 0

ρi(0)
(T − ri(s))α−1ds

+ n2

M∑
i=m+1

cibi||Ci||
∫ ρi(T )

ρi(0)
(T − ri(s))α−1ds+ n3KT

]
≤n4

[
||z||+ n1 + n2n5 + n3KT

]
= p,
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and
||un(t)− un−1(t)||

≤||(T − ri(t))α−1Φα−β,α(A∗(T − ri(t))α−β)C∗i ṙi(t)W
−1||

[ ∫ T

0
||(T − s)α−1Φα−β,α(A(T − s)α−β)||

× ||f(s, xn−1(s), xn−1(s− τ),C Dαxn−1(s),C Dβxn−1(s), un−1(s))

− f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))||ds
]

≤n4n3LT

[
||xn−1(s)− xn(s)||+ ||xn−1(s− τ)− xn(s− τ)||+ ||CDαxn−1(s)−C Dαxn(s)||

+ ||CDβxn−1(s)−C Dβxn(s)||+ ||un−1(s)− un(s)||
]
.

Then
||xn+1(t)− xn(t)||

≤
m∑
i=0

∫ t

0
||(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)||||Ci||||ṙi(s)||||un(s)− un−1(s)||ds

+

∫ t

0
||(t− s)α−1Φα−β,α(A(t− s)α−β)||||f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))

− f(s, xn−1(s), xn−1(s− τ),C Dαxn−1(s),C Dβxn−1(s), un−1(s))||ds

≤n6n4n3LT

[
||xn−1(s)− xn(s)||+ ||xn−1(s− τ)− xn(s− τ)||+ ||CDαxn−1(s)−C Dαxn(s)||

+ ||CDβxn−1(s)−C Dβxn(s)||+ ||un−1(s)− un(s)||
]

+ n3LT

[
||xn−1(s)− xn(s)||+ ||xn−1(s− τ)− xn(s− τ)||+ ||CDαxn−1(s)−C Dαxn(s)||

+ ||CDβxn−1(s)−C Dβxn(s)||+ ||un−1(s)− un(s)||
]

≤(n6n4n3LT + n3LT )

[
||xn−1(s)− xn(s)||+ ||xn−1(s− τ)− xn(s− τ)||+ ||CDαxn−1(s)−C Dαxn(s)||

+ ||CDβxn−1(s)−C Dβxn(s)||+ ||un−1(s)− un(s)||
]
.

Also,

||x1(t)− x0(t)|| ≤n1 + n2n5 + n7 +
m∑
i=0

∫ t

0
||(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)||||Ci||||ṙi(s)||||u0(s)||ds

+

∫ t

0
||(t− s)α−1Φα−β,α(A(t− s)α−β)||||f(s, x0(s), x0(s− τ),C Dαx0(s),C Dβx0(s), u0(s))||ds

≤n1 + n2n5 + n7 + (n6p+ n3Kt)

≤PT, P > 0,

assuming that T ≥ 0. The method of induction and using the above inequality we have the estimate

||xn+1(t)− xn(t)|| ≤ P (n6n4n3LT + n3LT )
Tn+1

(n+ 1)!
.
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By choosing su�ciently large value of n, then the right-hand side of the above inequality can be made
arbitrarily small. This implies that {xn(t)} is a Cauchy sequence in X. Since X is complete, the sequence
{xn(t)} converges uniformly to a continuous function x(t) on J . Thus we have

x(t) =x(t;ϕ) + σ(t) +
m∑
i=0

∫ t

0
(t− ri(s))α−1Φα−β,α(A(t− ri(s))α−β)Ciṙi(s)u(s)ds

+

∫ t

0
(t− s)α−1Φα−β,α(A(t− s)α−β)f(s, x(s), x(s− τ),C Dαx(s),C Dβx(s), u(s))ds,

where

u(t) =(T − ri(t))α−1Φα−β,α(A∗(T − ri(t))α−β)C∗i ṙi(t)W
−1

[
z − x(T ;ϕ)− σ(T )

−
∫ t

0
(t− s)α−1Φα−β,α(A(t− s)α−β)f(s, x(s), x(s− τ),C Dαx(s),C Dβx(s), u(s))ds

]
,

which follows by taking limit as n→∞ on both sides of (11) and (12). Then

x
(p)
n+1(t) =x(p)(t;ϕ) + σ1(t) +

m∑
i=0

∫ t

0
(t− ri(s))α−p−1Φα−β,α−p(A(t− ri(s))α−β)Ciṙi(s)un(s)ds

+

∫ t

0
(t− s)α−p−1Φα−β,α−p(A(t− s)α−β)f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))ds,

where

σ1(t) =
m∑
i=0

∫ 0

ρi(0)
(t− ri(s))α−p−1Φα,α−p(t− ri(s))Ciṙi(s)ψ(s)ds

+
M∑

i=m+1

∫ ρi(t)

ρi(0)
(t− ri(s))α−p−1Φα,α−p(t− ri(s))Ciṙi(s)ψ(s)ds,

lim
n→∞

x
(p)
n+1(t) = lim

n→∞

(
x(p)(t;ϕ) + σ1(t) +

m∑
i=0

∫ t

0
(t− ri(s))α−p−1Φα−β,α−p(A(t− ri(s))α−β)Ciṙi(s)un(s)ds

+

∫ t

0
(t− s)α−p−1Φα−β,α−p(A(t− s)α−β)f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))ds

)
=x(p)(t;ϕ) + σ1(t) +

m∑
i=0

∫ t

0
(t− ri(s))α−p−1Φα−β,α−p(A(t− ri(s))α−β)Ciṙi(s)u(s)ds

+

∫ t

0
(t− s)α−p−1Φα−β,α−p(A(t− s)α−β)f(s, x(s), x(s− τ),C Dαx(s),C Dβx(s), u(s))ds

=x(p)(t).

Further, we have
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||CDαx(t)−C Dαxn+1(t)||

=

∣∣∣∣∣
∣∣∣∣∣ 1

Γ(p− α)

∫ t

0
(t− s)p−α−1

(∫ s

0
(s− ξ)α−p−1Φα−β,α−p(A(s− ξ)α−β)

× [Ci(u(ξ)− un(ξ)) + f(ξ, x(ξ), x(ξ − τ),C Dαx(ξ),C Dβx(ξ), u(ξ))

− f(ξ, xn(ξ), xn(ξ − τ),C Dαxn(ξ),C Dβxn(ξ), un(ξ))]dξ

)
ds

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
∫ t

0
(t− s)−1Φα−β(A(t− s)α−β)[Ci(u(s)− un(s)) + f(s, x(s), x(s− τ),C Dαx(s),C Dβx(s), u(s))

− f(s, xn(s), xn(s− τ),C Dαxn(s),C Dβxn(s), un(s))]ds

∣∣∣∣∣
∣∣∣∣∣

≤n8n9T ||u(t)− un(t)||+ n8LT

[
||x(t)− xn(t)||+ ||x(t− τ)− xn(t− τ)||+ ||CDαx(t)−C Dαxn(t)||

+ ||CDβx(t)−C Dβxn(t)||+ ||u(t)− un(t)||
]
.

Moreover,
||CDβx(t)−C Dβxn+1(t)||

=

∣∣∣∣∣
∣∣∣∣∣ 1

Γ(q − β)

∫ t

0
(t− s)q−β−1

(∫ s

0
(s− τ)α−p−1Φα−β,α−p(A(s− τ)α−β)

× [Ci(u(τ)− un(τ)) + f(τ, x(τ), x(t− τ),C Dαx(τ),C Dβx(τ), u(τ))

− f(τ, xn(τ), xn(t− τ),C Dαxn(τ),C Dβxn(τ), un(τ))]dτ

)
ds

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
∫ t

0
(t− s)α−β−p+q−1Φα−β,α−β−p+q(A(t− s)α−β)[Ci(u(s)− un(s))

+ f(s, x(s), x(s− τ),C Dαx(t),C Dβx(t), u(s))

− f(s, xn(s), xn(s− τ),C Dαxn(t),C Dβxn(t), un(s))]ds

∣∣∣∣∣
∣∣∣∣∣

≤n10n9T ||u(t)− un(t)||+ n10LT

[
||x(t)− xn(t)||+ ||x(t− τ)− xn(t− τ)||+ ||CDαx(t)−C Dαxn(t)||

+ ||CDβx(t)−C Dβxn(t)||+ ||u(t)− un(t)||
]
.

As n→∞ , CDαxn+1(t)→C Dαx(t) and CDβxn+1(t)→C Dβx(t) . Clearly x(T ) = z which means that the
control u(t) steers the system from the initial state ϕ(t), ϕ′(t), · · · , ϕ(p)(t) to z in time T . Hence the system
(9) is controllable on J .

5. Examples for controllability results

In this section, we have provided two examples for our proposed criteria to illustrate the controllability
results.
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Example 5.1. Consider the problem of nonlinear fractional damped delay dynamical system with time vary-

ing delay in control of the form

CD
5
2x(t)− CD

3
2x(t) =x(t− 2) + u(t) + u(t− 1)

+ f

(
0

x1(t)sint
x21(t)+x22(t)

+ ex1(t−2)

1+CDαx21(t−2)+CDβx22(t−2)+u(t)

)
, (13)

where α = 5
2 , β = 3

2 , τ = 2, ρ0 = t, ρ1 = t − 1, as a consequence, τ0(t) = 0, τ1(t) = 1, A = 1, B = 1, C0 =
1, C1 = 1.
The solution of the system (13) can be written as

x(t) =[E1,1(t)− tE1,2(t)]ϕ(t) + [tE1,2(t)− t2E1,3(t)]ϕ′(t) + t2E1,3(t)ϕ′′(t)

+

∫ 0

−2
(t− s− 2)

3
2E1, 5

2
((t− s− 2))ϕ(s)ds

+
1∑
i=0

∫ t

0
(t− ri(s))

1
2E1, 5

2
((t− ri(s))

3
2 )ṙi(s)u(s)ds

+

∫ t

0
(t− s)

3
2E1, 5

2
((t− s))f(s, x(s), x(s− 2),C Dαx(s),C Dβx(s), u(s))ds.

The Grammian matrix is de�ned by

W =
1∑
i=0

∫ 2

0
(2− ri(s))3

[
E1, 5

2
((2− ri(s)))ṙi(s)

][
E1, 5

2
((2− ri(s)))ṙi(s)

]∗
ds,

where ri(s) is a time lead function which is de�ned by r0(s) = s and r1(s) = s − 1. Then the Grammian

matrix can be written as

W =

∫ 2

0
(2− s)3

[
E1, 5

2
((2− s))

][
E1, 5

2
((2− s))

]∗
ds

+

∫ 2

0
(2− s+ 1)3

[
E1, 5

2
((2− s+ 1))

][
E1, 5

2
((2− s+ 1))

]∗
ds.

Evaluating it, we get

W = 145.4159 > 0,

which implies it is positive de�nite. Therefore, the linear system is controllable. And easy to verify that

the nonlinear function f is bounded and Lipschitz continuous and satis�es the Lipschitz condition with the

constant L = 1, the hypotheses of Theorem 4.1, and hence the fractional damped delay dynamical system with

multiple delays in control (13) is controllable on [0, 2].

Example 5.1 describe the conditions when A,B,C0 and C1 are constant. Following Example 5.2 demon-

strate the conditions when A,B,C0 and C1 are matrices.

Example 5.2. Consider the problem of nonlinear fractional damped delay dynamical system with time vary-

ing delay in control of the form

CD
5
2x(t)−

(
2 0
0 3

)
CD

3
2x(t) =

(
0 1
0 0

)
x(t− 2) +

(
0
1

)
u(t) +

(
1
0

)
u(t− 1)

+ f

(
0

sin(CDαx1(t)) + cos(CDβx2(t)) + ex1(t−2)

1+x21(t)+x22(t−2)+u(t)+u(t−1)

)
,

(14)
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where α = 5
2 , β = 3

2 , τ = 2, ρ0 = t, ρ1 = t − 1, as a consequence, τ0(t) = 0, τ1(t) = 1, x(t) = ϕ(t), x′(t) =
ϕ′(t),

x′′(t) = ϕ′′(t) ∈ R3, u(t) = ψ(t), A =

(
2 0
0 3

)
, B =

(
0 1
0 0

)
, C0 =

(
0
1

)
, C1 =

(
1
0

)
.

The solution of the system (14) can be written as

x(t) =[E1,1(At)− tE1,2(At)]ϕ(t) + [tE1,2(At)− t2E1,3(At)]ϕ′(t) + t2E1,3(At)ϕ′′(t)

+B

∫ 0

−2
(t− s− 2)

3
2E1, 5

2
(A(t− s− 2))ϕ(s)ds

+

1∑
i=0

Ci

∫ t

0
(t− ri(s))

1
2E1, 5

2
(A(t− ri(s))

3
2 )ṙi(s)u(s)ds

+

∫ t

0
(t− s)

3
2E1, 5

2
(A(t− s))f(s, x(s), x(s− 2),C Dαx(s),C Dβx(s), u(s))ds.

The Grammian matrix is de�ned by

W =
1∑
i=0

∫ 3

0
(3− ri(s))3

[
E1, 5

2
(A(3− ri(s)))Ciṙi(s)

][
E1, 5

2
(A(3− ri(s)))Ciṙi(s)

]∗
ds,

where ri(s) is a time lead function which is de�ned by r0(s) = s and r1(s) = s − 1. Then the Grammian

matrix can be written as

W =

∫ 3

0
(3− s)3

[
E1, 5

2
(A(3− s))C0

][
E1, 5

2
(A(3− s))C0

]∗
ds

+

∫ 3

0
(3− s+ 1)3

[
E1, 5

2
(A(3− s+ 1))C1

][
E1, 5

2
(A(3− s+ 1))C1

]∗
ds.

Evaluating it, we get

W =

(
502.6070 −373.1780
−1593.7054 1305.1044

)
.

Thus det(W ) = 61218.8890 > 0, which implies it is positive de�nite for any T > 0. Therefore, the linear

system is controllable. And easy to verify that the nonlinear function f is bounded and Lipschitz continuous

and satis�es the Lipschitz condition with the constant L = 1, the hypotheses of Theorem 4.1, and hence the

fractional damped delay dynamical system with multiple delays in control (14) is controllable on [0, 3].

6. Conclusion

In this paper has discussed about the controllability of linear and nonlinear fractional damped delay
dynamical systems with time varying multiple delays in control. The necessary and su�cient conditions for
controllability of linear system has been established by constructing the Grammian matrix. Consequently, a
su�cient conditions for the controllability criteria for nonlinear system has been derived by using successive
approximation technique. In addition to that, examples are included to verify the e�ectiveness of the results.
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