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Abstract

In this paper, we obtain a « - Suzuki fixed point theorem by using C - class function on quasi metric spaces.
Also we give an example which supports our main theorem.
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1. Introduction

In this paper N and R denote the sets of positive integers, respectively the set of real numbers, while
Ny :=NU {0} and R] := [0, 00).
In 2008, the generalization theorem of Banach contraction principle [2], which was introduced by T.Suzuki
[7], later this theorem is also referred as Suzuki type contraction. In 2014, Ansari [1] introduced the concept
of C- class functions and proved the unique fixed point theorems for certain contractive mappings with
respect to the C' - class functions.

The aim of this paper is to prove a a-Suzuki type fixed point theorem by using (C')- class functions in
quasi metric spaces.

2. Preliminaries

The aim of Suzuki [7] is to extend the well-known Edelstein’s Theorem by using the notion of C-condition.
Popescu [5] re-considered this approach to extend Bogin’s fixed point theorem:
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Theorem 2.1. Let a self-mapping T on a complete metric space (X, d) satisfies the following condition:
1
implies
d(Tz,Ty) < ad(z,y) + bld(z, Tx) + d(y, Ty)] + cld(z, Ty) + d(y, T'z)] (2)
where a > 0,b>0,c>0 and a+2b+2c=1. Then T has a unique fized point.

First we recall some basic definitions which play crucial role in the theory of quasi metric spaces.

Definition 2.2. Let X be a non-empty set X and q: X x X — R be a function which satisfies: such that
forall z,y,z € X:

(1) q(z,y) =0if and only ifz = y;
(QQ) Q(x7y) S Q(xWZ) + Q(Zay)‘

The pair (X, q) is called a quasi- metric space.

Example 2.3. Let X =1y be defined by

h={zn}n>1 C R, Z |zp| < oo}
n=1

Consider d : X x X — [0,00) such that

_ 0 ifr <y,
a(@y) = { S el ifx =y,

q is a quasi - metric. Mention that x =y if T, > yy, for all n, where v = {x,} and y = {y,} are in X.
Definition 2.4. Let (X, q) be a quasi-metric space.
q(i) A sequence {x,} in X is said to be convergent to x if lim q(x,,z) = lim ¢(z,z,) =0.
q(ii) A sequence {xy,} in X is called left-Cauchy if for every € > 0 there exists a positive integer N = N (e)
such that q(zy, xm) < € for alln >m > N.

q(iit) A sequence {xy} in X is called right-Cauchy if for every e > 0 there exists a positive integer N = N (e)
such that q(xy, zmy) < € for allm >n > N.

q(iv) A sequence {x,} in X is called Cauchy sequence if for every e > 0 there exists a positive integer
N = N(e) such that q(xn, xy) < € for allm,n > N.

Remark: From definition it is obvious that a sequence {z,} in a quasi-metric space is Cauchy if and only
if it is both left-Cauchy and right-Cauchy.
Ansari [I] introduced the concept of C- class functions as the following:

Definition 2.5. (See [1]) A mapping F : [0, +00)? — R is called a C- class function if it is continuous and
for all s,t € [0,400),

(a) F(t,s) <s;

(b)F(s,t) = s implies that either s =0 ort = 0.

We denote C as the family of all C- class functions.
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Example 2.6. (See [1]) The following functions F : [0,+00)? — R are elements in C.

(1) F(s,t) =s—t for all s,t € [0,00);

(2) F(s,t) = msforalls t €[0,00) where 0 < m < 1;

(3) F(s,t) = rr for all s,t € [0,00) where r € (0,00);

(4) F(s,t) = (s+1) T [ for all s,t € [0,00) wherel > 1, r € (0,00);

(5) F(s,t) = slog;,,a for all s,t € [O 00) where a > 1;

(6) F(s,t) =s— (%iz)(lit) for all s,t € [0,00);

(7) F(s,t)=s ( ) for all s,t € [0,00) where 3 :[0,00) — [0,1) and is continuous;

(8) F(s,t o(s) for all s,t € [0,00) where ¢ : [0,00) — [0,00) is a continuous function such that

< —

o(t) =0 if an donlyzft—O

(9) F(s,t) = sh(s,t) for all s,t € [0,00) where h : [0,00) x [0,00) — [0,00) is a continuous function such
that h(t,s) < 1 for all s,t € [0,00);

(10) F(sjt) =5— (%ii)t for all s,t € [0,00);

(11) F(s,t) = {/In(1 4 s™) for all s,t € [0, 00).

Definition 2.7. (See [1f) A function ¢ : [0,00) — [0,00) is called an altering distance function if the
following properties are satisfied:
(a) ¢ is nondecreasing and continuous;

(b) ¥(t) = 0 if and only if t = 0.
We denote ¥ the family of all altering distance function.

Definition 2.8. (See [1/) A function ¢ : [0,00) — [0,00) is called an ultra altering distance function if the
following properties are satisfied:

(a) ¢ is continuous;

(b) p(t) >0 for allt > 0.

We denote ® the family of all altering distance function.

In 2012, Samet et al. [6] introduced « - admissible mappings as the following;:

Definition 2.9. (See. [0, [3] ) A mapping f: X — X is called a- admissible if for all z,y € X we have
a(z,y) 2 1= a(fz, fy) 2 1
where av: X x X — [0,00) is a given function.

Definition 2.10. [J/ A mapping f : X — X is called a triangular a- admissible if it is « - admissible and
satisfies
a(z,y) =

a(y, z)

where z,y,z € X and a: X x X — [0,00) is a given function.

>1 b= alz,2) > 1,

Definition 2.11. [/ A mapping f : X — X is said to be weak triangular o - admissible if it is a-admissible
and satisfies
oz, fr) > 1= oz, f2z) > 1,

where a: X x X — [0,00) is a given function.

Lemma 2.12. [JJ] Let f : X — X be a weak triangular a-admissible mapping. Assume that there exists
xo € x such that a(xg, frg) > 1. If x,, = fMxo, then a(xm, fx,) > 1 for all myn € Ny with m < n.

The following auxiliary result is going to be used in the proof of existence theorems.
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Lemma 2.13. Let f : X — X be a triangular a- admissible mapping. Assume that there exists xg € X such
that a(xo, fxo) > 1 and a fze,z0) > 1. If x = fMxg, then a(xm, xy) > 1 for all myn € N.

Definition 2.14. Let (X,q) be a quasi metric space and let f : X — X be a given mapping f is an
F(¢y — ¢) — a-Suzuki- type rational contraction condition.If there exist two functions o : X x X — [0, 00)

such that a(z,y) > 1 and
1
4@, fz) < q(z,y)

implies that

Yq(fz, fy)) <F@(M(z,y)),0(M(z,y))), (3)

for all x,y in X, where

M (z,y) :max{ q(%y),w }’

YeV pedand F €C.

Now we prove our main result.

3. Main Results

Theorem 3.1. Let (X,q) be a complete quasi metric space and f : X — X be mappings such that [ is
F(¢y — ¢) — a-Suzuki- type rational contractive suppose that

(i) f: X — X is weak triangular a- admissible mapping
(i) there exists xog € X such that o(zg, frg) > 1 and o fzg,x0) > 1

(iii) f is continuous or If {x,} is a sequence in X such that a(Tp,xTny1) > 1 and a(xpi1,xy) > 1 for
all n and as n — oo, then there exists a subsequence {x,(k)} of x, such that o(z,(k),z) > 1 and
a(z,zn(k)) > 1 for all k

Then f has fized point in X.

Proof. By assumption (i7), there exists zg € X, such that a(xg, fxg) > 1 and a(fzg,z9) > 1.

Define the sequence {z,} in X as fx, =x,41 ,n=1,2,3,---
If 2, = Tpy+1 for some ng > 0, then z,,, is a fixed point of f and the proof is done. Assume that z,, # x,11

for all n > 0. Since f is a- admissible,
a(zo, fro) = afzo,21) 2 1 = affzo, fr1) = a(z1,22) > 1
and continuing we obtain

a(Tp,Tnt1) > 1 forall n € N.

Since
%Q(xny f$n) < Q(xny mn—l—l)-

From ,We get
V(g (frn, frnt1)) < F (M (2n,2n41)) ¢ (M (20, Tnt1))) -

_ 1+q(@n,Tn+1).9(Tn41,Tn42
Mz, @n11) = max { qan, o), Ut dlng o)

= max{q(xn, l‘nJrl)’ Q(l‘n+1v xn+2)}'
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Hence,

(q(@nt1, Tny2)) < F (¢ (max{q(@n, ni1), ¢(@nt1, Tns2) }), pmax{q(@n, 2ni1), ¢(Ent1; Tni2)})) -

If ¢(xn+1, Tnte) is maximum then we have

V(q(Tnt1, Tni2)) < F(0(@(Tnt1, Tnt2)), 0(@(Tnt1, Tn2))) < Y(@(Tnt1, Tni2))

, which is a contradiction.
Hence q(x,, p41) is maximum. Thus

(q(@nt1, Tni2)) < F((q(2n, 2ni1)), 9(q(2n, Tny1)) (4)

Since 1) is increasing we have q(zp 41, Tni2) < ¢(Tn, Tpi1).
Thus {g(zy,2n+1)} is @ non - increasing sequence of non - negative real numbers and must converge to a
real number, say, r > 0. Suppose r > 0.
Letting n — oo in (4] , we get
P(r) < F(¢(r), ¢(r)). This implies that ¢(r) = 0 and ¢(r) = 0 which yields

lim Q(xna $n+1) =0. (5)

n—oo

Now we prove that {z,} is a left-Cauchy sequence in (X, g). On contrary suppose that {z,} is not left -
Cauchy.
Then there exist an € > 0 and monotone increasing sequences of natural numbers {my} and {ny} such that
ng > mg,
ATy Tny) 2 € (6)
and
q(Tmys Tnyp—1) < €. (7)

From @ and , we obtain

€ S Q(xmkyxnk)
< Q(xmkaxnkfl) + q(l‘nkfla xnkfl) + Q(xnkfla -Tnk)
< €4 q(Tny—1, Tny—1) + @(Try—1, Tny,)-

Letting k — oo and then using @, we get

k—o0
Letting £k — oo and then using and in
‘Q(xmkflaJTnk) - Q(xmkflawmk” < (I($mka xnk)
we obtain

lim q(l'mkfla xnk) = €. (9)
k—o0

Letting k£ — co and then using and in

‘Q(mmk7xnk+1) - Q(xnkvxnk-i-l)’ < Q(fﬂmmxnk)
we obtain

lim q(zp,, Tn,+1) = €. (10)
k—o0

Hence, we get
Since f is weak triangular a-admissible. Then, from Lemmag2.13| we have

(T, Tm,) > 1
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If 2q(Tmyp—1,Tmy) > @(Tmy—1, Ty, ) then letting k — oo,
we get 0 > € from [5] and [0
It is a contradiction. Hence
%Q(l‘mk—h xmk) < Q($mk—17 xnk)
From , we have
(0 (Q(wmmxnkﬂ))
= 1/} (Q(fxmk—la fxnk))
<F W (M(‘,L‘mk*17 xnk)) y P (M(:L‘mk*b xnk))) )

where

M(xpmy—1,Tn,) = max{ A(Tmp—1,Tn, ),
Letting k£ — oo and then using and we have

P(e) < F(¢(max{e,0}), ¢ (max{e, 0}))
< F((e), ().
It follows that ¢ (¢) = 0 or ¢ (¢) = 0. This implies that e = 0 which is a contradiction. Hence {z,} is left -
Cauchy in (X, q). Similarly, {z,} is right - Cauchy
Thus {z,} is a Cauchy sequence in (X, q).
Hence,

1+Q(xmk71:xmk)'qcl‘nk aznk+l)
1+Q(xmk—17xnk) ’

lim q(zp,zm) =0. (11)

n, M—00

Since Tp4+1 = fxy, it follows {z,} is a Cauchy sequence in the complete quasi - metric space (X, q). There-
fore, there exists u € X such that

nlglgo q(zp,u) = nh_)rgo q(u, z,) = 0. (12)
From continuity of f we get
Jim_g(2n, fu) = Tim g(f@n-1, fu) = 0. (13)
and
Jim g(fu,2,) = Tim g(fu, fon-1) = 0. (14)
Combining and , we deduce
Jim_g(zn, fu) = lim q(fu, fzn) = 0. (15)

From [12] and due to the uniqueness of the limit, we conclude that v = fu, that is , u is a fixed point of
f

Now we claim that, for each n > 1, at least one of the following assertions holds.

1 1

§Q(-’En71a xn) < Q(xnfla u) or 5q<$n,xn+l) < Q(xnvu)-
On the contrary suppose that

1

1
S0@n-1,20) > a(@n-1,0) and  Sa(an, 2ai1) > (e, w)

for some n > 1.
Then we have

Q(Tn-1,2n) < q(zn-1,u) + q(u, zn)
1
< 5 [Q(xn—la wn) + Q(xna xn—i—l)]
< Q(xn—laxn)a
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which is a contradiction and so the claim holds.
Suppose %Q(Ina Tnt1) < q(Tn,u) -
Suppose fu # u.
Since the sequence {z,} converges to v € X from (éii), there exists a subsequence {z,(k)} of x,, such that
a(zy(k),u) > 1 and a(u, x,(k)) > 1 for all k.
We have
%Q(xnka xnk+1) < %Q(xnkv ’LL)

from , we have
¥V (q(fan,, fu)) < F @ (M (zn,u), o (M (2n,,u))),

where

14+q(@n, frn, ).q(u,
M(ank,U) = max{ q(xnmu)’ Q(xliqféni?ufl)(ufu) }

Letting n — oo and using [T4we get

¥ (q(u, fu))
<F (¢ (max{ q(u, u), % }> , P <max{ q(u,u), % })) ,

< F (¢ (q(u, fu)), ¢ (q(u, fu))) < (q(u, fu)),

which is a contradiction.
Thus, fu = u.
Hence, u is a fixed point of f .

(H) for all x,y € Fiz(f), we have a(z,y) > 1, where Fix(f) denotes the set of fixed points of f.
Theorem 3.2. Adding (H) to the hypotheses of Theorem, f has a unique fixed point.

Proof. Due to Theorem (3.1)), we have u is a fixed point of f. Let w be another fixed point of f .
Suppose u # w.
From (H), we have

a(u,w) > 1, for all u,w € Fix(f).

Since 1q(u, fu)} < q(u,w), from , we obtain

¥ (q(u,w)) = (q(fu, fw))
< F @ (M(u,w)), o (M(u,w))),
where
M(u,w) = maX{ q(u,w), 1+q1(_1'1_,qU()u.¢’11(U1§),w) }
= q(u, w)
Thus

¥ (q(u,w)) < F (¢ (q(u, w)) , ¢ (q(u, w))).

It follows that v (¢(u,w)) = 0 or ¢ (q(u,w)) = 0.

This implies that ¢(u,w) = 0 which is a contradiction.
Hence u = w.
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Example 3.3. Let X = [0,00) and q be the quasi metric on X given by
_ [ l=l itz Ay,
Q(l"y)_ { 0 ifx:y,

for all x,y € X. It is obvious that (X, q) be a complete quasi- metric space. Suppose that f : X — X is
defined by
3 — 2 ifx > 2,
fx_{ z z‘fa:fe[OQ]
8 )4l

Now, define a: X x X — [0,00) as

[ 1 ifz,ye]0,1]
a(z,y) = { 0  otherwise.
Let F(s,t) =s—t for all s,t € [0,00). Let p(t) =t, p(t) = L.

3q(z, fz) <u
< q(z,y)

(fz, fy)

€,

¥ (q(fz, fy))

NI 008 S R

=%
=
t@ N—

)

(CC, ) - %M (IL',y)

(¢ (M (z,y)), 9 (M (z,y)))

Therefore, all of the conditions of Theorem[3.1] are satisfied and 0 is the fized point of f.

1A
<

If we let a(z,y) =1 for all z € X, we get the following result.

Corollary 3.4. Let (X,q) be a complete quasi metric space and let f : X — X be a given mapping f is an
F(¢ — ¢)-Suzuki- type rational contraction condition. If there exist functions ¢ € ¥, ¢ € ® and F € C such
that

%q(af,fa:) < q(z,y)

implies that
V(g (fz, fy) < F@WM(z,y),e(M(z,y))),

where

M (x,y) zmax{ a(a,y), FoleSoa.11) }

for all x,y in X. Then f has a unique fixed point in X.
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