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Abstract

The authors retrospect Young’s integral inequality and its geometric interpretation, recall a reversed version
of Young’s integral inequality, present a geometric interpretation of the reversed version of Young’s integral
inequality, and conclude a new reversed version of Young’s integral inequality.
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1. Young’s integral inequality

In this section, we retrospect Young’s integral inequality and its geometric interpretation.

1.1. Young’s integral inequality

Let h(x) be a real-valued, continuous, and strictly increasing function on [0, ¢] with ¢ > 0. If h(0) = 0,
a € [0,c], and b € [0, h(c)], then

a b
-1
/Oh(x)dx—i—/o h™*(z)dx > ab, (1.1)
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where h~! denotes the inverse function of h. The equality in is valid if and only if b = h(a).

In the literature, the inequality was first stated and proved in [27], so we call it Young’s integral
inequality. For more information since [27], please refer to [I3] Section 2.7, [14, Chapter XIV], the papers [I],
2, 3, 41 51 6l 7, Ol 121 [15] 16), 17, 18, 19, 20}, 22| 23], 26, 28], and closely related references therein.

1.2. Geometric interpretation

The geometric interpretation of Young’s integral inequality (|1.1)) can be demonstrated by Figures and .
In Figure [I, we have

a

Figure 1: Geometric interpretation of the inequality (1.1)

a b
A+C=/ h(z)dz, A+ B=ab, B:/ h Y (z)dz,
0 0

a b
A—|—B+C:/ h(:v)d:c+/ h~Y(z)dz >ab= A+ B.
0 0

In Figure 2| we have

a

Figure 2: Geometric interpretation of the inequality (1.1)
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a b
A:/ h(z)dz, A+ B=ab, B—i—C':/ h~(z)duw,
0 0
A+B+C= / d:U—I—/ h~Y(z)dz >ab= A+ B.

Therefore, the inequality ([1.1)) means that the area C' > 0.
In the papers [8 10, 11, 211 24] Young’s integral inequality (|1.1)) was refined by estimating the area C
and bounding fo z)dz + fo x) dz with lower and upper bounds in terms of derivatives of h(z).

2. Reversed version of Young’s integral inequality

In this section, we recall a reversed version of Young’s integral inequality, which was analytically estab-
lished in [25], and supply a geometric interpretation, or say, a geometric proof, for it.

2.1. Reversed version of Young’s integral inequality

Under the same conditions as required by Young’s integral inequality (1.1]), the inequality

ofgig [ s [
ming 1, — h(z)dz 4+ ming 1, —— h™*(z)dz < ab, (2.1)
{ h(a) ] Jo h=1(0) ) Jo
where the equality in (2.1)) is valid if and only if b = h(a), was established in [25, Theorem 3].

2.2. Geometric interpretation

We now discuss the geometric interpretation of the inequality In other words, we now provide a
geometric proof of the inequality 2.1}
When a > h~1(b), or say, h(a) > b, as showed in Figure , the inequality (2.1)) becomes

b

a b
— r)dx “Yz)dz < ab. .
h(a)/oh()d+/0h()d§b (2.2)

When a < h=1(b), or say, h(a) < b, as showed in Figure [2| the inequality (2.1)) becomes
a a b .
/0 h(z)dz + hl(b)/o h™(x)dz < ab. (2.3)

The inequalities (2.2)) and (2.3) can be rewritten as

/Obh /h r)da < ab (2.4)

‘ ah~! ()
/Oh(m)dx+/0 Wd z < ab (2.5)

respectively. These two inequalities (2.4) and (2.5) can be geometrically demonstrated by Figures [3| and
respectively.
In Figure [3] by the transform

and

the area "
C+A"+A :/ h(z)dx
0
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(4

Figure 3: Geometric interpretation of the inequality (2.4)

A = /OaH(a:)dx - /0 b:(%) dz.

a b
A +A"+B= deJrA”Jr hY(z)dz = ab,
o h(a) 0

contracts to

Then it is clear that

where

A":/Ob[H—l(x)—h—l(x)]dx:/ob[@—1]h—1(x)dx: [@—1] /Obh_l(x)dwzo.

Consequently, the inequality (2.4)) is valid.

(4

Figure 4: Geometric interpretation of the inequality (2.5]
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In Figure [d] by the transform

the area

b
B’+B”+C:/ Y (y)dy
0
" ah(y)
=1
| e

a b -
A+B’+B":/ h(a:)da:+/ ah
0 0

contracts to

Then it is obvious that

dy + B" = ab,

where

a

a a hfl b hfl b a
B”:/{H@yJWde:/m{ ()—4Mmdm:[ ()—q/mmwdeQ
0 0 0
Consequently, the inequality (2.5)) is valid.

3. A new reversed version of Young’s integral inequality

Observing the geometric interpretation in Section of the inequality (2.1]), we conclude a new reversed
version of Young’s integral inequality.

Theorem 3.1. Let h(z) be a continuous and strictly increasing function on [0, c| with ¢ > 0, let h(0) = 0,
a € [0,c], and b € [0, h(c)], let h=! denote the inverse function of h, and let

b
0<p@){ = @ W0
=1, h(a) <b
and a
< , h b
o< pie) ) = B
=1, h(a) >
are continuous functions on [0,c|. Then
a b
/ p(x)h(z)dx +/ q(x)h Y (x)dz < ab (3.1)
0 0

and the equality in (3.1) is valid if and only if b = h(a) and p(z) = q(x) = 1.
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